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Abstract. Let U be harmonic in a closed region R, whose boundary con-
tains a regular surface element E, with a representation z — (p(x, y). If E
has bounded curvatures, and if <p(x, y) and the boundary values of U on E
have continuous derivatives of order n which satisfy a Dini condition, then
the partial derivatives of U of order n exist, as limits, on E, and are con-
tinuous in R at any interior point of E. Holder conditions on the boundary
values of U, or on their derivatives of order n, imply Holder conditions on U,
or the corresponding derivatives, in R, in the neighborhood of the interior
points of E.

1. Introduction. A large number of articles contain studies of the exist-
ence and behavior of the limits of the derivatives, on the boundary, of har-
monic functions, when these are given as the potentials of various spreads
of attracting matter. On the other hand, studies of the derivatives of har-
monic functions defined directly by their boundary values are surprisingly
few, particularly in space of three dimensions. In a paper of my own,f the
problem for the logarithmic potential has been investigated. In space, there
are few actual results on derivatives of order higher than the first, and the
conditions imposed on the boundary values are much heavier than need be.

The method used in previous work has been to express the given harmonic
function as the potential of a double distribution, through a Neumann
series. While this method has not yet yielded the results of which it is cap-
able, it contains an element of indirectness, in that the conditions on the
boundary values must first be translated into conditions on the moment of
the double distribution, and from these, the behavior of the derivatives of
the harmonic function must then be inferred. The method here used is based
on Poisson's integral, applied to a sphere internally tangent to the boundary.
In the case of the derivatives of the first order, this method requires more than
is necessary for the theorems, for in order to apply it, we must assume that
spheres, internally tangent to the boundary, and containing no exterior

* Presented to the Society, February 28, 1931; received by the editors January 23, 1931.
f Harmonic functions and Green's integral, these Transactions, vol. 13 (1912), pp. 109-132. Refer-

ences to the literature are given there, and in my two previous papers, ibid., vol. 9 (1908), pp. 39-66.
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DERIVATIVES OF HARMONIC FUNCTIONS 487

points, exist. For derivatives of higher order, however, this requirement
ceases to be extraneous. As the Neumann method is comparatively simple
for derivatives of the first order, the two procedures appear to complement
each other nicely.

The results, in their generality, for derivatives of higher order are new.
Those for derivatives of the first order are in every respect more general
than any at hand, with the exception of Liapounoff's,* who requires less of
the boundary surface, but more of the boundary values. The results here
obtained with respect to Holder conditions appear to be new for n > 1, and
those for U itself are more general than those at hand.f As an incidental
result, a simple proof is given of the analytic character of harmonic func-
tions.î

2. The derivatives of first order of Poisson's integral. Let U be harmonic
in a sphere of radius a. We consider first its derivative in the direction of its
polar axis, 8 = 0, at a point of that axis. Writing Poisson's integral in the form

aid2 - p2)   r* fid) sin 0 1    r2T
Uip) = dd,   fid) = -        U(a, <b,

2 Jn r3 ¿IT Jo
e)d<t>,

r2 = a2 + p2 — 2ap cos 0,

we find, forp<a,
dU 3aia + p)
- = — apJi-—J2,
dp 2

where

fie) sin Odd r T fie) (p — a cos 0) sin 6d6
Ji

r* /(0)sm0¿0 /•'
=   I-,   J2= (a - p)   I

Jo r" Jo

Our task is to show that these integrals approach limits as p—>a, under suit-
able conditions on/(0), and to observe something as to the rate of approach.
Assuming the existence of f'(B) near 6 = 0, it can be shown, by an integration

* Sur certaines questions qui se rattachent au problème de Diricklet, Journal de Mathématiques,
(5), vol. 4 (1898), p. 241. To the literature cited in my papers referred to above, should be added
Korn, Mathematische Annalen, vol. 53 (1900), pp. 593-608; P. Levy, Sur l'allure des fonctions de
Green et de Neumann dans le voisinage du contour, Acta Mathematica, vol 42 (1920), pp. 207-267.

t See Korn, Sur les équations de l'élasticité, Annales de l'Ecole Normale, (3), vol. 24 (1907),
pp. 23, 25.

Since the writing of this paper, I have learned of one by Schauder, Potentialtheoretische Unter-
suchungen, Erste Abhandlung, about to appear in the Mathematische Zeitschrift. The contacts of
the two papers are confined to results on Holder conditions on U and its derivatives of the first order.
Those for U itself are essentially the same; for the derivatives of first order, Schauder's are more
general than mine, in that bounded curvatures of the bounding surface are not required.

Î I wish to acknowledge my indebtedness to my colleague, Dr. Gergen, for his careful examina-
tion of the manuscript.
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by parts, that the normal derivative of U approaches a limit provided/'(ö)
satisfies a condition of the type used by Dini,* namely that the integral

' fie) '
Jo

de

is convergent. For our purposes, however, a somewhat different condition
will be used. We shall show, namely, that the normal derivative of U has a
limit provided f(ff) is integrable and bounded, and such that the integral

' f(0) - /(0) [
Jo

de
'o

is convergent.
It is legitimate to assume/(0) = 0, since the subtraction of a constant from

U affects neither its derivatives nor the validity of the hypotheses.  With a
number 77, 0 <tj í=t/2, we break up the integrals Ji and J2 each into two,

Jl = Jn + Jl2,   J2 = J2l + J22,

Jn and Jn being extended over the interval (0, 77), and Ji2 and J22, over the
interval (77, w). Then, for any fixed 77, the functions Ju and J22 are analytic
in p at p = a, and hence have limits from which they differ arbitrarily little
for all p sufficiently near a. Hence, if it can be shown that 77 can be so re-
stricted that Jn and J2i are arbitrarily small in absolute value, independently
of p, the existence of a limit for the derivative of U will be established.

But this is immediate. From the equations

e
r2 = (a — p)2 + 4ap sin2 — = (a — p cos 0)2 + p2 sin2 0

2
= ia cos 0 — p)2 + a2 sin2 0,

we derive the inequalities

a — p \ p — a cos 01 0      t sin 0      x
-á 1,-L^ 1,  — ̂ -a—-

r r r 2r 2a

the last holding for 0 ^ 6 ̂  77, since 77 ̂ir/2. Using them, we find

l/wl ..1,1 ./^v r l/w"
\2a/   Jo        02 \2a/   J0 02

(¿0.

The integrals are convergent, by hypothesis, and so approach 0 with 77. As
they are independent of p, the existence of the limits of Ji and J2, and so of
the normal derivative of U, is established. We note, moreover, that for fixed

* Acta Mathematica, vol. 25 (1902), p. 224.
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77, the derivatives of /i2 and /22 with respect to p are bounded in absolute
value by a number depending only on the bound for |/(0) |, so that we may
enunciate the results as follows:

Theorem I. Let U be harmonic in the sphere of radius a, and be given by
Poisson's integral with the bounded integrable boundary values U(a, tp, 6). Let
the average of these values on parallel circles,

fie) = — f r Via, <b, 6)d4>,
2ir Jo

be subject to the requirement that the integral

(i) Jo -£-de, 0<vz-,

be convergent. Then the derivative of U in the direction of the polar axis 0 = 0
approaches a limit at the surface of the sphere for approach along the polar axis.
Moreover, the approach to the limit is uniform for any class of boundary func-
tions which are uniformly bounded in absolute value, and for which the integral
(1) .approaches 0 uniformly with 77.

Tangential derivatives. A similar theorem exists for the tangential deriv-
atives. The derivative of U in the direction of increasing 0 in the meridian
half-plane <p = <p0, at a point of the polar axis, is given by

1   ÔU      3apia2 - p2)   r* Fie) sin2 0f -de,
de 2 Jo rb

¿IT i/n

2t

Via, <b, 0) cos (<b — 4>o)d<b.
0

The same reasoning as that just employed then leads to

Theorem II. Theorem I holds also for the tangential derivatives of U, pro-
vided the function Fid) satisfies the conditions there imposed onf(8).

Remark. Even if /(0) and F(0) have continuous derivatives of the first
two orders, the conditions of Theorems I and II will not be fulfilled, unless
these functions, and their first derivatives, vanish at 0 = 0. This difficulty,
however, may at once be met by the subtraction from U of a linear function,
tangent to U at 0 = 0, p = a. The theorems are therefore more general than at
first appears.

Limiting values. Under the hypotheses imposed on f(B) and F(B), it
will be seen that the limiting values of the normal and tangential derivatives
of U are given by the convergent integral
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,   [/W-/(0)]cos-l.
■--dB,

sin2 —
2

and by the derivatives in the same direction of the boundary values of U,
respectively.

3. Formulation of conditions which insure the existence and continuity
of derivatives on the boundary. An advantage of the present method of
study is its local character. If we wish to consider the behavior of the de-
rivatives of a harmonic function U only on a portion of the surface S bound-
ing the region in which it is given, we need make special hypotheses on 5
and the boundary values of U only on this portion. Accordingly, we shall
deal with a region whose boundary contains a regular surface element E, that
is, a set of points, which is given, for a suitable orientation of the coordinate
axes, by an equation

z = <b(x, y),

<p(x, y) being one-valued, and having continuous derivatives of the first order,
for (x, y) in a closed regular region of the (x, y)-plane. A regular region of the
plane is one bounded by a regular curve, without double points.*

We shall employ the following conditions.

Condition An. R is a bounded open continuum, whose boundary S contains
a regular surface element E, with the following properties :

(a) it has definite radii of curvature at each point, which are uniformly
bounded;

(b) with coordinate axes tangent and normal to E at any point p, it admits a
representation z = <p(x,y), where z is one-valued and has continuous partial deriv-
atives, of order n, with respect to x and y, which are such that if q is any second
point of E, and Dn<j> any definite one of these derivatives,

] DMq) - DMP) | á Dit),

where t is the projection of pq on the tangent plane at p, and where D(t) is a
never decreasing function, independent of p and of the direction of pq, such that

r"Dit)
-dt   (0 < v)

Ja      t
is convergent;

* For fulldetails on these definitions, see Kellogg, Foundations of Potential Theory, Berlin, 1929,
particularly p. 105.

(2)
ÓU

dp 4a Jn
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(c) to every regular surface element E' contained in the interior of E, there
corresponds a positive number ai, such that the sphere of radius ai, about any
point of E', contains no points of S other than those of E.

Condition B„. The function U = U(x, y, z) is one-valued and continuous
in R, and harmonic in the interior of R. Its values Uix, y, <p(x, y)) on E, the
axes being tangent and normal to E at any point p, are subject to the condition
imposed on <p(x, y) in condition A „(b).

Remarks. The requirement of a representation z = <p(x, y), where z is
single-valued and has continuous derivatives, for a single tangent-normal
position of the axes, does not, of itself, assure such a representation for all
such positions of the axes, even though E be arbitrarily flat.* It does so,
however, if, in addition to the requirement that every pair of normals make
an acute angle with each other, we demand that the projection of E on one of
its tangent planes be convex. It is convenience of application which has
dictated the expression of the condition ^4n(b) in this form. The condition
An(c) excludes multiple boundary points on E. Otherwise S is unrestricted
except that it must be bounded. 4 „(a) is a consequence of A „(b) for «^2.

We may now formulate the main theorem of the paper.

Theorem III. Let R satisfy Condition An and U Condition Bn. LetP be a
point of R on the normal to E' at any of its points p. Then any given derivative
of U, of order n, with respect to x, y and z, approaches a limit as P approaches p
along the normal. If it is defined at p as equal to this limit, it is then a con-
tinuous function on E',for unrestricted approach.

As the method of proof of this theorem is different, for » = 1, from that
for n > 1, we consider the cases separately.

4. Existence and continuity of the derivatives of the first order. In order
to infer properties of the boundary values of U on a sphere, internally tan-
gent to E, from known properties of the boundary values on E, we shall need
preliminary information on the rapidity of approach of U to its boundary
values on E. This we shall obtain by means of a harmonic dominant function.
It is the need of this function which largely accounts for the difference in the
treatments of the derivatives of the first, and of higher orders.

First, however, we shall have need of a surface element E", intermediate
between E and E'. Let E" denote the portion of E whose points are distant
not more than ai/2 from E'. Let a2 be the lower bound of the radii of curva-
ture of E, and let a be the less of the two positive numbers ai/8 and 02/2.
Then a will have the properties

* See Foundations of Potential Theory, Ioc. cit., p. 107, also Theorem VII, p. 108.
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(a) any sphere of radius 4a about a point of E" contains no points of S
except those of E,

(b) any sphere of radius 4a about a point of E' contains no points of S ex-
cept those of E",

(c) the sphere o\-, of radius a, internally tangent to E at any point p of E', will
lie in the interior of R except at p, and the sphere ae, of radius a, externally tan-
gent to E at any point p of E', will be exterior to R except at p.

Let p be a point of E". With axes in the tangent-normal position at p,
we form the linear function

Gp = A x + By,
A and B being the derivatives at p of the boundary values of U, with respect
tox and y, respectively. Then Up = U — Gpis harmonic in R, and has bound-
ary values on E which vanish, together with their derivatives of first order,
at p. Moreover, Gp, and any of its derivatives, are uniformly bounded in R.
As a consequence Up is bounded in absolute value in R, by a constant M,
independent of p. The law of the mean, and condition Bi, now yields, for
any point q of E, not distant more than 4a from E",

(3)      IvPiq)| = | v;iq)11 = | u;(?) - u;(p)\t¿ tD(t) g tD(t),
the bars indicating appropriate mean points or values.

We now take up the harmonic dominant function. It is

W = p\Px(cos 0) (0 < X < 1),

where P\(u), « = cos 6, is that solution of Legendre's differential equation,

d dPx
—(1 - u2)—- + X(X + l)Px = 0,
du du

which is regular at u = 1, there assuming the value 1. The greatest root of this
function in the interval ( — 1, +1), if it has any, is negative. Under any cir-
cumstances, there is a positive number a, which we may take less than 7r/2,
such that for cos(7r/2-f-a) igwrgl, P\(u) is positive, and in this interval,
P\(u) is increasing. The last statement may be verified by forming the power
series for P\(u) in z = l — u, which converges for \z\ <2, and has all its
coefficients, after the constant term, negative.

We have, then, the following properties for W. It is continuous in the re-
gion

(4) 0 g p,  0 ^ 0 ^ tt/2 + a,

and harmonic in the interior. Its value at any point (p, <p, 6) lies between
p* and its boundary values
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W = Cpx, C = pJcosí— + a)) = Px(- sin a) > 0.

Let us take, as origin of the spherical coordinates in terms of which W
is expressed, a point p of E", the axis from which 0 is measured being the
inward normal. By the property (c) of the number a, all points of R within a
distance 2a sin a of p will lie in the region (4). The derivatives of first order
of the boundary values of U, being continuous in a closed region, are uni-
formly bounded. The same is true for Gp. Hence by the first equation (3),
the boundary values of Up do not exceed, in absolute value, a uniform con-
stant times W, in the sphere a of radius 2a sin a about p. On the portion of
a in R, \UP\ fS¡M, and as W has here a positive lower bound, there is a uni-
form constant, A, such that on the whole boundary of the portion of R in a,
| Up\ ^AW. As Up and W are harmonic in this region, the inequality also
holds in its interior.  This leads to the inequality

(5) | UpiQ) | :g ApQ\
valid, first, for any point Q of R in a. But since | Up\ is bounded throughout
R, and px is an increasing function, the number A can be so chosen that the
inequality holds throughout R.

Finally, since the derivatives of Gp are uniformly bounded in R, we have,
for suitable B',

(6) | GpiQ) - Gpip) | á B'pQ,
and hence, combining (5) and (6),

(7) | UiQ) - Uip) | ^ B"pQ\
first, for pQ^l, and then for any Q in R, B" being a constant independent
of p. But (6) holds, if, without changing the linear function Gp, we substitute
for the argument point p, any other point q of E", and the same substitution
may be made in (7). Hence we have, on combining the inequalities (6) and
(7), thus altered,

(8) | UpiQ) - UPiq) | á Bq&,

where q is any point of E", Q any point of R, and B is a constant, independent
oîp.

This result is valid for any X in the open interval (0, 1), the constant B
depending, in general, on X. For immediate purposes, we shall assign to X
a value greater than 1/2.

5. Completion of the proof of the theorem for w= 1. Let p now denote
any point of E', a i the sphere of radius a, internally tangent to E' at p, and Q
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a point of the lower half of the surface of <r. We wish to know that Q is on a
normal to £ at a point of E"; for although the inequality (8) could be used
without this knowledge, it will be useful later. By the properties (b) and (c)
of the number a, we know that E lies between <Ti and the sphere o-e externally
tangent to E' at p, until it passes out of the sphere of radius 4a about p.
Hence E must cut the sphere 2, through Q, and tangent to o-, at the ex-
tremity of the radius which points toward Q. There are therefore points of E
within a distance d of Q, where d is the diameter of 2. We may find an ap-
praisal for d by the cosine law of trigonometry. If 6 is the angle between the
radii of o\ to p and Q,

(a + d)2 = a2 + (2a)2 - 2(2a)a cos 0, or d(2a + d) = 4a2(l - cos 0),

so that
0

8a2 sin2 —
2 0

d =-^ 4a sin2 — •
2a+ d 2

Since Q is on the lower half of o-<, d^ir/2, and di£ 2a. If q is the point* of E
nearest Q, its distance from Q cannot exceed d, since, as we have seen, there
are points of E within 2. Hence pq^pQ+d^21'2a+2a<4a, and by the
property (b) of a, q therefore lies on E".

We now use the inequality (8). Since qQ^d^ad2, this yields

(9) | U,(Q) - UPiq) | Z BaH2K

On the other hand, since t = a sin 0 g a0, (3) yields

(10) \Up(q)\û<aD(aO).

Combining the inequalities (9) and (10), we see that the values UP(Q) on the
surface of o-, are subject to the inequality

| Up(a, t, 0) | g 0(5ax02X-1 + aDiaO)) (0 g tt/2).

It follows that the hypotheses of Theorems I and II are in force, since
2X — 1 > 0. Accordingly, the derivative of Up, in any fixed direction, ap-
proaches a limit at p along the normal, and this, uniformly as to p. As the
derivatives of Gp are bounded, uniformly as to p, the derivative of U itself
approaches limits on E' along normals, uniformly. As the derivative is con-
tinuous in the interior of R, we infer that the same limits are approached for
unrestricted approach of the argument point to the boundary. The assign-
ment of these limiting values to the derivative, as values on E', therefore

* Or any of them, in case there are more than one. A similar comment applies at several points
in the sequel.
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makes the derivative continuous at the points of E'.   Theorem III is thus
proved for« = l.

Remarks on Condition Bi. It is known* that continuity of the boundary
values, say on a circle, of the real part of a function of a complex variable,
analytic in the circle, is not sufficient for the continuity of the boundary
values of the conjugate function. We may conclude, by an integration, and
by noting that a harmonic function of x and y may also be considered a
harmonic function of x, y and z, that something stronger than mere continuity
must be required of the derivatives of the boundary values of U if we are to
have continuous normal derivatives. The condition selected, although some-
what conditioned by the proof, is a fairly liberal one. It is clearly less re-
strictive than a Holder condition on the derivatives:

| U'iq) - U'ip) | g At* (0<X<1).

In fact, if merely

I U'iq) - U'ip) | g ¿/[log- (*//)] (a > 1),
where k exceeds the maximum value t assumes, the function on the right will
be seen to have the properties required of D(t) in Condition Bx.

6. The derivatives of harmonic functions at interior points. Analytic
character. We shall need bounds for the derivatives of U at interior points
of R. We may obtain these by applying a familiar inequality. Let V be
harmonic in the sphere of radius c about P, and have there the upper and
lower bounds M and m. Then if DV denote the derivative of V in any given
direction, its value at P is subject to the inequalityf

(11) \DV\ á —iM - m),4c

or, in terms of the upper bound M of the absolute value of V on the sphere,

(12) \DV\g-1       '    '   2c

If V is defined in a region R, and M is the maximum of \V\ in R, c may be
understood as the distance from P to the nearest boundary point of R.

We next seek a bound for the absolute value of the derivative D2V of DV
in any given direction, by applying (12) to a sphere of radius uc about P,
0<m<1. We have

* See, for instance, Kellogg, Potential functions on the boundary of their regions of definition, these
Transactions, vol. 9 (1908), p. 39, footnote %.

t See, for instance, Foundations of Potential Theory, loc. cit., p. 227.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



496 O. D. KELLOGG [April

3 3M
2uc 2(1 - u)c

(i—u)c being the distance from the sphere to the nearest point of the bound-
ary of R. The result holds for any u in the given interval, and is closest when
« = 1/2. It then gives

/3\2    22|D.r|s(7)«-,

c being again the distance from P to the nearest boundary point. Continuing
in this way, we find for any derivative of V, of order n,

/ 3 \ n    nn
(13) \D»V\ ^ (— )M —,

as we proceed to verify, by induction.
Assuming the formula (13), let us find, by means of (12), a bound for the

value at P of the derivative in any given direction, of the harmonic function
DnV. On the sphere of radius uc about P, the absolute value of D"V does
not exceed

nn

(i)'"; (l - u)nc

Using this bound in (12), and replacing c by uc in that inequality, we find

(3\n+1

1)    M
nn

cn+1 w(l — w)n

We choose u so that the last factor will take its least value,
1 1 (» + l)n+l

M =
n + 1      w(l — u)n nn

The inequality for DnV thus obtained coincides with that given by the
formula (13) when n is there replaced by w + 1. As it is valid for n = 1, (13)
therefore holds generally.

As «Bá«!eB, this inequality may be given the form

Mr | s g)-;(14) |0»V| ^ ( — ) Mn\.

Suppose V be developed in a Taylor series about the interior point P of
R, with remainder. It will be found, by means of this bound for the deriva-
tives of V, that {or points whose distance from P is less than c/4, the remain-
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der after the terms of degree n approaches 0 as « becomes infinite. The in-
finite series therefore converges to V in this neighborhood of P. We thus have
a simple proof that V is analytic at any interior point of R.

However, the purpose for which the inequality (14) was derived was the
study of the derivatives of higher order of Poisson's integral. The factor of
the integrand which concerns us is

g(x, y, z) =
a2- p2

where r is measured from the point Q(%, r¡, f) of the surface of the sphere of
radius a about the origin of coordinates O to the point P(x, y, z) in the sphere,
and where p is the distance OP. As it stands, bounds for g, which is harmonic
throughout space, except at Q, are not evident, at least not in a form adapted
to our needs. However, if we write -p for the angle PQO, we have p2 = a2-\-r2
— 2ar cos p, so that g becomes

2a cos p      1
g =-.

r2 r

the terms on the right being harmonic except at Q, and being bounded in
absolute value, at a distance r from Q, by 2a/r2, and by 1/r, respectively.

If, now, we replace D2V by (2a cos p)/r2, and, correspondingly, M by
2a/32, (14), with n replaced by n+2, becomes

2a cos p I      /3e\n+22a
D»-   g ( — )     —(»+ 2)!.

r2      I      \2rJ      32

Similarly, if we replace DV by 1/r, and M by 2/3, (14), with n replaced by
»+1, becomes

1 I     /3e\»+1 2/>•-£(-)     -(»-(  1)!.
r \      \2r/ 3

Combining these results, we have, for all points in the sphere, since there
r^2a,

<3e\n in+ 2)1
(15) |P»g|^10a^y

r«+2

7. The derivatives of order « of Poisson's integral. We  write  Poisson's
integral in the form

. 2xa    rr   r
U = — j     U(a, <t>, 0)g sin 6d<bd6,

4w Jo    Jo
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so that for p<a, any of the partial derivatives of order n with respect to x, y
and z, may be written

a rT r*T(16) D"U = — I      I     Via, <t>, B)D"g sin BdcbdB.
47T Jo      Jo

We regard this derivative as reckoned at a point of the polar axis 0 = 0, and
divide the integral with respect to 0 into two parts, one from 0 to 77, and one
from 77 to w, where 0 < 77 -g 7r/2. Thus

D"U = Ji + J2,

where J2, for fixed 77, is analytic in p at p = a, and where

\j\\û—  \       \     \ Via, <t>,0)\\ Dng I sin Bd<bdB
4x Jo    Jo

(17) f"f(6)d0
Jo    8n+1

= c
We have here used the fact, that for 0-Stt/2, d/r^ir/(2a), and have employed
the abbreviations

5tt 2 /3Te\ " 1   c 2t
Cn = —-( — )(« +2)!,   /(0) =-        \Uia,<b,0)

4   \ 4a / 2x Jo
dB.

The reasoning used to establish Theorem I now yields

Theorem IV. Let U be harmonic in the sphere of radius a, and be given by
Poisson's integral with the bounded integrable boundary values i/(a, <p, 6). Let
the average of the absolute value of this boundary function on parallel circles,

1    /»2ir,
M = —  \     I U(a, <b, 0) I deb,

2ir Jo

be subject to the requirement that

r"f(e)dB
(18) J~^-Jo    0n+1

(0<n)

be convergent. Then any of the partial derivatives of order n of U, with respect
to x, y and z, at the point P of the polar axis, approaches a limit as P approaches
the surface of the sphere along this axis. Moreover, the approach is uniform for
any class of boundary functions which are uniformly bounded in absolute value,
and for which the integral (18) approaches 0 uniformly with 77.

As remarked in connection with Theorem I, this result is broader than is at
first apparent.   For, provided that merely the derivatives of the boundary
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values, of order n, have differences at neighboring points which approach 0
sufficiently rapidly with the distance between the points, the condition (18)
may be brought to fulfillment by the subtraction from U of a suitable har-
monic polynomial. We shall revert to this point in the next section.

8. A lemma on osculating harmonic polynomials. We now consider the
existence of the polynomials, mentioned at the close of the last section, which
broaden the scope of Theorem IV.

Lemma. Let the region R be subject to condition An, and the function U to
condition Bn. We assume, moreover, that the derivatives of U of order n — \ exist
as limits on E, and are continuous there. Then, corresponding to each point p of
E, there exists a harmonic polynomial, Gv, of degree n, such that

UP= U -G,

vanishes at p, together with all its derivatives of orders 1,2, • • • ,n — \, and fur-
ther, such that the derivatives of order n of its boundary values on E vanish at p.
The values of Gp, and of its derivatives, are bounded in R, uniformly as to p.

Taking the axes in the tangent-normal position at p, let G„_i,& denote the
sum of the terms of degree less than n in the development of U in spherical
harmonics about the point P(0, 0, h) in the interior of R. As h—»0, this har-
monic polynomial approaches a limit Gn-i, since its coefficients, which are
binomial coefficients times the derivatives of U of order n — 1 and lower, are
continuous at the points of E. As these coefficients are subject to the equa-
tions which make Gn-\,h harmonic, these equations are satisfied in the limit,
and so G„_i is also harmonic. Thus U — Gn-i is harmonic in R, and vanishes,
together with its derivatives of order n — 1 and lower, at p.

The derivatives of the boundary values of U — Gn-i of the same orders
also vanish at p, while those of order n are the same as those of U. We form
a homogeneous harmonic polynomial of order « as follows. We start with

whose derivatives of order n coincide at p with those of U; from it, we form
the homogeneous harmonic polynomial

V2/ V2V2/
Hn=fix,y)--^-z2 + —±z*-,

2! 4!

V2/ denoting, as usual, the Laplacian of /. Because of the special position
of the axes, z and its partial derivatives with respect to x and y vanish at p,
so that the derivatives of the boundary values of //„ of order n reduce to those
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of the first term at p, and thus to those of U. Because of the continuity of the
derivatives of U and of <p on the closed set E, the coefficients of G„_i and //„
are bounded, uniformly as to p, and hence so are its values and those of its
derivatives in R. Thus

Gp = Gn~l + Hn

has the properties required in the lemma.
It may be noted that Gp, although uniquely determined by the procedure

for setting it up, is not uniquely determined by the properties enunciated in
the lemma. Thus, if p(x, y) is any homogeneous polynomial of degree n — \,
the harmonic polynomial

vv       v2vV
Pix, y)z-■ z3 H-z5 — ■ • •

3! 5!

may be added to Gv without impairing the requisite properties.
9. Proof of the theorem for the derivatives of order «>1. The proof of

Theorem III, for w>l, is essentially a proof by induction, although, as we
shall see, the case w = 2 occupies a somewhat special position. We therefore
begin by noting that the conditions A „ and Bn imply the conditions .4 „_i and
Bn-i. Thus, since the derivatives of <p of order n are continuous functions of
the coordinates x and y and of the position of p in a closed region of these
variables, they are uniformly bounded in absolute value. This means that
the difference quotients of the derivatives of order n — 1 are bounded, and
accordingly the function D(t) = const. Xt will serve as the required dominant
function for them. The situation is the same with the boundary values of U.

Let n denote an integer, «^2. We assume that Theorem III has been
proved for all smaller values of n. That is, we assume that the conditions A „
and Bn are in force, and that all the partial derivatives of U of orders 1,
2, • • • , n—1 exist as limits on a regular surface element E, and are continu-
ous there. We shall identify this regular surface element with the E of the
theorem so as not to multiply notations. A later remark will make clear that
this is legitimate.

We consider the function UP=U — GP of the lemma, and take the axes
in the usual tangent-normal position at p, a point of £'. We construct the
sphere a¿, internally tangent to E' at p of radius a. Let Q be a point of the
lower half of the surface of 0% and q the foot of a normal to E through Q
(see §5). Then

UpiQ) = Upiq) +
dUp
dp

(19)
qQ +

1   d2Up

2    dp* qQ2+--

+
1 d—lU,

(»-!)!    dp"
qQn~

Ï1
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where qi is an interior point of the segment qQ. This equation is legitimate,
since the derivatives of Up of order n — 1 exist.

To avoid a whole series of different notations, let us agree to denote by K
any function which has a bound for its absolute value which may depend on
R, E', U, and n, but not on p, and similarly, let us denote by Dit) any func-
tion dominated by a function satisfying the requirements of condition A „ on
Dit). These notations may therefore mean different functions from time to
time, or even in the same equation, but no difficulty will arise if this fact be
kept in mind. Our object is to establish an equation

(20) UPiQ)\ =t"D(t).

To do this, we develop the coefficients in (19), by Taylor's series with re-
mainders, about the point p. For the first, since the derivatives of lower order
vanish at p, we have

UM = -1   d'U.
»!    dtn

<*,

where pi is an appropriate mean point on E. But, by Condition Bn

d"Uz

dt"
d»Ut

dt"

d»U„
dtn

£D(t).

Hence

(21) \Up(q)\=t"Dit).

Passing to the second term in the development (19), we have

(22)
dU,

dv
dUt
dp

= Ktn-

+
d2Ur

dtdv
t+ ■■■ +

d^U.
in-2) I   dn~2tdu \Pl

since the derivatives of Up of order n — 1 are uniformly bounded on E and
vanish at p. Since qQ = Kt2, as we say at the beginning of §5, we have for
this second term in (19),

au.
dv

qQ = Kt"

Similar considerations show that the later terms in (19) are bounded func-
tions times tn+1, the order with respect to t increasing, at each step, by unity.
We thus have the preliminary result

(23) UPiQ) = Kf.
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While this is not as sharp an appraisal as the needed one (20), it will serve
us in attaining that goal. The difficulty is obviously with the second term in
(19). lin = 2, the argument in the derivative must be a mean point qi, since
the second is then the final term. It is in this sense that the case n = 2 is
special. We see, then, that if we show that

(24)
dU,

dv
= t"-2Dit) for n > 2, and

dU,
dv

Dit) for n = 2,

the desired equation (20) will be assured.
The case n>2. We shall specialize the axes still further by taking the

x-axis along the projection of pq, so that x = t. We have, then, as we see by
(22), to prove that

(25)
dU, «A-

l
(»-2)!

lU.

dx"~2dp
= D(t).

We may, however, replace the mean argument point pi by q, since the pro-
jection on the tangent plane of ppi is not greater than that of pq, or t. In (25)

dU, -[ <t>z dUp <by  dUp
dv        L       w    dx w    dy

By Leibnitz' rule for products,

ó"-2 r _ *, dUpl
âxn-2L       w    dx _L_*d,y)

1   dUpl
+- , W = (1 + cfz2 + <*>,

w     dz J2_^(x,v)
2)1/2.

^2 /« - 2\ a-2-' / _ <fr A 3' p Upl

0     V      i      /dx^-A w/dx'L  dx  J«_*(x,»)'
For all values of i less than n — 2, the second factor in each term vanishes at p,
and has bounded derivatives of the first order with respect to x and y, while
the first factor is bounded. These terms are therefore of the form Kt. For
i — n — 2, the second factor is bounded, while the first one vanishes at p, and
has bounded derivatives, and so is also of the form Kt, because of the special
position of the axes. The same is true of

a»-2 r _ <K dUv-\
L      w    dy _L_4,(x,,,)dxn~2

Finally, we see in a similar way that

^["1 ^1 = Kt + 1 iÜP^l
dxn-*\_W      dz   X=4(z,y) W    d£n-2L   dz   X~4,(x,v)

lrd^Upi
w[_dx"-2dzX

= Kt +
.dx"-2dzX=4,(z.v)
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since the difference of the derivatives on the right is a sum of terms each of
which is a bounded function times a derivative of Up of lower order, or times
a power of <px.

As Kt is a function Dit), and as the sum of two such functions belongs to
the same class, the establishment of the equation (25) is thus reduced to prov-
ing that

(26) | V(q) | = | D^Up
lU*

dxn~2dz
=D(t).

Since V(p) =0, the problem is to determine how rapidly the function V(q)
approaches its value at p as q-*p. We may proceed as follows. Let P and Q
be points of R on the normals to E at p and q, respectively, with pP = qQ
= 5>0. We compare V(P) with V(p), V(Q) with V(q), and then V(P) with
V(Q).

For the first, we apply Poisson's integral to Up, using the sphere en tan-
gent to E at p. By (16), we have

V(P)=—  f     f  .UP(a, (b, 0)Dn-xg sin 0d<t>d0,
4t Jo    Jo

and if p' is a point between p and P, distant p' from the center of a<,

V(p') - V(P) = — (     f     (    UPiP')— D"-^ sin BdcbdBdp,
4?r J„    Jo    Jo dp

the integrand being continuous. P' is the point (a, <p, 6). We break the inte-
gral with respect to 8 into two parts, the first over the interval (0,7r/2), and
the second over the interval (tt/2, t). In the first, UP(P') =Ktn = K8n, by
(23). In the second, | U9(P')\ ^M, and r>a, if pP<a, as we have already
implicitly assumed. In both integrals,

d K
— Dn~lg = ->
dp r"+2

by (15). Accordingly, we may write

V(p') - V(P) =Ji + /»,

where

a    f'   rr     [>** MK
/,   g — I -d<t>dedp = Kip' - p) = K(a - p),

4irJp    Jrii  Jo     an+2

and
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a  r"' rTl2 rîT        k
Ji  ^ — I I    Kon — ed<t>dedP

4-irJ,,    Jo      Jo r"+2
/.p'      /»x/2     l

= K I — dffdp,
J o    Jo        r

where, in the last step, we have used the inequality B/r^w/(2a).
For the inner integral, we find

0
r/2   ! rrii cos —dBJ."2  i r— dB g 21/2 J

o        f Jo r(a-p)2 + (2(apy/2sin-^y

/ 2\in      i2aPy2+ (a2 + p2)1/2       2 2-2l'2a
= f      I    log-^ —log-,

\aP/ a — p a a — p

if p^a/2.  Hence

J"1"'        3a                 r                      a — p'                         a — p~\
log-dp = K\(a- p') log—-ia- p) log-   .

p        a — p               L                        3ae                              3ae J

As V(/>')—*V(p) as p'-^a, we find, therefore,

r 3ac "1 a
V(p) - V(P) = X"   (a - p) + (a - p) log-    = K(a - p) log-

L a — pj a — p

This gives, in terms of 5 = a — p, for ô<a/2,

(27) V(p) - V(P) = Kilogj ■

When we consider F(ç) — V(Q), we must first make sure that q is in the
region for which (23), with p replaced by q, and Q by a point on the lower
half of the corresponding sphere oit is valid. But this is true because q is on
E", and distant from its edge at least 4a-(21/2+2)a = (2-21'2)a, by §5.
We have also to consider the effect of adding to Uv the harmonic polynomial
Gp—Gq. Since the derivatives of Gp are all bounded in R, uniformly as to p,
this addition affects V(q) — V(Q) only by adding a term KqQ = Kt>. Hence
we infer also that

(28) \V(q)-ViQ)\=KÔ\og^--
o

When it comes to comparing V(P) with V(Q), we connect P and Q by a
curve 7, never nearer than S to the boundary of R. We have, then,
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V(Q) - V(P)
<Q   dV

.    ds
ds.

Let us take for 7 the locus of the centers of the spheres of radius 5, internally
tangent to E at the points where E is cut by the (x, z)-plane, i.e., at the points
of the curve x = x,y = 0, z = cp(x, 0). Then 7 is given by

£ = x <bx 8,    V = '8, f = <*> + — 5.
w

We find that the derivatives of £, 77, and f with respect to x are uniformly
bounded, and hence the length of 7 is a bounded function times the -r-coördin-
ate of q, or t. Moreover, the harmonic function V is uniformly bounded in the
portion of R swept out by the spheres of radius 4a about the points of E'.
Let B be a bound for its absolute value in this region. Then at the points of
7, by (11),

dV
ds

3< —B.
25

Accordingly, we have

(29) I ViQ) - ViP) I = K-

We now combine the results (27), (28), (29), writing 5 = i1'2.   Then, for
*<a2/4,

V(q) = Viq) - V(p) Ktm log _ 4. Ktm = Kt\}
t

if X is any number between 0 and 1/2. There is no difficulty in extending
such a relation to values of t greater than a2/4, since V(q) is bounded on E.
As Ktx has the properties required of Dit), the equation (26), and with-it the
first equation (24), is established.

The case n = 2. We have to show that

dUt
dv

= Dit).\vinu\-
If Si is the distance from q to qu we find, as before,

I V(qi) V(q)\ =KSi log — = KÔ log —.
Si 5

But the preceding considerations have proved that V(q) = V(q) — V(p) =D(t).
Accordingly
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I V(qi) |  = Dit),
and the second equation (24) is established. But this, it will be recalled, is
sufficient for the equation (20), which we set out to establish.

The proof of Theorem III is now readily completed. The equation (20)
leads at once to

\UP(Q)\ =0-0(0),

so that the hypothesis of Theorem IV is fulfilled by the boundary values of
Up on ffi, and accordingly, the derivatives of order » of Up approach limits
at p along the normal. Moreover, the approach is uniform as to p, and these
derivatives, rightly defined on E', are then continuous in R at the points of
E'.

It remains only to justify the assumption that the derivatives of order
n — 1 and lower were continuous at the points of E. We may interpolate a set
of surface elements between E and E', each interior to the preceding. On the
first, the derivatives of first order are continuous, on the second, those of sec-
ond order are continuous, and so on. Letting the (» — l)th play the rôle of
E in the above proof, we have established the existence and continuity of the
derivatives of the »th order on E'. Theorem III is thus completely proved.

10. Holder conditions on U. We shall consider, in this section, Holder
conditions on U itself, and in the next, Holder conditions on the derivatives.
We assume

Condition A\. This is obtained from Condition Ai, with (a) omitted, and
with Dit) specialized so as to take the form At*, 0 <X < 1, so that

\D<biq) -D<bip)\ g At*.

Condition B\. U is continuous in R, and harmonic in the interior of R,
and if p and q are any two points of E,

| U(q) - U(p) \^AtK

We then have the theorem

Theorem V. // R is subject to Condition A\, and U to Condition Bx, there
is a region R', containing all the points of R in a neighborhood of E', and a con-
stant B, such that for any two points P and Q of R',

| UiQ) - U(P) | ^ Br\  r = PQ.

We may choose R' at once as those points of R whose distances from E'
do not exceed a (see §4). Reverting to the dominant harmonic function
W = pKP\ (cos 6) oí §4, we take the origin of the system of spherical coör-
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dinates at any point p of E", with the axis of 0 in the direction of the inward
normal. Then a portion of E in the neighborhood of p lies in the region (4).
For, with axes of cartesian coordinates in the usual tangent-normal position
at p, we have, by Condition A \,

11| - | *.(î0* + <t>viqi)y\ è 2*«¿l*+\
while the boundary of (4) is given by

z = — tan at.

Hence all points of R in a sphere about p, of radius not greater than
[(tan a)/(2wA)y-*, lie in the region (4).

We conclude, as in §4, that there is a constant B', independent of p, such
that for any point p on E", and any point Q in R,

(30) \U(Q)-U(p)\^B'pQK
The problem is now to extend this inequality to points P in R'. If P is

any point of R', its distance from E' is not more than a, while the distance
from E' of any point of 5 not in E" is at least 4a. Hence any point P of R'
is nearer to some point p of E" than to any other boundary point of R. Let
p be the nearest point of E", distant c, say, from P. Let o denote the sphere
of radius e/2 about P. Then, by (30), the oscillation of U on a does not exceed
twice the maximum on a i of B'pQx. Accordingly, by (11), the derivative DU
of U, in any direction, atP, is subject to the inequality

,      3B'i3c/2Y
(31) \DU\ <-—L-L = b"c*-\

' ' "     2(c/2)

Now let P and Q be any two points of R'. We consider first the case in
which r=PQ is less than the distance of the segment PQ from E". Here,
integrating along the segment PQ, we have

| U(Q) - U(P) I = ~t
I Jo    Oí

-ds < B"c*~lr ^ B"rx.

On the other hand, if the length r of the segment PQ is greater than or
equal to its distance from E", let 5 be the point of E" nearest the segment.
Then sQ and sP are not greater than 2r, and (30) yields, when applied to the
pairs of points s, Q, and s, P,

| U(Q) - U(P) | g 25'2VX.
Hence if B denotes the larger of the two constants B" and 21+\B', we have,
for any two points P and Q in R',
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[ U(Q) - U(P) I Ú Br*.
Theorem V isthus proved.

Remark. The exponent X has been confined to the open interval (0, 1).
For X = l, the Holder condition becomes a Lipschitz condition, and such a
condition on the boundary values of U does not imply a similar condition for
neighboring interior points. This may be shown by an example. When the
sphere to which Poisson's integral is applied becomes the infinite plane, we
have the following representation of a function, harmonic to one side of this
plane, and assuming the boundary values/:

where Aß denotes the solid angle subtended at P by the element of surface
AS of the plane, the integral being extended over the infinite plane. Using
cylindrical coordinates (p, <p, z), with origin in the plane, and z-axis normal to
it, we consider the function defined by the boundary values/=p/(l+p2), at
points of the z-axis, z > 0. The evaluation of the integral gives, for such points,

z      r    i + (i - z2)1/2 i"-(rri^h—;—(,-"n-
and U therefore fails to have bounded difference quotients near the origin,
although its boundary values do have.

11. Holder conditions on the derivatives of U. The conditions which we
here assume are An+\ and Bn+\; they are simply the conditions obtained from
An and Bn by specializing the function Dit) to be of the form .4ix(0<X<l).
As the definition of Dit) implies, A and X are independent of p and of the
direction of pq. We conclude by establishing

Theorem VI. If R is subject to Condition An+\ and U to Condition Bn+\,
then there is a region R', containing all points of R in a neighborhood of E',
and a constant B, such that for any two points P and Q of R',

I D"U(Q) - DnUiP) | g Br*,  r = PQ.

Here as before, DnU means any one of the derivatives of U of order n
with respect to x, y and z, the axes of these coordinates being fixed.

By Theorem III, we know that the derivatives of order n of U exist and
are continuous at the points of any closed surface element interior to E. We
may infer that these derivatives are bounded in the region R" containing all
points of R whose distances from E" do not exceed (21/2+2)a, and no others.

Let p be any point of E", and cr¿ the sphere of radius a, internally tangent

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1931] DERIVATIVES OF HARMONIC FUNCTIONS 509

to E" at p. Let Q lie on the lower half of the surface of <r,-. Its distance from p
is then not more than 21/2a, and hence the nearest point of S to Q is in R",
and so on E. Call such a point q. Then (19) holds for the function Up, de-
fined in §8. We conclude, as in §9—except that the steps are much simplified
by our present knowledge, by Theorem III, that the derivatives of U of order
n are bounded in R"—that

(32) UPiQ) = Kt»+\

where we are again adopting the convention that K means any function whose
absolute value has a bound independent of p, and of any other argument
points.

From this, we infer, using the method of §9, and applying Poisson's in-
tegral in the sphere o-¿, that if DnU is any given derivative of U of order n,

Í33) D»UPiP) - D"UPip) = K8\

for any pointP on the normal at p, distant 5 from p, ô^a. This latter restric-
tion may, however, be dropped, as we have seen, provided we remain in R".
This leads, as in the preceding section, to

D"+1i/p(P) = Kc*-1,

where c is the distance from P to E, and P is on a normal to £ at a point of
E", and in R". Since all derivatives of Gp are bounded, uniformly as to p,
in R", the last equation yields

(34) Dn+WiP) = Kc*~l.

For R', we take, as before, the set of all points of R whose distances from
E' do not exceed a. Any point of R' is on a normal to E at some point of E".
Let P and Q be any two points of R'. As before, we have two cases to con-
sider. If the distance r =PQ is not greater than the distance between the seg-
ment PQ and E", we argue, as before, that

(35) | DnUiQ) - D"UiP) | ^ Br*.

This is the desired result, established for this case.
If r is greater than the distance between the segment PQ and E", new

geometric considerations are needed. Because of the continuity of <px and </>„,
there corresponds to any positive angle ß, a number b, such that if p and q
are any two points of E, whose distance is not more than b, the normals to E
at p and q make an angle not greater than ß. We shall take ß as the acute
angle for which sin (ß/2) = 1/8. Let p and q be two points of E", whose
distance r does not exceed b, b being further restricted, if necessary, so as not
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to exceed a/4. Let P be in R", on the normal to E" at p, and let Q be in R"
and on the normal to E" at q, such that pP-qQ-4r.

We find, then, that PQg2(4r) sin (ß/2)+r = 2r. Since rg6ga/4, the
nearest point oí Eto P is p, and its distance is 4r. Thus the whole segment
PQ is distant from E" at least as much as the length PQ, and (35) is appli-
cable. It gives

D"U(Q) - DnUiP) = Ki2rf = Kr*.

But, by (33), we have also
D"UiP) - DnUip) = #(4r)x = Xr\

and, similarly,
D"U(Q) - D'U(q) = £>x.

Combining the last three equations, we have
(36) DnU(q) - DnUip) = X>\

The preliminary restriction that r^b may now be removed by the usual
argument.

Now let P and Q be any two points of R' whose distance exceeds the dis-
tance of the segment PQ from E". There will be a point s of E" whose dis-
tance from PQ is less than r, and therefore* whose distances from P and Q
are less than 2r. Hence the nearest points of E" to P and Q, which we call
P and q, respectively, will be distant from P and Q, respectively, less than 2r.
The distance pq, accordingly, cannot exceed 5r. Applying the equation (33)
to the pairs of points P, p and Q, q and the equation (36) to the points p, q,
we obtain the inequality (35) for the second case. Here P or Q or both may
lie on E", and so be any points in the closed region R'. Theorem VI is thus
established.
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