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Abstract: Sixth-generation communication networks must be highly dependable due to the foreseen
connectivity of critical infrastructures through them. Dependability is a compound metric of four
well-known concepts—reliability, availability, safety, and security. Each of these concepts have unique
consequences for the success of 6G technologies and applications. Using these concepts, we explore
the dependability of 6G networks in this article. Due to the vital role of machine learning in 6G, the
dependability of federated learning, as a distributed machine learning technique, has been studied.
Since mission-critical applications (MCAs) are highly sensitive in nature, needing highly dependable
connectivity, the dependability of MCAs in 6G is explored. Henceforth, this article provides important
research directions to promote further research in strengthening the dependability of 6G networks.
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1. Introduction

Fifth-generation wireless networks brought innovative technological concepts into the
wireless domain that closed the gap between traditional IT domains and communication
networks. For example, cloudification and softwarization of networking technologies
enabled deploying new use cases and applications in wireless networks. Technologies from
the physical layer, such as massive multi-input multi-output (MIMO), to the application
layer, such as machine learning (ML) technologies, have increased networks’ capacities
and capabilities. However, 5G cannot meet the requirements of emerging services such as
the Internet of Everything (IoE), due to the inherent limitations of 5G systems [1]. Sixth-
generation communications networks will take a huge leap beyond 5G in order to meet
the needs of future services and societies, which will be centered around data centric,
intelligent, and automated processes [2]. Novel disruptive technologies in the domains
of terahertz and optical communications, cell-less coverage through integrated terrestrial-
satellite access technologies [3], distributed end-user terminal-based artificial intelligence
(AI) [4,5], and distributed ledger technologies (DLTs) [6], to name a few, will converge to
fulfill the needs of emerging applications and use cases [7].

Furthermore, 6G is expected to ignite a human transformation, thanks to improved
context-aware devices with new human–machine interfaces provided by end-devices that
are no longer mere data collectors, but multiple synchronized entities working in unison.
This will dramatically improve the way we interact with both the physical and digital
worlds. Such services will have have stringent quality of service (QoS) requirements
in terms of bandwidth, reliability, and latency that will be challenging for existing 5G
networks to provide. For example, ubiquitous and universal computing with resources
distributed locally and in the cloud, knowledge systems that store and convert data into
actions, and efficient sensing for controlling the physical world cannot be provided in 5G,
and thus, focus is put on 6G research. Sixth-generation networks are also envisioned to
provide massive-scale connectivity, 3D networking, real-time immersion through extended
reality (XR), and haptic applications [8].

To stand on the envisioned promises, 6G must be highly distributed to meet the
needs of latency, reliability, and availability of critical services, such as industrial au-
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tomation systems, UAVs, and autonomous systems. Distributed clouds—edge, fog, and
cloudlets [9]—will play a crucial role in providing the necessary computing and storage
resources for distributed 6G. Softwarization of network functions and services will enable
distributing important services to different network perimeters. Similarly, distributed AI
in the distributed network will overcome challenges related to latency, reliability, data
criticality, and privacy in 6G [10,11]. However, the distributed nature of the network will
also create several challenges, mainly related to dependability. Therefore, in this article we
discuss the dependability of 6G. Dependability, as discussed in detail in Section 3, ensures
the trusted delivery of services. Elaborate discussion on dependability and its concepts is
presented in [12], and thus we avoid writing in detail about dependability itself. In this
article, we discuss the dependability of 6G from the systems engineering perspective, where
the focus is laid on four well-known concepts: reliability, availability, security, and safety.

Reliability is the probability of a system working correctly for a certain period of
time. As 6G networks will be highly distributed, the main concern regarding reliability
is effectively coordination of the computing nodes. In order to achieve this, successful
communication protocols between those computing nodes are needed, along with a reliable
underlying network capable of supporting the amount of traffic generated by storing and
retrieving data [13]. Availability refers to the probability of a system working properly
at any given time. Distributed AI solutions for 6G networks are an attractive option for
improving learning time while reducing resource consumption, and thereby improving
the availability of AI-based systems and services. Form factor is an important variable,
since it limits the resources, including energy, available for communication with external,
distributed solutions. Security refers to capacity of a system for protecting itself by promptly
identifying threats, and taking actions that effectively protect the services deployed on
the system and data exchanged among the components and users. In the case of 6G
network services, distributed AI/ML algorithms are needed to train models locally for
threat identification and mitigation, in order to preserve the end user information. Finally,
safety refers to the ability of a system to avoid harming human life, the environment,
or private property. Since 6G networks will leverage use cases where human life is at the
stake such as autonomous driving, it is in our interest to analyze the role of AI/ML in
such situations.

In this work, we study the dependability of 6G networks in four dimensions, i.e., re-
liability, availability, safety, and security. We also analyze how the distributed nature of
6G networks negatively affects their dependability. Furthermore, we dive into the roles of
distributed AI techniques and distributed mission-critical applications (MCAs) that are cur-
rently used in the intelligentization of the networks. We bring forth important challenges
with potential solutions and shed light on interesting future research directions. Henceforth,
this article is organized as follows: Section 2 highlights the related work and contributions
of this article. Section 3 briefly discusses the concept of dependability. Section 4 discusses
dependability in 6G networks. Section 5 briefly introduces the AI techniques expected to be
deployed on 6G edges, and their effects on dependability. Section 6 provides insights into
the relation between dependability of MCAs in 6G. Interesting future research directions
are summarized in Section 7, and the article is concluded in Section 8.

2. Related Work and Our Contributions

In this section, we describe the related work and our contributions.

2.1. Related Work

Dependability is extremely important for future 6G communications, mainly due to
the integration of critical infrastructures through wireless networks. There exists research
that focus on each individual topic, such as reliability, availability, safety, and security.
However, dependability as whole has received little research attention. There also exist
research on specific topics, such as dependability of industrial IoT [14], where the focus is
on real-time and reliability requirements of industrial IoT networks. Similarly, the authors
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of [15] discuss the dependability of software-defined networks. The article argues the need
for secure and dependable SDNs by-design by first highlighting the threat vectors that can
be used by adversaries. Then, the article sketches the design of a secure and dependable
network architecture, mainly focusing on the control platform. A survey on heterogeneous
dependable wireless networks, focusing on industry, is presented in [16]. The article
elaborates on the heterogeneous nature of the next generation factories, where diverse
technologies are interconnected through a diverse set of wired and wireless connectivity
technologies. However, the main focus is on industrial systems, where dependability in
terms of availability and latency of existing technologies is critically discussed.

The related work on dependability can be divided based on the four categories dis-
cussed in this article, i.e, reliability, availability, safety, and security. Articles, surveys, and
review articles can be found discussing each of these four aspects in detail. For instance,
the authors of [17] discussed deep learning-based techniques that can increase reliability
of 6G networks. A survey on deep learning techniques for improving reliability in 6G
is presented in [18]. UAVs can also be used to increase the reliability of 6G networks, as
surveyed in [19]. Even though all the dimensions of dependability are highly dependent,
reliability and availability are highly intertwined. Increasing the reliability of commu-
nication networks increases availability. Increasing the reliability and availability of 6G
networks, therefore, is discussed in [20], where the focus in mainly on the IoT. The safety
feature of dependability is mainly discussed from use-case points of view, and general
discussion on theme of safety in 6G networks is lacking. For example, huge research efforts
are dedicated to safety in autonomous vehicles and UAVs [21]. Security in 5G and beyond
is discussed in [22], in which a detailed description of the security landscape of 5G with
potential research direction in 6G is presented. Security and trust in 6G are also elaborated
in [23]. The authors discuss the main dimensions of security and trust in 6G, ranging from
the physical layer up to the application layer.

The main lesson learned from the existing research is that most articles are focused on
a specific dimensions of dependability.

2.2. Contributions of the Paper

The main contributions of this article revolve around:

• We analyze the role of dependability in 6G networks from a system-wide point of
view, studying each of the four components of dependability separately.

• We analyze how the omnipresence and distributed nature of AI/ML affects the de-
pendability of 6G systems.

• We study the importance of dependability in MCAs, analyzing every aspect of de-
pendability separately.

• We identify future research directions that are summarized in Table 1 and will help to
increase the dependability of future 6G networks.

For smooth readability, the most important acronyms are defined in Abbreviations.
In the following section, we discuss the background and principles of dependability.

Table 1. Existing challenges and potential future research directions.

Dependability Challenge Potential Future Research Directions

Reliability

Distributed control and
management will increase the

complexity of the overall system
which can lead to

reliability challenges.

Dependable 6G would require a hierarchical architecture that provide
logical centralized view of the overall network including the architecture

and infrastructure elements, and loosely coupled distributed control
elements, all synchronized through a global view can simplify the

overall system.
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Table 1. Cont.

Dependability Challenge Potential Future Research Directions

Availability

Due to the distributed control,
availability can be increased in

principle, however, availability can
be compromised through

weaknesses in security, reliability
and safety.

The architecture should be modular and distributed as it is, and designed
such that the effects of cascading failures are avoided, where availability

of one module or component does not compromise the availability
of another.

Safety
Safety is a rarely researched topic
from technical perspectives and is

intertwined with security.

The main work needed in increasing safety of future communications
networks is defining safety in technical terms and aligning safety research

with the rest, similar to security-by-design, safety-by-design must be
brought into discussions and research.

Security

Security in 6G is extremely
complicated in terms of new

technologies, modular distributed
design, and the increasingly

vanishing physical-cyber borders
leading to highly complex network

architectures.

First, it will be important to know early whether to build 6G security on
top of the 5G standards or rethink according to the new disruptive

technologies from application to physical layers. How to design security
systems for the loosely coupled, highly distributed, and inter-dependent
systems that are synchronized on one hand and avoid the risks related to

cascading failures on the other hand, will be extremely important.
Furthermore, AI related risks and challenges including its sustainability

will exacerbate in 6G and will require serious research efforts.

3. Dependability

Dependability is the ability of a system to deliver a service that can justifiably be
trusted; in other words, it should avoid frequent and severe service failures [24]. Though cru-
cial in importance, dependability is often overlooked in favor of other research directions.
Priority has been given to coordinating computing activities between distributed nodes
in order to achieve higher performance, or security mechanisms that help in protecting
users and their data. As previously mentioned, dependability is a compound metric
and can be discussed through four important indicators: reliability, availability, safety,
and security. Although performance and security are important, and as such most of the
works focus on them, the other three requirements of dependable systems should not be
underestimated [25,26]. Moreover, there are many facets of dependability, for instance,
confidentiality and integrity [27]. However, some of the concepts converge into the four
aspects discussed throughout this article. Therefore, for brevity we limit the discussion to
the topics of reliability, availability, safety, and security, as described below.

3.1. Reliability

The complexity of distributed edge networks means that achieving reliability in such
an environment is not an easy task. With the increasing number of MCAs solutions on
the market, requirements for reliable systems are indispensable, and furthermore, still
a challenge to achieve. Rapid changes in computing environments also bring challenges
to reliability, for example, asynchronism, heterogeneity of software/hardware, scalability,
and fault tolerance, to mention some. In [28], the authors briefly explored reliability
issues in edge AI systems and proposed an architecture that meet latency and reliability
requirements for many MCAs. It is identified that computation on edge systems occur in
three different layers: bottom (end devices), middle (servers), and top (centralized cloud).
In order to achieve good communication and a fast response, all three layers must be
properly synchronized, like the storing and data access for processing [13].

3.2. Availability

Availability is realized once reliability has been achieved. Reliability is the probability
that the system is working, and availability is the probability of it working at a given
time. Availability ensures that no denial of authorized access to the system occurs [29].
The advantage of distributed systems is that additional nodes and communication paths
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help hiding any failure that might exists. Current research trends in edge computing
aim at improving system availability by carefully planning task and data offloading from
end devices towards edge servers with frameworks that are even capable of performing
the offloading based on network statistics and the edge servers’ computation capabilities.
Another characteristic helping availability is the reassignment of tasks from failing nodes,
although common node failures are still a problem, since a task that crashes a node can be
moved to another node and causes the same type of crash. Since availability and reliability
work together, it is important to notice they can also work at cross purposes; with this in
mind, both concepts must be weighted against one another, as different systems might
require a different degree of each.

3.3. Safety

Safety is critical for MCAs, especially in use cases where human lives are at danger,
such as autonomous driving and telesurgery. The IEC 60601 [29]. which is a technical
standard for the safety and performance of the medical electrical equipment, defines safety
as the avoidance of any hazards due to the operation of a device under normal or single-
fault conditions. However, this definition can be broadened to cover non-medical domains,
thereby including faulty conditions such as wrong lane selection in autonomous driving,
or task offloading failure affecting the information given to the end user, or creating distrac-
tions in an augmented reality application. The current trend in communication networks is
to simplify safety through the development of bug-free software or through an AI-based
optimization problem. It is necessary to study the interaction between the composing cy-
berphysical systems (CPS) and the environment of each use case [30]. In [31,32], telesurgery
safety considerations from the medical point of view are given. It also mentions their
experience with different surgical robots and elaborates on some comparisons.

3.4. Security

Security is one of the main issues in communication networks, as both nodes and
the whole network are attacked by malicious users [22,33]. The distributed and data-
driven nature of future 6G communication networks and its use cases mean more data,
and of course, a wider attack surface. The applications of AI or ML in communications
networks are increasing at a higher pace due to apparent reasons [34]; however, AI and
ML also bring their own security challenges in communications networks, as elaborated
in [35,36]. The most important part is to identify the required level of security for a certain
use case and adopt the principles of the security-by-design approach. These concepts
are quite important due to the diverse nature of 6G MCAs. Furthermore, the rise in
the number of capable attackers targeting communication networks call for stringent
security requirements. In [37], the authors explore the application of blockchain technology
alongside ML in order to protect vehicular networks from cyber attacks. Similarly, in [38],
the authors used a smart contract architecture in heterogeneous vehicular networks for
collaboratively performing tasks between moving vehicles and parked vehicles. The smart
transactions consider the characteristics of both the network and the attack models for
improving security. Furthermore, physical-layer security techniques can be used to provide
security with drastic changes to the network architecture [23,39].

4. 6G and Dependability
4.1. Brief Introduction to 6G Networks

The rapid development of multimedia applications for use cases such as high-fidelity
holograms, tactile Internet, and the support of MCAs require a higher bandwidth, lower
latency, and higher reliability than that offered by the current 5G communication net-
works [40,41]. Therefore, 6G aims to fulfill these requirements through base-station den-
sification (mmWave and terahertz tiny cells, temporary hotspots) with other means for
distribution of network functions, such as extended edge computing, and exploration of
higher frequencies above 300 GHz, as discussed in [1]. The resulting 6G networks, thus,
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will be expected to provide more than just communications, i.e., to interconnect communica-
tion, computing, and sensing technologies with the physical, biological, and cyber worlds,
thereby acting as distributed neural networks that will enable intelligence of everything.
Sixth-generation networks will transform the way we communicate, from connected people
and devices to connected intelligence. This means bringing intelligence closer to every
person, home, or business, for example, in the form of edge intelligence. Therefore, 6G
networks are bound to be large-scale, use heterogeneous access with cell-free or cell-less
coverage, and dynamic with heavily-distributed storage and computation capabilities [42].

The transition from 5G to 6G requires changes not only in bandwidth, but from the
physical to the application layer in order to meet the new requirements of emerging services,
such as the Internet of Everything (IoE) [43]. Furthermore, 6G networks are expected to
achieve data rates in the range of terabits per second, thanks to the developments in
terahertz communications; and improvements in massive MIMO, beamforming, and novel
coding schemes. A successful combination of these next-generation wireless networks with
cloud, edge, and fog platforms is vital in order to realize increased network intelligence.
To meet the requirements of latency and privacy, bringing cloud platforms closer to the
sources of data, for instance, in the far edge, will be inevitable. Edge intelligence [28,44]
thus opens up new horizons for achieving and exploiting the full potential of 6G networks.

Since the first generation (1G), the complexity of communication networks have
increased while expanding both horizontally and vertically, thereby rendering them difficult
to manage. Furthermore, along with complexity, the security threat landscape has also
increased constantly [22]. Edge computing can play an important role in addressing both
of these challenges, i.e., complexity and security. By devolving control into multiple control
units, compared to centralized ones, security through redundancy can be increased as
a general phenomenon. For instance, the chances of single points of failure, and of a single
target for denial of service (DoS) and resource exhaustion attacks, are highly complicated
in such distributed environments. Furthermore, edge computing plays a vital role in 6G
communication networks, as it provides the computing the resources necessary for carrying
out management and analysis close to end-users’ devices [45].

Fast and focused data processing through edge computing is the cornerstone of
applications in 6G, for example, in vehicle-to-everything communications [46]. In-depth
data analysis could be carried out by the centralized cloud at the expense of delays [47].
Figure 1 shows a simplified architecture of an AI-based 6G network, which is divided into
three parts: user environment, networks, and management and control. In the management
and control, functions such as parameter optimization, resource management, and task
scheduling are carried out. In the network part, some of the tasks performed are data
filtering, knowledge discovery, and feature extraction for data analytics, besides the usual
network layers’ work. Finally, in the user’s environment, all the sensing, monitoring,
and data collection occurs. The increase in data volumes being processed at the edge
of the network represents a difficulty in properly identifying useful data for a primary
analysis, prior to passing them to the centralized cloud. These requirements have paved the
way to the intelligentization of the edge computing, referred to now as edge intelligence
or EdgeAI [48], transforming it into a AI-based platform capable of offering intelligent
services [49]. In order to achieve this, research hs departed from the centralized cloud-
based approach, sparkling an interest in distributed, low-latency, and reliable AI at the
edge [50,51].
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Figure 1. An abstract representation of enabling intelligence in 6G networks.

EdgeAI is drawing an increasing attention, and its development is closely aligned
with that of reliability in communications and end-device constraints. This allows the
deployment of a network whose operation resembles that of a distributed computer, which
is deployed between the centralized cloud and end users. This distributed nature of EdgeAI
can have huge impacts on dependability of 6G networks, as discussed below.

4.2. Dependability in 6G Networks

In this part, we analyze the dependability of future 6G networks from the perspective
of their distributed and data-driven nature. Concepts such as EdgeAI help reduce latency
between the end-devices and edge servers. However, at the same time, they might be points
of failure and interesting targets for security attacks, if its weaknesses are not properly
addressed before deployment. Below we discuss the dependability of 6G networks in
the four dimensions, i.e., reliability, availability, safety, and security from the perspectives
of EdgeAI.

4.2.1. Reliability

Sixth-generation networks are expected to offer extremely high reliability. EdgeAI
supports the vision of 6G through offering more computational power near users or services
while reducing overall latency. Reliability requires checking the necessary requirements
instead of assuming that these are fulfilled and constantly monitoring the network [52].
Although in terms of performance, EdgeAI supposes a step forward, its distributed nature,
combined with the high number of servers required, might well introduce other issues.
First, we have asynchronism. As the number of edge servers rises, they are also expected
to be capable of working in unison; this means being synchronized. Synchronization is
improved when servers are aware of the status of neighboring servers; in other words,
the exchange of information, such as available memory or processing power, is shared in
a timely manner.

Another issue is the heterogeneity of software and hardware at the nodes. Although it
brings benefits in the long run, the adoption of heterogeneous solutions might also pose
challenges. As an example, heterogeneous EdgeAI servers might have different power
consumption and performance levels due to non-identical CPU architectures. In the same
manner, distinct feature support could hinder synchronism. Scalability could also be
a problem for networks, as it increases the complexity of management, and it might also
create issues with synchronism. As 6G networks will be highly scalable, fault tolerance is
also important in order to ensure reliability. As a system scales to be hundreds of nodes in
size, a fault tolerant system will enable the operations or services to continue at a reduced
level, though not stopping completely.

4.2.2. Availability

Availability is the assurance of access to services and resources by legitimate users,
or the quality of being ready or present for immediate use [53]. As mentioned in Section 2,
reliability and availability are both intertwined. As a combination of highly distributed
systems, 6G networks will be capable of dissimulating failures at the edge servers by
rapidly offloading the assigned processes towards a nearby server that possesses the
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required resources. In the context of EdgeAI, if an edge server fails, then its tasks are
offloaded towards a neighboring edge. This is where synchronism plays a major role, and
in order to achieve this, servers must be aware of the status of each other. Furthermore,
predictive analysis of available resources in neighboring edge nodes will be important.
Such analysis will enable performing normal routine tasks, along with the system being
able to offload tasks to neighboring nodes in cases of failures, as discussed in [36]. This
process will be time consuming, but the system is perceived by the user as still functioning,
even with the increase in delay that task offloading represents. Similarly, load-balancing
techniques that can effectively distribute tasks among available resources can also increase
the availability of critical resources [54]. Although highly related, it must be noted that a
system with high availability is not necessarily reliable, thereby ensuring the expected high
reliability of 6G networks does not guarantee meeting the availability criteria.

4.2.3. Safety

Safety and security, looking intertwined, are highly complicated in terms of defining
their roles in communications networks. Safety, also defined similarly in [55], is a system’s
characteristic of preventing losses due to unintentional actions by normal, non-harmful
actors. Security, on the other hand, relates to deliberate actions (mostly harmful) by de-
liberate actors. Safety in 6G communications networks can be achieved by taking several
measures that are also related to security, which are discussed in the following security
part. Aside from foolproof security, safety can be achieved by improving monitoring
and response systems, increasing multiplicity or redundancy, and distributing important
control functions throughout the network. EdgeAI thus plays a very important role in
providing opportunity for redundant resources and distributing important network control
functions. The concept of devolving control functions, with the help of miniaturizing edge
to the extreme, as discussed in [56], can improve safety in terms of minimizing the impact
of failures and delimiting the consequences. The same is true for communications links,
using multiple access technologies to avoid blackout due to failure in one. Satellite commu-
nications [57,58] present interesting solutions to be coupled with terrestrial networks for
enabling safe operation in times of failures, as a redundant communication infrastructure.
The key point in improving safety in 6G is enabling the system to function in the wake of
uncertainty, failures in different perimeters and surroundings, and security vulnerabilities
and attacks, which are discussed below.

4.2.4. Security

As one of the main concerns regarding modern networks, security in 6G is of paramount
importance. Novel technologies in 6G networks will also introduce new security concerns.
In this regard, we could mention teraHertz (THz) technology, which is believed to hinder
the ability of malicious users to perform eavesdropping; however, recent research has
shown it is still possible, although difficult, to intercept the signals, even when transmitted
with narrow beams [59]. Quantum communications are also expected to make a significant
contribution in 6G networks, mainly from the perspectives of communications security,
such as quantum and post quantum cryptography [60]. Nevertheless, the technology is still
at its infancy, and although many advances have been made in the quantum cryptography
field, there are still issues regarding operation errors in long distance communications.
Furthermore, quantum computing can raise significant challenges to existing cryptographic
security protocols [61].

Visible light communication (VLC) can improve wireless communications, as it offers
a high bandwidth and is immune to electromagnetic interference. Moreover, VLC faces
threats coming from attackers that are capable of positioning themselves within line-of-
sight of the target. Physical security is also important, as the nodes of a highly distributed
network can be easily targeted by malicious users and damaged as part of a cyberattack [56].
EdgeAI can help provide timely monitoring and response procedures, such as intrusion
detection and prevention systems (IDS/IPS), deployed in the vicinity of where the threat
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originates [22]. Moreover, ML techniques [34] such as federated learning (FL) that enable
the applications of AI in a distributed manner, as in the case of EdgeAI, can enable predict
and deploy security procedures before a security attack or incident happens. Therefore,
in the following section, we discuss the application of FL in 6G networks.

5. Machine Learning, Dependability, and 6G

AI and its major branch, ML, will shape 6G networks [34,42]. Due to its tight QoS
requirements, future 6G networks will posses such a complex architecture that performing
legacy network operations will be deemed unsound. For this, ML techniques are emerging
as a response to achieve truly intelligent orchestration and network management [62].
The dynamic nature of communication networks provides data for ML-enabled spectrum
management and channel estimation, which are the basis of ultra-broadband techniques.
Additionally, ML is being used to improve security, resource allocation, mobility manage-
ment, and low-latency services in MCAs [34]. In particular, ML techniques such as deep
learning have proved to be extremely efficient in preventing serious security attacks, such
as distributed DoS attacks [63]. Distributed ML will be highly important in 6G due to the
emerging needs of distributed processing at the edges of the network [64]. FL is currently
among the most used distributed ML techniques in communication networks [44,65] and is
highly important for 6G due to its ability to be used in a distributed manner, much like the
foreseen distributed control nature of 6G networks.

5.1. Background in Brief

FL [66] was conceived by Google researchers back in 2016. Since then, it has expe-
rienced wide adoption in both industry and academia. The idea behind FL is to move
the training towards the end devices while federating local models and learning, to build
a privacy-preserving ML framework by keeping all raw data on devices and aggregating
local model updates, while also reducing the communications overhead. The FL process is
conformed by several communication rounds between a server and the clients, performed
in the following fashion [4,67]:

• A number of clients is selected by the server based on certain conditions, such as being
idle or its bandwidth limitation, to download the model parameters and use them to
initialize their local model.

• Using their local data, each device trains and optimizes the downloaded model. This
is done by using stochastic gradient descent, a determined number of minibatch
steps, and several epochs in order to increase the update quality and reduce the
communications cost.

• When the training is done, clients send their updates towards the server. It is important
to notice that some clients might drop out due to connectivity issues, lack of processing
power, etc. Nevertheless, the round continues with the received updates. If there are
too many dropped out clients, the current round is abandoned.

• The server receives the updates, weights them based on their training set sizes, and fi-
nally, aggregates them. A new model is built on the server, and the next round begins.

Figure 2 shows a simplified flowchart of the previously explained FL process. θ
represents the global model parameters, nk corresponds to the data size of the client k, K is
the total number of clients, and t is the communication round.
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Figure 2. Simplified FL model presentation.

5.2. Dependability of Federated Learning

As one of the most popular ML techniques, FL has been used, and its processes are
adopted to a wide range of use cases ranging from resource optimization to task offloading,
and from the physical layer to the application layer. In this subsection, we analyze the
dependability of FL with regard to its process, focusing on its algorithm rather than its
applications in certain use cases.

5.2.1. Reliability

ML techniques rely heavily on data. Data quality is fundamental for achieving high
accuracy during the learning task. Client selection is a critical issue in FL, as clients are the
ones updating the local models previous to the global aggregation, it is fundamental to
properly select the clients that train the models using the highest quality of data. Most of the
FL systems select their clients in a random manner, or based on resource conditions. Such
selection of course might affect the global performance, as non-trustable nodes can also
be selected. Moreover, the complexity of conceiving client selection in a communications
network due to its dynamic nature also hinders their reliability. Even further, as it is
difficult for the centralized entity that performs the selection to actually monitor a large-
scale behavior, the selected untrustable clients are unlikely to be removed. Moreover, since
the FL process consists of several rounds, previously selected untrusted clients might also
be selected for future rounds. This can further damage the learning accuracy. Similarly,
security vulnerabilities and lapses can also affect reliability.

5.2.2. Availability

A lack of, or improper, criteria when selecting the clients for local training does not
only affect reliability, but availability also. Untrusted clients using low quality data for
training hinders the whole learning process and may severely affect predictions. In this
manner, a FL framework whose accuracy is not as desired cannot be deployed, nor can
services trust it, thereby rendering it unavailable. Availability in FL systems is complex
to achieve due to the distributed nature of the model training, and the centralization of
global model aggregation; in other words, it is not possible to hide a “faulty” or badly
trained model when several untrusted clients have performed training with corrupted data.
Moreover, this centralization of the aggregation process renders a FL framework vulnerable
to weak aggregation algorithms, which are incapable of discerning high-quality trained
models from those coming from suspicious clients. Availability is also hindered by security
issues discussed in Section 4.

5.2.3. Safety

Damage done by the selection of untrusted clients goes further than that of a faulty or
badly trained model. Since learning is crucial for many use cases, untrusted clients might
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hinder the prediction capacity of a system. This can cause safety-related issues for users.
We can consider an autonomous vehicle with an positioning model based on FL, which
is trained collectively with other autonomous vehicles. If a malicious vehicle is allowed
to send its trained model for aggregation, this could affect the driving decisions of other
vehicles, putting the passengers’ lives at risk. The problem is only exacerbated by the
centralization issue raised in the previous subsection, where weak aggregation algorithms
do not help discriminating good from bad trained models.

5.2.4. Security

Security is an important challenge in ML [35]. Even when FL improves user data
privacy, security is still a main concern. An untrusted client that is selected to participate
in a FL round could perform attacks, such as maliciously using unreliable data or inject-
ing false data. Additionally, a malicious client could also launch attacks alongside other
malicious users aimed at increasing misclassification. False-data injection refers to clients
purposely adding wrong data to the training sets. On the other hand, workers might
unintentionally provide low-quality raw data due to constraints in energy or high-speed
mobility. Another security threat is related to the centralized model aggregation and the
server where this function is located. In case a malicious user gains access to it, then
the whole learning process will be hindered in the best case. In the worst case scenario,
availability would be severely compromised. A communications channel vulnerability
also affects FL frameworks, as the learning process consists of several rounds. An unen-
crypted channel will render the locally trained model vulnerable for attackers to perform
reconstruction attacks.

6. Dependability for MCAs in 6G

One of the primary focus of 6G networks is MCAs. These applications usually require
dependable services in terms of latency and error rates, and due to their nature, this must
be equivalent to wired networks. The requirements of MCAs are closely related to those of
Ultra-Reliable Low-Latency Communications (URLLC) with a target latency of 0.1 ms and
a block error rate (BLER) of 10−9. Although these KPI values are not applicable to all use
cases, they do have practical relevance in a couple of them. As examples, we could mention
autonomous driving, remote surgery, and augmented reality [68]. Needless to say, MCAs
also mandate high-security communications and resource efficiency. Current 5G networks’
approaches for meeting the requirements of MCAs based on tweaking the system design is
not scalable, nor efficient. Future 6G networks need to make use of application-domain
information in order to predict actual resource requirements. Furthermore, 6G networks
need to introduce new parameters that will not only help with characterizing resource
needs but will also ease dependability analysis [17].

Due to its performance, edge computing is gaining traction as a viable solution for
meeting the requirements of MCAs. The drivers behind the adoption of edge computing in
MCAs use cases are the amount of data being transferred between end devices and edge
servers, and time taken for data processing at the edge server. Due to the proximity of the
edge server to the source of data, the network requirements mentioned at the beginning of
this subsection could be met, even in the scenario of a massive amount of data. Furthermore,
edge intelligentization eases meeting these requirements, as it is capable of offering micro-
interaction with end devices, bringing management much closer to them, thereby reducing
the communications overhead due to data fetching and controlling [34].

6.1. MCA Use Cases

This section will focus on briefly introducing and surveying three specific use cases
that are in high demand for automated solutions: telesurgery, autonomous driving, and aug-
mented reality. Considering an emergent surgical system, telesurgery is the use of wireless
networking and robotics, which allows surgeons to operate on patients located far away.
Among its benefits, we can mention the capacity to offer surgery in underserved remote
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locations and enabling collaboration between surgeons from different medical centers.
The most important requirement for telesurgery systems is latency. In [69], the authors
determined the ideal latency for telesurgery systems to be 100 ms or less, while presenting
a feasibility study for trans-sphenoidal resection of a pituitary tumor, where latency of
10 ms was achieved.

The work in [70] presents a drone-assisted telesurgery system that makes use of
blockchain and 6G networks to become trusted and ultra-responsive. The authors favored
an analysis of performance for the AI techniques used to classify diseases, and a cost
analysis for the blockchain; dependability was not studied in this case. In [71], the authors
introduced a 6G blockchain-based scheme for telesurgery that aims at being intelligent
and efficient from the latency, throughput, and storage points of view. Although depend-
ability is not directly mentioned, the authors did study the security and safety of the
framework, and the reliability of the underlying 6G network. No availability analysis was
performed. The importance of security, a dimension of dependability, in remote healthcare
enabled by existing and future communication networks, such as 5G and future 6G, was
thoroughly studied in [72]. The authors conclude that without proper security in place, re-
mote healthcare will be detrimental rather than beneficial. This makes the dependability of
communications networks highly important for such a critical use case. Dependability must
not be considered as an add-on, but used as a benchmark from the basic initial design stage,
which should be revisited during the working stages and must be continuously improved.

Autonomous driving technology refers to self-driving cars which are capable of sens-
ing the environment and safely moving without human intervention [46]. Self-driving cars’
set-ups are quite complex, usually comprising cameras, laser scanners, radars, laser beams,
and an inertial measurement unit. Furthermore, autonomous driving represents the con-
vergence of intelligent wireless sensing, communication, computing, and caching [46,73].
In this work we focus on EdgeAI, which represents the computation and communication
parts of this use case. EdgeAI allows self-driving cars to accurately sense their surround-
ings and timely react using techniques for data offloading from the vehicles to the edge
servers. In [74], the authors introduced a framework for EdgeAI-powered autonomous
driving that achieves near-real-time task offloading while preserving privacy, and reducing
communication delay. Additionally, reliability was explored as the inference accuracy.
Security was enhanced through local training, and safety was analyzed as a crucial element
that depends on the offloading and inferring time window and feasible sensing.

The work in [75] satisfies the QoS requirements of future vehicular networks through
the use of idle resources from parked cars. The authors also successfully simulated user
density as a way to predict resource availability and demonstrated a reduction in deploy-
ment costs. However, the paper does not discuss dependability or any of its components.
Other techniques, such as game theoretic approaches, can be used in improving security,
where contradictions in interest, among actors, exist, as discussed in [76,77]. The works
in [78–81] investigate the improvement of dependability in vehicular networks; however,
none of them clearly defines nor exposes all the factors that affect dependability.

Finally, we have augmented reality, which is the enhancement of objects through
computer-generated information. Augmented reality applications are fast becoming at-
tractive in mobile or smart weerable devices, especially because of their ability to enhance
the visualization of the environment. The authors of [82] researched task offloading in
mobile augmented reality applications and used 6G network characteristics in their simula-
tions. Due to latency being one of the major concerns in augmented reality applications,
the authors focused on transmission and application latency during their experimental
analysis. However, neither dependability, nor any of its components, were taken into
account. In [83], a metrology-oriented, automatic system based on augmented reality, was
designed in order to help surgeons during operations. The authors aimed at achieving
transmission dependability, which was verified based on the accuracy and latency of the
system. Nevertheless, no description of dependability or its components was provided.
Additionally, the work focuses mainly on reliability. The work in [84] aimed at increasing
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the reliability of augmented reality applications by lowering the probabilities of communi-
cation and computation errors, and timeouts. Latency and accuracy are balanced through
an optimization problem that minimizes failure probability. The other concepts associated
with dependability were not explored. Other works, such as [85,86], also explored certain
aspects of dependability.

6.2. Dependability Analysis of 6G MCAs

Based on the information from the previous section, MCAs are expected to be ex-
tremely dependable. This is not only due to their stringent network requirements, but also
due to their use cases. Lack of dependability in MCAs could badly harm operations at
a production factory or potentially place human lives at risk in telesurgery, for instance.
Below, we discuss the dependability of MCAs from the perspectives of the four dimensions.

6.2.1. Reliability

The reliability of an MCA is directly related to how well it complies with the stringent
requirements in terms of latency and errors. From one point of view, these requirements
are met with the help of capable underlying networks. However, reliability is also affected
by the architecture chosen for a given MCA, since it will determine the overall behavior
and qualities of such an application. From the 6G perspective, the importance given to
software architecture is nowhere near that of the underlying network. Of course, a capable
network greatly benefits an application’s performance, but a proper architecture further
improves these benefits. Focus should also be given to use case-specific hardware, as an
MCA will depend on their quality and trustability, as many use cases revolve around their
use—for example, telesurgery.

6.2.2. Availability

Bad architecture and low-quality hardware can also affect the availability of MCAs.
As many use cases, such as telesurgery and autonomous driving, depend on external
hardware (such as sensors and CPS components), it is important to ensure that these are
trustable and will not hinder the execution of the MCA. Moreover, a proper architecture
in the form of resource localization would ensure the MCA is capable of deploying high
capacity node replacements, thereby offering adequate scalability. Depending on the use
case, some MCAs might use EdgeAI approaches for improving their bandwidth and latency
requirements. Proper resource and task allocation are needed in order to take advantage of
these scenarios.

6.2.3. Safety

The reliability and availability of MCAs each have a direct relationship with safety,
especially in use cases that involve direct human contact. Since MCAs are usually the
backbones of their respective use cases, the consequences of their failures can go from
vast economical losses to putting human lives at danger. For example, in an autonomous
driving scenario, if the vehicle is not capable of properly performing computations that help
it determine whether or not to change lanes, the risk of an accident, and as an extension,
human losses, is high. Therefore, MCAs need to re-focus, becoming more autonomous,
so human operators are less involved and thus less prone to being affected in cases of
faulty behavior. Additionally, a distributed architecture would benefit MCAs, since it
increases their availability and reliability, making it easier to update or make changes to
the application.

6.2.4. Security

MCAs are constantly targeted by malicious attackers, either due to the importance
of the data they handle, or because of their key role in some industrial or medical use
cases. If not properly secured, attackers targeting a remote surgery system could execute
commands that hinder the performances of the controlled devices, severely threatening
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human lives. Moreover, other scenarios, such as autonomous driving, are also suscepti-
ble to malicious attacks that could hinder many of the systems running on the vehicle,
from communication devices to sensors and other integral parts of its systems. Although se-
curity aspects rely mostly on the underlying communication network, it is also worth
noting that MCAs could provide some security aspects, such as controlling inter-element
communications or defining which element can access what information in the system.

7. Future Research Directions

Sixth-generation networks will be highly distributed in nature. Network control will
be shifted to far edge nodes, such as micro-edge [56], which may arise with new termi-
nologies and technologies. Since centralized control will not be suitable for latency critical
services, distribution of network management and control functions will be inevitable.
However, such distribution will complicate the dependability of future networks. The chal-
lenges to dependability will be from many dimensions. For example, reliable network
function or service transfer from a centralized cloud infrastructure to far edge or user node
will be challenging and require more research in terms of resource discovery, alongside
reliable functioning or service transfer. The distributed control, apparently, can increase
the availability. However, such control functions can also be targeted by security attacks,
such as DoS attacks and resource exhaustion attacks, to block access to legitimate users.
The success of such attacks usually depends on the availability of resources at the receiving
end(s). Hence, distributing network control functions into small units may decrease the
overall dependability.

The resilience of the networks also must increase, which will require proper resilience
strategies. Network resilience means that a network operates in the presence of difference
challenges, such as security attacks, operational mistakes, configuration errors, and equip-
ment failures [87]. This will require network mechanisms that are capable of protecting the
network from failures through flexible means of configurations, cooperative techniques that
enable network devices and segments to provide alternative routes, and efficient anomaly
detection and traffic-shaping techniques. The notion of network abstraction and the sim-
plicity of control put forward by the concepts of software defined networking (SDN) [88]
can really help in this context, for instance, in the run-time mobility of traffic [89], traffic
management [90], or load balancing among congested nodes [91]. Whether the technologies
of SDN will prevail in 6G or not, research will show, however, the concepts and philosophy
of SDN can surely help with increasing the dependability of 6G networks, and thus must
be researched further.

Safety and security are highly intertwined. For example, if equipment is not physically
safe, it cannot be considered to be secure. Similarly, if a device can be compromised
through cyber attacks, its physical security can be meaningless in most use cases. Safety
must be researched from the technical perspectives to obtain key performance indicators
for safety, much like security. We do have security-by-design, but safety-by-design is rarely
discussed. The security in 6G is highly complicated. New technologies are emerging, and
it is possible that security requirements of different technology do not match, for instance,
in the debate of privacy vs. accountability. Furthermore, the more the network control
becomes distributed and modular, the more complicated the security of the whole eco-
system comprising diverse services, users, and even network functions, will become.
Dependability, therefore, will be highly complicated to comprehend and must be researched
from this perspective. One of the key questions in this regard will be to take an evolutionary
incremental approach, based on existing 5G standards or a revolutionary approach, and
start thinking of redesigning from scratch.

In 6G, AI will be used on a much higher scale than 5G; thus, the real threats that
AI can pose will be more visible. Furthermore, existing AI systems use huge amounts of
resources [92], ranging from energy and computing to bandwidth and spectrum. Therefore,
research is needed on sustainable AI-based security approaches for AI-based security
threats in 6G. One way ahead for ensuring dependable 6G networks is to maintain simplicity
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in design with global visibility of network resources and their use, enabling programmable
deployment of services, including security functions in a reliable, safe, and secure manner.
The main challenges that need further research in this direction are also summarized in
Table 1, along with possible research directions.

8. Conclusions

Sixth-generation communication networks will connect critical infrastructures. There-
fore, the dependability of 6G communication networks is extremely important. Since 6G
exacerbates the merging of the physical and digital worlds beyond the current traditional
cyber-physical systems, dependability in terms of reliability, availability, safety, and se-
curity needed a thorough investigation. Therefore, in this article we have shed light on
the dependability of 6G networks, first to highlight its importance and relevance in 6G,
and then to bring forward existing challenges and potential solutions. The main challenges
that persist in all dimensions of dependability arise from the distributed nature of 6G.
The solutions, thus, must also be targeted at distributed network architectures. Therefore,
edge computing, FL, and movable softwarized network functions, to name a few directions,
related to reliability, availability, safety, and security, need to be researched. In summary,
this article opens up interesting research questions and highlights research gaps to improve
the dependability of 6G networks and systems.
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Abbreviations
List of most common abbreviations:

Acronym Full Term(s)
3D Three Dimension
5G Fifth Generation
6G Sixth Generation
AI Artificial Intelligence
AR Augmented Reality
CPS Cyber-Physical System
D2D Device to Device
DLT Distributed Ledger Technology
DoS Denial of Service
DPI Deep Packet Inspection
eMMB enhanced Mobile Broadband
FL Federated Learning
ICT Information and Communication Technologies
IDS Intrusion Detection System
IoT Internet of Things
IPS Intrusion Prevention System
IT Information Technology
MCA Mission-Critical Application
MEC Multi-access Edge Computing
MIMO Multi-Input Multi-Output
mIoT massive IoT
ML Machine Learning
NFV Network Function Virtualization
QoS Quality of Service
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RAN Radio Access Network
SDN Software Defined Networking
VLC Visible Light Communication
VNF Virtual Network Function
VR Virtual Reality
WSN Wireless Sensor Networks
XR Extended Reality
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