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On the Depth and Dynamics of Online Search Behavior 

Abstract 

This paper examines search across competing electronic commerce sites.  By analyzing 

panel data from over 10,000 Internet households and three commodity-like products (books, CDs 

and air travel services), we show that the amount of online search is actually quite limited.  On 

average, households visit only 1.2 book sites, 1.3 CD sites, and 1.8 travel sites during a typical 

active month in each category.  Using probabilistic models, we characterize search behavior at 

the individual level in terms of (1) depth of search, (2) dynamics of search, and (3) activity of 

search. 

We model an individual's tendency to search as a logarithmic process, finding that shoppers 

search across very few sites in a given shopping month.  We extend the logarithmic model of 

search to allow for any time-varying dynamics that may exist causing the consumer to evolve 

and, perhaps, learn to search over time.  We find that for two of the three product categories 

studied, search propensity does not change from month-to-month.  However, in the third product 

category, we find mild evidence of time-varying dynamics, where search decreases over time 

from already low levels.  Finally, we model the level of a household's shopping activity and 

integrate it into our model of search.  The results suggest that more active online shoppers tend 

also to search across more sites.  This consumer characteristic largely drives the dynamics of 

search that can easily be mistaken as increases from experience at the individual level.  
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On the Depth and Dynamics of Online Search Behavior 

 

1 Introduction 

Electronic commerce has engendered a widely held belief: that because the Internet 

lowers search costs, people should search more.  There is little doubt that search costs, as 

measured by time, have decreased.  Consider the contrast of shopping for a book offline versus 

online, knowing its title.  Traveling from bookstore to bookstore, even in a shopping mall, might 

take minutes, but a typical search agent (such as DealTime) will search dozens of stores and 

provide prices, including shipping and sales tax, within seconds. 

In accord with most economic models of search, many expect this increased search would 

lead to lower prices, as shoppers explore a larger number of vendors, reducing both the average 

price paid and the dispersion of prices (Smith et al. 2000). Most search theory (see Diamond 

1987, for a review) concentrates on optimal strategies for search, usually in the form of a cutoff 

stopping price p*, which varies as a function of search cost.   

If upon visiting a store one observes a price greater than p*, optimal behavior calls for 

further search, while prices below p* calls for an end of search and purchase.  Thus as p* 

decreases, search increases.   Furthermore, as search costs decrease, search itself increases and 

p* decreases.  Similarly, an increase in the variance of the distribution of prices (holding 

constant the mean utility from a randomly selected price) makes search more valuable and 

lowers the cut-off price.   

Bakos (1997) develops a model that includes the strategic responses of retailers and 

concludes that “consumers with access to electronic marketplaces, and thus facing lower search 

costs, become more demanding and are willing to make fewer compromises concerning their 
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ideal product.  If the cost of search is low enough, buyers look at all product offerings and 

purchase the one best serving their needs.”  His first model demonstrates that, in commodity 

markets, reductions of search costs may “destabilize a monopolistic equilibrium and eradicate 

sellers’ profits.”  For differentiated goods, the picture is similar.  Sellers’ prices decrease 

smoothly as search costs are reduced.  If search costs are low enough, buyers will search all 

vendors, thus finding products that are more closely matched to their needs and, when the 

number of vendors is large, reducing sellers’ profits to zero.  Most economic models of search 

have two separable predictions for the effect of reducing search cost upon prices: (1) a decrease 

in observed prices and (2) a decrease in the dispersion of prices (Smith, Bailey and Brynjolfsson, 

2000).   

These theoretical models beg the question:  Does decreased search cost on the Internet 

really lead to lower prices?  Researchers have sought to answer this question by comparing price 

levels on the Internet to those found in traditional “bricks-and-mortar” channels, focusing on 

products that are difficult to differentiate, such as books, compact disks, etc.  Surprisingly, 

perhaps, the data are mixed.  An initial study by Bailey (1998) examined prices for books, CDs 

and software and found that prices were actually higher on the Internet in 1996 and 1997 than in 

“bricks-and-mortar” stores.  Brynjolfsson and Smith (2000), on the other hand, found that prices 

for CDs and books were 9 to 16 percent lower on the Internet.  However, the differences 

observed between studies may be due to differences in the samples and methodologies used 

across the two studies.  

Price dispersion presents a clearer picture of search cost effects.  Both Bailey (1998) and 

Brynjolfsson and Smith (2000) find significant dispersion for CDs and books.  Prices for 

identical items differed, on average, by 33% for books and 25% for CDs.  Clay, Krishnan and 

Wolf (2001) found significant dispersion and differentiated retail strategies in the online book 
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industry, with the largest retailer Amazon, presenting a price premium 10-25% over the lowest 

cost provider.   A study by Clemons, Hann, and Hitt (2002) of online travel agents again showed 

high levels of dispersion, even when they controlled statistically for the quality of the booked 

ticket, using the number of connections and the proximity of a flight to the requested time.  The 

lowest and highest priced tickets varied, on average, by at least 10% (or $50) across online travel 

agents.  An important exception to this pattern is provided by Brown and Goolsbee (2001) who 

argue that price dispersion first increases, then decreases, along with prices as a result of online 

comparisons for life insurance 

These mixed results lead to another interesting question:  How much do people really 

search online?  One possible explanation for the existence of varying levels of price dispersion is 

that search itself varies.  There is some evidence for limited search: Adamic and Huberman 

(1999) found that the top 1% of sites on the Web capture 50% of all visits to the Web, consistent 

with the idea that shoppers are limiting their search to a few popular sites.  These ideas have an 

analogue in physical space as well.  There is an extensive literature describing search for goods, 

mostly based on self reports (see Newman 1977 for a review).  For example, the number of 

stores visited for the purchase of a major appliance is reported to be about three (Beatty and 

Smith 1987).  Prior research has often argued that the observed amount of search is surprisingly 

low (Wilkie and Dickson 1985).  However recent research suggests that consumers’ priors may 

account for some of this departure (Moorthy et al. 1997).  The current research allows us to 

revisit some of these issues both because of the decreased costs of search provided by the 

Internet and the use of observational data about search, which although imperfect may be 

superior to self reports that have been reported to be poor measures of actual search (Newman 

1977).   
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In this paper, we try to understand these issues by looking directly at search behavior of 

shoppers as they visit online retailers.  It is our hope that this analysis is descriptively interesting 

and can help explain some of the observed patterns of prices that have puzzled observers of 

online markets (Smith et al. 2000).  Because electronic markets often allow us to observe search 

(whereas data from offline markets are generally restricted to purchasing transactions only), we 

think this is both an important new source of evidence, and perhaps an “early warning system” 

for increases in price competition.  In addition, we can examine how the depth of search 

systematically differs across consumers and can therefore offer models that will allow us to 

separate the factors that might influence search. 

 Given available data, we face several challenges.  Our major data will be site visiting 

behavior and the tendency for shoppers to visit multiple sites.  Because buyers frequently shop 

multiple channels and because clickstream data does not identify purchases, it is difficult if not 

impossible to definitively link store visits to a specific purchasing decision.  Our strategy then is 

to examine search across a variety of sites within a specified window of time as a close 

approximation.  Though this behavior may represent shoppers’ overall tendency to search for 

information and not necessarily their tendency to price search, it does serve as an upper bound.  

We find that overall, this behavior (i.e., search for information) is low, much lower than 

expected.  Because price search is a subset of information search, our results will overestimate, 

to some degree, the amount of price search. 

 

2 Data 

We examine consumer search directly, by looking at the shopping patterns of a large 

panel of Internet users over time.  We use data collected by Media Metrix, Inc., a firm that 
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records every URL visited by families that are members of its panel using a small program, the 

PCMeter, which runs continuously as a background application on the family’s home computer. 

The U.S. panel we analyzed corresponded to approximately 10,000 households at any 

given point in time, recruited by Media Metrix to be representative of the U.S. population.  We 

examine the online shopping behavior of each of these households during the 12-month period 

from July 1997 through June 19982.  Specifically, we are interested in the number of unique sites 

searched by each household within a given product category.  A key issue when examining 

search behavior is defining the period of time that constitutes a search session.  For example, the 

industry practice is to define a user session by “closing” the session after 15 minutes of 

inactivity.  However, that is a fairly narrow definition of a search session as it is conceivable that 

a shopper’s decision period, and therefore search, may span over multiple days, weeks, etc.  In 

fact, search on the Internet can be better characterized as a series store visits over a span of days 

which “build-up” to a purchase (Moe and Fader 2002).  Conceptually, these shoppers are 

accumulating information toward a purchasing threshold before the final purchasing decision is 

made, perhaps days later, during an entirely different store visit.  While similar behavior has 

been documented offline (Putsis and Srinivasan 1994), this behavior is much more common in 

the online environment due to the lower costs of “traveling” to the store.  One may visit a given 

site today to examine the product offering, then deliberate the purchase offline, and return to 

shopping online days later.   

An alternative method of defining a search session is to close the session after a purchase 

is made and assume that all store visits prior to that purchase contributed to that purchase cycle.  

There are three problems with this method as well.  First, not all purchases are made online.  A 
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shopper may search online and make some purchases offline.  In that case, search sessions as 

defined strictly by observed online purchases might in fact include multiple purchase cycles.  

Second, clickstream data typically includes only the URLs viewed and does not necessarily offer 

any insight into purchasing activity.  While some sites, such as Amazon and CDNOW, may have 

easily identifiable URLs that indicate a purchase occurred, many sites do not offer any such 

indication.  Third, after a shopper views the product selection at one or more sites, he/she may 

simply decide not to buy at all for whatever reason, and the next visit may be related to a 

completely unrelated purchasing decision.  In these instances, store visits cannot be linked to any 

specific future visit that contains a purchasing transaction.   

Our objective is to define a session broadly enough to encompass a series of site visits 

that contribute to the same purchasing cycle but also narrowly enough not to inadvertently merge 

multiple cycles.  As a result, we chose to examine each household’s search behavior at the 

monthly level, which allows us to avoid making any assumptions (or incorrect inferences) about 

the link between purchasing and online visit behavior.3 

We focused on three categories: compact discs, books, and air travel, choosing them 

because:  (1) they were relatively frequently purchased online during this time period;  (2) they 

tend to be non-differentiated goods (a book purchased from Amazon is the same book purchased 

from a low cost provider such as Books.com), increasing the probability that these categories 

will be subject to broader search;  (3) they vary in price from relatively inexpensive (books and 

CD’s) to more expensive (air travel); and (4) they have been used in studies of price and price 

                                                                                                                                                                                           

2  We used the information contained in the URL of the site to determine the product category.  The end of 
this time period corresponds to the entry of one of the on-line stores, Amazon, into multiple categories, making 
determination of the product class ambiguous.  
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dispersion by other researchers.  Sites were chosen from each category according to lists of 

leading online retailers from Media Metrix, BizRate (http://www.bizrate.com) and Netscape’s 

“What’s Related” feature, which uses Alexa’s records of consumers’ actual surfing behavior to 

identify related sites.  While there may be some sites that are excluded from the analysis, they 

would probably constitute a very small fraction of the activity in each category.  Specifically, our 

dataset covers consumer search activity across 13 book sites, 16 music sites, and 22 travel sites 

(Table 1), a more inclusive set of sites within each category than that used by either Brynjolfsson 

and Smith (2000) or Clemons et al (2002).  Sites included in each category range considerably in 

terms of visitor traffic (Table 1 also provides the number of searches experienced by each site).  

For example, the smallest CD site in our dataset attracted only 11 unique visitors from the Media 

Metrix panel while the largest in the same category attracted over 1800 unique visitors. 

 

Insert Table 1 about here 

 

3 Analysis, Models, and Results 

Using these data, we first examine the number of stores visited in a typical month.  Figure 

1 shows the average number of websites visited by households each month in which they were 

actively shopping in the product category.  For example, the average number of CD sites 

searched in a household's first month of shopping is 1.23 and increases to 1.62 in the fourth 

                                                                                                                                                                                           

3 We examined the number of these month-long sessions that contained more than one purchasing 
transaction to confirm that our definition for “session” was not so long as to include multiple purchasing cycles.  
Since our data only contained purchasing information for a limited number of retailers, we obtained this information 
for the most popular site in each category for which we had purchasing information.  The results revealed that in 
each case, fewer than 1% of all month-long sessions contained more than one purchasing transaction. 
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shopping month for those households that shopped in four (or more) different months in the 

dataset. 

 

Insert Figure 1 about here 

 

Two patterns are striking in the data.  First, the overall level of search is low, initially 

ranging from 1.1 stores for books to 1.8 for travel.  In fact, 70% of the CD shoppers, 70% of the 

book shoppers, and 42% of the travel shoppers were observed as being loyal to just one site 

throughout the duration of our data.  Second, there seems to be an increase in search from month 

to month.  This seems to suggest that Internet search, while currently fairly low, may be 

increasing over time.  One possible explanation for the increasing trend seen in Figure 1 is that 

consumers may be evolving and searching more as they gain experience, consistent with the idea 

that time will lead to lower prices and reduced dispersion.  We will more closely examine this 

dynamic of search in the next section. 

However, aggregate patterns like those in Figure 1 can be misleading, since they can, in 

principle, mask different underlying trends that may exist at the individual level.  To model these 

trends, and to provide a more accurate portrait of shopping behavior, we examine search using a 

model that allow us to decompose this data into three components:  (1) Depth of search: the 

decision of the household to visit more than one store in a given month,  (2) Dynamics of search: 

the evolution of the number of stores visited over time, and (3) Activity of search: the overall 

amount of category-level shopping activity for each household in a given product class. 
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3.1 Depth of Search  

Consumer search has been theoretically modeled as a process in which the consumer’s 

decision to seek out additional information is a function of the expected benefit of that added 

information (Diamond 1987). As a consumer obtains more information from visiting additional 

store sites, the expected benefit provided by seeking out new information decreases.  As a result, 

the probability of soliciting information from an additional source is likely to decrease.  To 

capture this process, we model the probability that individual i searches an xth site as a decrement 

of the probability of visiting the (xi-1)st site: 

  

 ]1Pr[
)1(

]Pr[ −=
θ−

== ii
i

ii
ii xX

x
x

xX , xi = 2, 3, …, (1) 

where θi is an individual-specific search propensity parameter (0<θi <1).  Lower values of this 

parameter indicate an increasing likelihood of stopping with a small search set, but even at its 

maximum value (θi� 1), the probability of searching an additional site will always be a 

decreasing function of xi. 

The model presented in equation (1) is well-suited for the type of search behavior 

described above.  Working backwards through this recursive relationship, we can obtain the 

logarithmic distribution (Johnson et al. 1993). 

 
i

x
ii

ii x
θa

xX
i

== ]Pr[   xi = 1, 2, …, (2) 

where ai = -[ln(1-θi)]-1 and 0<θi<1.  To illustrate the process, Figure 2 plots the shape of the 

logarithmic distribution for a variety of θ’s. 

Insert Figure 2 about here 
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3.2 Dynamics of Search 

The logarithmic distribution given in equations (1) and (2) models the number of sites 

searched by an individual in a given session.  However, in our data, we observe each individual 

across multiple search sessions.  This will allow us to more closely examine potential dynamics 

that may exist in search propensity as shoppers gain more experience in a particular category. 

Recall that the data show that search propensity is surprisingly low given the ease of 

visiting multiple stores online.  One explanation is that people are still learning to search, and 

over time, as consumers familiarize themselves with the Internet environment, search propensity 

will increase.  This argument would be consistent with the apparent trends seen in Figure 1.  We 

explicitly test this argument by including a model component that captures and measures the 

change in search propensity from session to session. 

Specifically, we allow the search propensity parameter, θi to vary from visit to visit for 

each panelist.  In other words, the probability that individual i will visit xij sites in the jth month is 

a function of a search propensity parameter, θij. 

 
ij

x
ijij

ijij x
a

xX
ijθ

== ]Pr[  xij = 1, 2, …, (3) 

Because θij is constrained to be between zero and one, we apply a logistic transformation θij  = 

exp{ θij* }/[1+exp{ θij* }] and assume that θij* ~ N(µj, φ).  We operationalize changes in 

individual search propensity over time through the mean of the θij* distribution: 

 µj = β0 + β1 ln(j) (4)  

The parameter β0 represents the baseline propensity to search while the parameter β1 indicates 

how search propensity changes as a function of experience.  If β1 is positive, then search 

increases with experience.  However, if β1 is negative, then search decreases as a function of 
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experience.  To accommodate heterogeneity, we assume that β0 and β1 are normally distributed 

with mean and standard deviation to be estimated. 

 

3.3 Activity of Search 

An alternative explanation can also generate the patterns shown in Figure 1 and offers a 

very different interpretation of these data.  Specifically, the pattern that we observe in Figure 1 

could stem from a selection effect.  Because we are able to observe more activity from the 

frequent shoppers in our dataset, we observe an increasingly greater proportion of these more 

active households as we move from left to right in the figure.  These relatively active shoppers 

(i.e., those who visit a particular category more frequently) may be inherently different from 

those less active and may tend to search across more sites.  As a result, the increase we see may 

not represent more stores being visited over time by a typical panelist, but rather a change in the 

mix of shoppers as we move to a greater number of active months.  Simply put, heavier users 

may be represented more in later months. There may be no household-level dynamics 

whatsoever, but only an apparent pattern resulting from heterogeneity alone. 

To explore the relationship between the level of shopping activity levels and depth of 

search, we extend equation (4) to include a second individual-specific covariate – a measure of 

category-level search activity, qi:   

 µij = β0 + β1 ln(j) + β2 ln(qi) (5) 

Again, the coefficient β2 is assumed to be normally distributed with mean and variance to be 

estimated. 

One measure we could use to characterize a household's activity level is the proportion of 

months for which the household was actively shopping.  However, there is a critical drawback of 

using such a measure – not all households are present in the panel for equal amounts of time.  
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For example, a household that was in the panel for only a month and was also active in that 

month would be represented by this measure as being active 100% of the time (or every month) 

even if this individual’s true activity level is significantly less frequent (e.g., every 6 months).  

However, because we are only able to observe a small sample of each shopper’s lifetime 

behavior, any measure based on this limited history is likely to misrepresent that individual’s 

latent and true tendencies in behavior.  Therefore, instead of directly measuring shopping activity 

from the data, a better measure would incorporate a Bayesian shrinkage estimate that allows for 

some regression to the mean, derived from a separate category-level model of activity4. 

We examine the number of months each individual is actively shopping as a zero-

truncated binomial process (since only those who have conducted at least one search are included 

in our dataset).  Each individual household in the panel has a probability, qi, of visiting a product 

category in any given month they are in the panel (regardless of which store(s) they choose to 

visit).  Given that household i was in our dataset (but not necessarily active in a given category) 

for Ti months, the probability of shopping in Ji of those Ti months is: 

 
i

iii

T
i

JT
i

J
i

i

i

iiii q

qq
J
T

qTJP
)1(1

)1(
),|(

−−

−








=

−

 (6)  

Furthermore, we assume qi to be distributed across the population according to a beta 

distribution with parameters k and m to allow for heterogeneity in these activity levels.  This 

mixture model will provide for us a general measure and method of assessing each individual’s 

shopping activity.  We use the expectation of qi conditional on each individual’s observed 

behavior.  This completes the description of our complete model specification. 

                                                           

4 We estimated the search depth models using both a Bayesian estimate of search activity (qi) as a covariate 
as well as using a direct measure of search activity (# of months active / # of months in panel) for each of the three 
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We estimate this hierarchical Bayesian model using a freely available software package, 

winBUGS, which uses Markov chain Monte Carlo methods to obtain a distribution for each 

model parameter.  We followed standard practice by simulating10,000 iterations of the model, 

discarding the first 5,000 as an initial burn-in.  Appropriate and diffuse priors and hyperpriors 

were specified.  Specifically, the hyperpriors in the search depth model were specified as: 

µβ ~ normal(0,10) and σβ ~ gamma(10,10) 

The priors in the search activity model were specified as: 

k ~ gamma(10,10) and m ~ gamma(10,10) 

We also estimated a model that allowed for correlation between depth of search and 

activity of search.  We did this by specifying the coefficients in equation (5) and the parameters 

of the activity model in equation (6) as coming from a multivariate normal distribution with a 

correlated error structure:   

 ( )ΣΣΣΣµµµµββββ
ββββ
ββββ

,~
2

1

0

MVN

qi

i
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

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
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



 (8) 

In two of the three product categories we tested (books and music), the correlation 

between search activity, qi, and the baseline propensity to search, β0, was not significantly 

different from zero.  In the air travel category, the mean correlation was significant; however, the 

overall fit of the correlated model was poorer in comparison to the uncorrelated model in terms 

of the Bayesian information criterion (198,386 vs. 197,980).  Therefore, for the remainder of the 

paper, we will discuss the results from the uncorrelated model with the depth of search 

                                                                                                                                                                                           

product categories.  We found that, in each case, the model using the Bayesian estimate of search activity fits 
significantly better than the model with a direct measure of activity. 
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component specified by equation (5) and the activity of search component specified by equation 

(6). 

 

3.4 Results 

The resulting parameter estimated are presented in Table 2 along with the 90% and 95% 

confidence bounds calculated from the MCMC simulations.  For all three product categories, 

more active households seem to search more store sites than the less active households (i.e., β2 is 

significantly positive).  However, evidence of any month-to-month dynamics at the household 

level, is limited.  We first address the issue of time dynamics before discussing the relationship 

between search depth and search activity. 

 

Insert Table 2 about here 

 

For two of the three product categories we examined (books and music), we find no 

significant effect of time dynamics, β1, on propensity to search (p > 0.10).  For air travel, 

however, we do find significant, but negative, time dynamics (E[β1] = -0.167).  In other words, 

as we observe subsequent shopping sessions for an individual, the mean propensity to search 

actually declines.  This is contrary to arguments suggesting that consumers are still learning how 

to search online and the currently low levels of search will increase as they gain experience and 

search becomes less difficult.  Instead, our results indicate that the effect on search propensity 

from increased consumer experience is reversed.  We find that the level of search being 

conducted now, however low it may be, is only decreasing as consumers gain experience in that 
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product category (as indicated by β1<0).  Rather than learning how to search, consumers seem to 

be gravitating toward a preferred site over time, at least in the case of air travel. 

In contrast, the effect of category-level search activity, β2, is significant and positive 

across all three product categories (p < 0.05).  This strongly suggests that the downward trend 

seen in Figure 1 is the result of a selection effect where the more frequent searchers tend to 

search more sites in any given active month.  Figure 3 plots the relationship between search 

activity and the depth of search.  In the upper part of the figure, the solid line indicates the 

median expected number of sites searched at each activity level, q, and the dotted lines indicate 

the 90% confidence bounds.  The lower portion of the figure is a histogram representing the 

distribution of panelists based on their category-level search activity.  Overall, we see very low 

levels of search that increase for more active shoppers, but these more active shoppers are less 

abundant in the sample.  Taken together, the two portions of Figure 3 demonstrate how the 

selection effects arise from the raw data. 

In general, there seems to be very little search in the book and CD categories.  The travel 

category reflects a bit more search but still far less than one might expect.  The fact that search in 

the travel category is actually more than the amount of search seen in the books or CD categories 

may seem logical given that the size of purchase is large, and prices are dynamic.  But on the 

other hand, since many travel sites feature comparison shopping tools within the site itself, it 

may seem a bit surprising that individuals search more across travel sites than they do in the 

books and CD categories.  These latter categories consist of sites that are pure e-commerce 

vendors and not search ‘bots.  This observation provides an initial indication that search ‘bots are 

not the reason behind the limited search that we find in these categories; we discuss this issue in 

more detail later in the paper. 
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4  Discussion 

4.1 Summary and Implications for Research  

In summary, these three categories show fairly low levels of search overall.  While more 

active shoppers tend to visit more sites in any given month, there is no evidence that experience 

increases the number of sites visited.  We might expect the greatest returns to search for travel 

services, both because prices can change over time and because this is a more expensive 

purchase.  However, we find that experience leads to a slight decrease in the number of visited 

sites. 

Our results suggest that people visit few stores online despite the fact that consumers are 

“just a mouse click away” from other stores.  Browsing behavior varied by product category and 

level of activity but showed no increase with experience. 

These findings may provide an important explanatory mechanism for Internet researchers 

who have been puzzled by the existence of substantial price dispersion.  In understanding our 

results, it is important to realize that we examined product classes and time periods that are very 

similar to those used by researchers who have examined changes in price and price dispersion on 

the Web.  The attraction of books, compact disks, and travel for examining these questions is 

their apparent commodity-like status, which should provoke higher levels of search.  And our 

data have been collected during time frames that substantially overlap the periods used in prior 

studies of prices for CD’s and books (Brynjolfsson and Smith 2000) and airline travel (Clemons 

et al. 2002).  This minimizes the potential for historical differences and suggests that the lack of 

search is consistent with the observed price dispersion.  The methods we develop here may be 

useful in future work that attempts to connect search with pricing in a more direct manner, 

if/when appropriate data become available. 
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Our results have implications concerning the use of self-reports of search, because they 

stand in such sharp contrast to survey-based measures of online search.  Self-reported data are 

subject to the fallibility of people's memories, idiosyncratic scale use, and even deliberate 

alteration through social desirability biases and have been found to have very little correlation 

with actual search.  Industry analysis based on self-report suggests higher levels of search than 

we observe (e.g., a reported 2.4 visits per purchase noted by McQuivey 1999). We believe 

additional research is needed to compare self-reported behavior to actual Web usage, but the type 

of panel data examined here reflects actual behavior, and should serve as the appropriate baseline 

for such efforts.  It is interesting to note that the one reported example of decreases in prices and 

dispersion (Brown and Goolsbee 2001) employs self-reports based on Forrester’s research.  

Brown and Goolsbee suggest that recent declines in life insurance prices are the result of 

increased use of Internet shopping sites for insurance.  An interesting next step would be to 

examine actual (as opposed to self-reported) usage data to see if observed search is correlated 

with lower prices paid.  Similarly, it would be interesting to examine if observed search helps 

explain which shoppers will be most helped by buying online (Scott Morton et al. 2002) 

 

4.2 Caveats and Limitations  

4.2.1 Data 

In this study, the analysis of depth of search and activity level of search was conducted at 

the household level, rather than at the level of the individual consumer.  By aggregating 

consumers to the household level, we overstate both the activity level and depth of search.  

Households with multiple members shopping in different months would have an activity level 

that is higher than that of any one individual in the household.  Similarly, households with 
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multiple members who are each loyal to a different site will demonstrate greater search 

propensities at the aggregate household levels.  Therefore, even though we observe low levels of 

search at the household level, search at the individual consumer level would be even lower. 

A potential disadvantage of the type of clickstream data used here is that we identify all 

browsing activities, not just search behavior associated with purchases.  While such browsing 

may be an important part of consumer search, we are unable to partition our observations into 

those associated with purchase-oriented behavior and those that may be associated with other 

activities (e.g., using Amazon.com to find biographical information about a certain author).  

While this may generally lead to an overestimation of the amount of search in our dataset, it is 

possible that purchase-related browsing might feature more extensive search than other “look 

up” activities. 

Finally, the time period studied in this paper represents a fairly early stage in electronic 

commerce.  As such, the subset of the consumer population shopping online may be very 

different from the consumer population as a whole. Studies conducted around the same period of 

time have found that online consumers tend to be more time constrained than the average 

consumer (Bellman et al. 1999).  As such, this subset of the consumer population that shops 

online may consist largely of those consumers who are unable to spare the time to search across 

multiple sites.  Projecting the search behavior of this subset of shoppers to the consumer 

population as a whole may lead to biased conclusions.  

4.2.2 The role of shopbots  

While the dataset used here contains a rich and realistic portrayal of online shopping, it is 

an early snapshot of such behavior.  While it could be argued that the low levels of search 

documented here will change as the online market matures, our analysis of time-dynamics does 
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not suggest this was happening in the time frame observed.  All three classes showed no increase 

in the number of sited visited.  One major trend which may well modify these results is the 

widespread adoption of price search agents, or price robots, termed ‘bots for short.  We 

examined our data for the use of such ‘bots, but found that their use at this time was at very low 

levels.  For example, the most popular was Acses, a price search agent for books (which later 

evolved into today’s DealTime), which had a total of 17 uses in the Media Metrix panel.  As 

consumers may become more sophisticated in their search over time and as search agent 

technology evolves, we may see automated search further lowering search costs and minimizing 

prices and price dispersion.  However recent research indicates that even those who use shopping 

robots seem to display loyalty to sites previously used.  Brynjolfsson and Smith (2001) examined 

users of EvenBetter.com, a popular search engine for books (also an early version of DealTime).  

It is interesting to note that even though this subset of Internet consumers were highly price 

sensitive and tended to patronize those stores with cheaper prices, over 51% of these customers 

did not choose the retailer with the cheapest price.  Even with this self-selected group of 

consumers, the retailer brand had a significant advantage.  Amazon, for example, commanded a 

price premium of $1.85 over unbranded retailers according to their model. 

 

4.3 Why is search so limited?  

One possible explanation for why we see so little search is that the current market for 

these goods is efficient.  However, the fact that there is still significant price dispersion in these 

Internet markets suggests that this is not the case.  Brynjolfsson and Smith (2000) show 

significant price dispersion on the Internet and examine a number of possible explanations.  One 

is that the product offerings may actually be heterogeneous and not commodities because of 

value-added services of various kinds.  We dismiss this critique by examining the offerings of 
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online book and CD vendors and argue that the offers do not differ significantly, and more 

importantly, do not differ as a function of price.  Similarly, Clemons et al  (2002) find that 

dispersion exists even when they control statistically for the quality of the airline tickets in their 

study.  Thus, the dispersion found in these studies suggests that these markets have not yet 

produced the kind of highly efficient markets thought to be a natural hallmark of electronic 

commerce. 

 Another possibility is that normative models of search are not complete.  While clearly 

any modifications of standard search models exceed the scope of this paper, it is worth noting 

that the heart of most search models is the tradeoff between the cost of search, usually measured 

by time, and the benefit of that search to the consumer.  Other domains involving the allocation 

of time have benefited from richer descriptive frameworks incorporating the effects of context 

and mental accounts.  Two examples that seem relevant are descriptive theories of time-money 

tradeoffs (Loewenstein and Prelec 1992; Loewenstein and Thaler 1997) and the observation that 

out-of-pocket costs are over-weighted relative to opportunity costs (Thaler 1999). 

A third possibility is the realization that search costs are not constant over time and that 

they change as consumers gain experience shopping with a particular online store.  For example, 

by visiting a site, one learns its navigational scheme, which reduces the cost of using that site in 

the future.  Similarly, the site can make changes, through customization, user-based 

recommendations, and memorization of names, addresses and payment details that lower the cost 

of that site relative to others.  This idea that search costs are dynamic is analogous to the concept 

of lock-in, which has been discussed in markets for technology goods, and is a topic we are 

exploring elsewhere (Johnson et al. 2002) 
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4.4 Managerial Implications  

From a managerial perspective, this paper suggests that, despite claims to the contrary, 

the Internet does not produce enormous amounts of search, even for products that are difficult to 

differentiate.  However, this conclusion, while a fair characterization of the aggregate pattern of 

search, does depend upon the amount of category-level activity: more active households search 

more.  From the perspective of the firm, these results can inform market selection, and help 

identify customer segments and tactics: infrequent customers who tend to search less may not 

need as much in the way of incentives for loyalty.  At the same time, the most active, and 

perhaps valuable, customers are those most likely to shop around. 

This research also reinforces the value of looking at individual, as opposed to aggregate 

data: the aggregate pattern, as portrayed in Figure 1, seems to support an explanation due to 

dynamic growth.  However, careful modeling of the household-level data indicates that this is 

not occurring, and that the pattern results from differential activity.  In fact for one product class, 

air travel, we actually see a slight decrease in search over time.  

The bottom portion of Figure 3 makes this quite clear in terms of potential marketing 

segmentation and strategy: the very active shoppers are few in numbers in all categories, and 

shopping around seems limited to a few high activity (high Q) shoppers.   At the same time, 

these may be customers of high value, so paying attention to their shopping habits, and 

developing tools to increase their loyalty may be prudent.    

Beyond the specifics of these results, the methodology we introduced can serve as a 

continuing tool for e-tailers interested in the dynamic development of their customer base.  Thus 

we think that a tracking study, producing a time-varying equivalent of Figure 3, would help 

managers identify changes in shopping activity and loyalty.  In addition to this type of 

longitudinal extension to our work, it might also be worthwhile to profile households by looking 
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at their search behavior across multiple categories.  This might help managers anticipate and 

identify the kinds of behavioral patterns described above. 

 

4.5 Conclusion 

 We see this research as in initial demonstration that data from the Web are changing our 

view of search from an unobservable explanatory variable in the analysis of markets to one that 

can and should be observed and included in empirical analyses of market behavior.  The kind of 

analysis we do here cannot easily be done in off-line environments, and the kind of data used 

here can track search at a fine level.  Much of the challenge in the evolving analysis of 

clickstream data will be to develop efficient methods for theory testing, given the large amount 

of data provided by shoppers on the Internet.  While these challenges are significant, we believe 

the analysis of search data will be extraordinarily useful in expanding our understanding of the 

role of search in explaining marketplace behavior, and the analysis offered here represents a first 

step.  
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Table 1.  E-Commerce Sites Included in Books, CDs, and Travel Categories (with number of 
searches per site) 
 

Books CDs Air Travel 
Amazon 4721 MusicBlvd 1880 City.Net 3010 
Barnes & Noble 2813 CDNOW 1655 Preview Travel 2095 
Books.com 230 BestBuy 498 Travelocity 2048 
Superlibrary 229 CDUniverse 442 Expedia 1988 
Borders.com 127 Music Central 271 American Airlines 1334 
Book Zone 67 Tower 227 Southwest Airlines 997 
Powells 61 Tunes 189 Delta Air 957 
AltBookStore 59 CDWorld 107 ITN 920 
BooksNow 30 MassMusic 94 Continental 872 
Wordsworth.com 28 Newbury 70 Travel Web 817 
Acses 17 Emusic 31 Northwest Airlines 723 
Books-a-Million 17 Ktel 20 United Airlines 714 
Kingbooks 4 CDConnect 16 US Airways 643 
  Music Spot 14 Priceline 512 
  CDEurope 13 TWA 418 
  CDUSA 11 Best Fares 401 
    The Trip 366 
    European Travel 279 
    Lowest Fare 138 
    Cheap Tickets 115 
    Alaska Airlines 94 
    Travel Zoo 70 
NOTE: The numbers in this table represent the actual number of  visits performed by the individuals in the data panel and do not 
represent the total level of activity at the U.S. population level.
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Table 2a.  Parameter Estimates for Book Category 
param mean std. dev. 2.50% 5.00% median 95.00% 97.50% 

K 0.983 0.044 0.903 0.914 0.982 1.055 1.068 
m 4.583 0.196 4.224 4.274 4.575 4.921 4.982 
β0 -0.176 0.088 -0.323 -0.314 -0.176 -0.034 -0.001 
β1 -0.004 0.042 -0.086 -0.073 -0.004 0.068 0.083 
β2 0.949 0.050 0.851 0.867 0.947 1.03 1.046 
φ 4.124 0.416 3.379 3.485 4.093 4.843 4.985 

σβ0 3.357 0.430 2.645 2.726 3.322 4.118 4.281 
σβ1 3.030 0.406 2.330 2.408 3.021 3.737 3.876 
σβ2 4.838 0.498 3.972 4.079 4.799 5.665 5.801 

 
Table 2b.  Parameter Estimates for Music Category 

param mean std. dev. 2.50% 5.00% median 95.00% 97.50% 
k 0.684 0.042 0.602 0.614 0.685 0.752 0.765 
m 4.841 0.291 4.266 4.354 4.848 5.310 5.395 
β0 0.868 0.148 0.563 0.629 0.860 1.084 1.103 
β1 -0.072 0.106 -0.291 -0.261 -0.063 0.089 0.111 
β2 0.981 0.074 0.858 0.868 0.971 1.112 1.127 
φ 3.201 0.394 2.519 2.622 3.173 3.847 3.999 

σβ0 2.665 0.403 1.974 2.072 2.632 3.358 3.506 
σβ1 2.365 0.420 1.605 1.697 2.357 3.068 3.176 
σβ2 4.764 0.582 3.765 3.901 4.738 5.801 5.970 

 
Table 2c.  Parameter Estimates for Travel Category 

param mean std. dev. 2.50% 5.00% median 95.00% 97.50% 
k 1.026 0.035 0.961 0.969 1.025 1.083 1.094 
m 3.404 0.121 3.189 3.219 3.399 3.612 3.649 
β0 1.345 0.055 1.223 1.237 1.345 1.432 1.445 
β1 -0.162 0.038 -0.224 -0.217 -0.167 -0.093 -0.077 
β2 0.720 0.024 0.664 0.675 0.722 0.753 0.758 
φ 6.486 0.521 5.415 5.533 6.524 7.331 7.545 

σβ0 4.632 0.491 3.832 3.919 4.614 5.504 5.644 
σβ1 4.836 0.504 3.903 4.033 4.802 5.715 5.891 
σβ2 6.644 0.567 5.498 5.635 6.697 7.523 7.654 
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Figure 1.  Average Number of Online Stores Visited During Each Observed Shopping 

Month 

 

 

 

 

 

 

 

 

 

Figure 2.  Logarithmic Distribution 
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Figure 3.  Effect of Search Activity:   Estimated Number of Store Visits (Top) and Number of Panelists as a function of Q, 
propensity to search 
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