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ON THE DERIVATION OF HOMOGENEOUS
HYDROSTATIC EQUATIONS

Emmanuel Grenier
1

Abstract. In this paper we study the derivation of homogeneous hydrostatic equations starting from
2D Euler equations, following for instance [2, 9]. We give a convergence result for convex profiles and
a divergence result for a particular inflexion profile.
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1. Introduction

We will consider the following classical homogeneous hydrostatic model

∂tu1 + u1∂xu1 + u2∂yu1 + ∂xp = 0, (1)

∂xu1 + ∂yu2 = 0, (2)

∂yp = −gρ, (3)

u2 = 0 on ∂Ω (4)

where n is the outer normal of Ω = T×[0, 1]. We moreover assume that g and ρ are given constants, independent
on t and x, such that up to a slight change in the definition of the pressure, (3) can be replaced by

∂yp = 0. (5)

The word “homogeneous” refers to the fact that ρ is a constant in the domain. The case Ω = R× [0, 1] is similar
and can be treated using the same methods. This system has been investigated in [2] where local existence of
solutions under a convexity assumption is in particular proved. Namely

Theorem 1.1 ([2]). Let s > 5, and let (u0
1, u

0
2) ∈ Hs(Ω) be a given divergence free vector field, tangent to ∂Ω,

with
∫

Ω u
0
1 = 0 (which can always been assumed up to a change of variables). Let us assume moreover that

|∂2
yyu

0
1(x, y)| ≥ σ0 (6)
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for some σ0 > 0, and that there exists a constant k such that

∂yu
0
1(x, 0) = k and ∂yu

0
1(x, 1) = k + 1 ∀x. (7)

Then there exists T > 0 and a solution (u1(t, x, y), u2(t, x, y)) of (1, 2, 4, 5) on [0, T [, with initial data (u0
1, u

0
2),

such that, for every T ′ < T , (u1, u2) ∈ L∞([0, T ′],Hs(Ω)).

As in [2, 3], and following [9] we consider system (1, 2, 4, 5) as a “geometrical limit” of the incompressible
Euler equations in a thin domain. More precisely we consider

∂tu
ε
1 + uε1∂xu

ε
1 + uε2∂yu

ε
1 + ∂xp

ε = 0, (8)

∂tu
ε
2 + uε1∂xu

ε
2 + uε2∂yu

ε
2 + ∂yp

ε = 0, (9)

∂xu
ε
1 + ∂yu

ε
2 = 0, (10)

uε2 = 0 on ∂Ω (11)

in Ωε = T × [0, ε]. The usual change of velocity ũε1(t, x, y) = uε1(t, x, εy), ũε2(t, x, y) = ε−1uε2(t, x, εy) leads to
(after dropping the tildes)

∂tu
ε
1 + uε1∂xu

ε
1 + uε2∂yu

ε
1 + ∂xp

ε = 0, (12)

ε2 (∂tuε2 + uε1∂xu
ε
2 + uε2∂yu

ε
2) + ∂yp

ε = 0, (13)

∂xu
ε
1 + ∂yu

ε
2 = 0, (14)

uε2 = 0 on ∂Ω (15)

in Ω = T × [0, 1]. Formally as ε > 0 goes to 0, systems (12–15) goes to (1, 2, 4, 5). However to prove that
solutions of (12–15) converge to solutions of (1, 2, 4, 5) is not straightforward and appears to be false in some
cases. This problem is deeply linked to stability properties of time independent shear layers flows. It is well
known since Lord Rayleigh [10] that the stability of such flows depends on the presence of inflexion points in
the tangential velocity profile. Roughly speaking, shear layers (u(y), 0) are stable if u is convex and may be
instable if u has an inflexion point. Stability has rigorously been proved by Arnold [1] for general 2D time
independent flow using Lyapounov and Hamiltonian techniques and more recently investigated in the time
dependent case in [6,7], using a direct energy approach. In this paper we use energy methods derived from [6,7]
(see in particular [7] for the link with the work of Arnold) to prove the following convergence result

Theorem 1.2. Under the assumptions of Theorem 1.1, for every ε > 0, there exists T ε > 0 and a solution
(uε1(t, x, y), uε2(t, x, y)) of (12–15) on [0, T ε[, with initial data (u0

1, u
0
2). Moreover for every T ′ < T , T ε > T ′ for ε

small enough, and (uε1, u
ε
2) are uniformly bounded in L∞([0, T ′],Hs′(Ω)) with respect to ε (for ε small enough),

for some s′ ≤ s. Last, for every T ′ < T , as ε→ 0,

(uε1, u
ε
2)→ (u1, u2) in L∞([0, T ′[,Hs′(Ω)). (16)

This theorem justifies in particular completely the formal limit, under the convexity assumption (6).
When there is an inflexion point in the velocity profile, the convergence may not hold. For the sake of

completeness we recall the following Theorem, proved in [8] using techniques of [6].

Theorem 1.3. For every s and N arbitrarily large, there exists a time independent smooth solution (u(y), 0)
of (1, 2, 4, 5), a constant σ0 > 0, a sequence of times T ε with limε→0 T

ε = 0, and smooth solutions
(uε1(t, x, y), uε2(t, x, y)) of (12–15) such that

‖(uε1(0, x, y), uε2(0, x, y))− (u(y), 0)‖Hs(T×[0,1]) ≤ εN (17)
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and

‖(uε1(T ε, x, y), uε2(T ε, x, y))− (u(y), 0)‖L∞(T×[0,1]) ≥ σ0 (18)

and

‖(uε1(T ε, x, y), uε2(T ε, x, y))− (u(y), 0)‖L2(T×[0,1]) ≥ σ0. (19)

Such sequences of solutions of (12–15) does not converge to the formal limit system (1,2,4,5) in sup-norm, even
for short time. An example of such a profile u(y) is given in [6]. It has of course an inflexion point in it. The
theorem is in fact, up to time and space rescalings, a nonlinear instability theorem. We refer to [4,5] for another
approach.

2. Proof of the convergence theorem

Notice that usual energy estimates on (12–15) lead to control
∫
|uε1|2 + ε2

∫
|uε2|2 which appears to be unsuffi-

cient in the limit ε→ 0 since we lose any control on
∫
|uε2|2. The main difficulty is therefore to obtain estimates

on the linearized version of (12–15) which are uniform in ε. Once we get such estimates, it is routine work to
prove a convergence theorem like Theorem 1.2. Therefore we will focus on the construction of such a norm in
Section 2.2, on higher order derivatives in Section 2.3 and only sketch the end of the proof of Theorem 1.2.

2.1. Preliminaries

Let uε = (uε1, u
ε
2) and u = (u, v). Let us introduce the vorticity ωε and the stream function Ψε of uε1 and uε2

after rescaling. System (12–15) is equivalent to (20–23)

∂tω
ε + (uε.∇)ωε = 0, (20)

uε = ∇⊥Ψε, (21)

ε2∂2
xxΨε + ∂2

yyΨ
ε = ωε, (22)

Ψε = 0 for y = 0, 1. (23)

Notice that a priori we only get that Ψε is constant on y = 0 and y = 1 and equals some time dependent
constants C0 and C1. However, up to the addition of a constant to Ψε we can assume C0 = 0, and up to a
Galilean change of variables we can assume ∫

T×[0,1]

uε1 = 0, (24)

which leads then to C1 = 0. Hence as (24) is an assumption of Theorem 1.2 we can assume (23).
We also remark that the limit system (1,2,4,5) can be rewritten (under the same assumption (24))

∂tω + (u.∇)ω = 0, (25)

u = ∇⊥Ψ, (26)

∂2
yyΨ = ω, (27)

Ψ = 0 for y = 0, 1. (28)
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2.2. Weighted estimates

Let us first prove uniform estimates on the linearized version of (20–23) in (vε, θε), where vε = (vε1, v
ε
2):

∂tθ
ε + (uε.∇)θε + (vε.∇)ωε = 0, (29)

vε = ∇⊥Φε, (30)

ε2∂2
xxΦε + ∂2

yyΦε = θε, (31)

Φε = 0 for y = 0, 1. (32)

Following the strategy of [6, 7] we introduce

(Nε)2(v, θ) =
∫
|v1|2 + ε2|v2|2 + gε|θ|2, (33)

where gε will be chosen carefully. Notice that this energy is deeply linked to Arnold’s approach of stability for
stationary flows.

Lemma 2.1. Let us assume that there exists gε and a constant ū such that

(H1′) |∂tgε|+ |∇gε.∇⊥Ψε| ≤ Cgε,

(H2′) |gε∂x∆εΨε − ∂xΨε|+ ε−1|gε∂y∆εΨε − ∂yΨε − ū| ≤ C√g

for some constant C independent on ε, then there exists a constant C0 independent on ε such that every solution
(vε,Φε) of (29–32) satisfies

∂tN
ε ≤ C0N

ε. (34)

Proof. Let us drop all the ε indices. We have

∂t∇⊥Φ + (∇⊥Ψ.∇)∇⊥Φ + (∇⊥Φ.∇)∇⊥Ψ = −
(

∂xq
ε−2∂yq

)
,

where q is some linearized pressure and

∂t∆εΦ + (∇⊥Ψ.∇)∆εΦ + (∇⊥Φ.∇)∆εΨ = 0.

First

−1
2
∂t

∫
g|θ|2 =

∫
g∆εΦ(∇⊥Ψ.∇)∆εΦ +

∫
g∆εΦ(∇⊥Φ.∇)∆εΨ−

1
2

∫
∂tg|∆εΦ|2

= I1 + I2 + I3.

The first right-hand side term equals

I1 =
∫
g(∇⊥Ψ.∇)

|∆εΦ|2
2

= −
∫
∇.(g∇⊥Ψ)

|∆εΦ|2
2

which is bounded by CN2 using (H1’). Similarly, |I3| ≤ CN2 by (H1’). On the other side,

−1
2
∂t

∫
|v1|2 + ε2|v2|2 =

∫
∇⊥ε Φ(∇⊥Ψ.∇)∇⊥ε Φ +∇⊥ε Φ(∇⊥Φ.∇)∇⊥ε Ψ = I4 + I5.
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We have

I4 =
∫

(∇⊥Ψ.∇)
|∇⊥ε Φ|2

2
= 0

since ∇⊥Ψ is divergence free. Next

I2 =
∫
g∆εΦv1∂x∆εΨ +

∫
g∆εΦv2∂y∆εΨ

=
∫

∆εΦ∇⊥Φ∇Ψ +
∫

∆εΦv1(g∂x∆εΨ− ∂xΨ) +
∫

∆εΦv2(g∂y∆εΨ− ∂yΨ− ū) +
∫

∆εΦv2ū

=
∫

∆εΦ(∇⊥Φ.∇)Ψ +
∫

∆εΦ∇⊥Φ(g∇∆εΨ−∇Ψ− (0, ū))

since ∫
∆εΦv2ū = 0.

The last two terms are bounded by CN2 using (H2’) and the first integral equals

−
∫
∇εΦ(∇⊥Φ.∇)∇εΨ

which cancels with I5, which ends the proof.

It is then easy to check the following lemma

Lemma 2.2. Let us assume that Ψε and ∂tΨε are bounded sequences of L∞([0, T ],Hs) with s > 5. Let us
assume that there exists two constants ū and C1 > 0 such that

(H) C−1
1 ≤ ∂yΨε + ū, C−1

1 ≤ ∂yΨε + ū

∂3
yyyΨε

≤ C1

for every x, y, 0 ≤ t ≤ T and every 0 ≤ ε ≤ 1. Then

gε =
∂yΨε + ū

∂3
yyyΨε

satisfies (H1’) and (H2’).

2.3. Higher order estimates

Let us define for s ≥ 1,

N2
s (θ) =

∑
α+β≤s

∫
|∂αx ∂βy θ|2

with the convention N0 = Nε.

Lemma 2.3. Let us assume that there exists constants Cα,β such that

‖∂αx∂βy uε‖L∞(Ω) ≤ Cα,β (35)

for 0 < ε ≤ 1. Then there exists a constant Cs independent on ε such that every solution (vε,Φε) of (29–32)
satisfies

∂tN
2
s ≤ CsN2

s + Csε
−2N2

s−1.
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Proof. Notice, using the divergence free condition, that ‖∂αx∂βy v1‖L2 ≤ CNα+β−1. However we only get
‖∂αx∂βy v2‖L2 ≤ Cε−1Nα+β−1. We have for α+ β ≥ 1,

∂t∂
α
x ∂

β
y θ + (u.∇)∂αx ∂

β
y θ = R,

where

R =−
∑

α′≤α,β′≤β,1≤α′+β′≤α+β

(∂α
′

x ∂
β′

y u.∇)∂α−α
′

x ∂β−β
′

y θ

−
∑

α′≤α,β′≤β,0≤α′+β′≤α+β

(∂α−α
′

x ∂β−β
′

y v.∇)∂α
′

x ∂
β′

y ω.

Notice that
∫
∂αx ∂

β
y θ(u.∇)∂αx ∂

β
y θ vanishes. Moreover by a crude bound,

‖R‖2L2 ≤ CN2
s + ε−2N2

s−1,

which ends the proof of the lemma.

2.4. End of the proof

We will only sketch the end of the proof since the following arguments have been developed and written down
with full details in nearby contexts elsewhere [6, 7].

The next step is to prove a lemma like Lemma 2.3 for the following nonlinear equation

∂tθ
ε + (uε.∇)θε + (vε.∇)ωε + (vε.∇)θε = Rε (36)

where Rε is a given source term, which is a straightforward adaptation of the former proof.
We then construct an approximate solution of (12,13,14,15) starting from a solution of the limit system,

which is easy but lengthly. The last step of the proof is to use the bounds on the nonlinear equation (36) on
the difference between the true solution and the approximate one.

The author would like to thank Y. Brenier for many interesting discussions.
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