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On the Description of Spectrogram Probabilities
with a Chi-Squared Law

Julien Huillery, Fabien Millioz and Nadine Martin, Member, IEEE

Abstract—Given a correlated Gaussian signal, may a chi-
squared law of probability always be used to describe a spec-
trogram coefficient distribution? If not, would a "chi-squared
description" lead to an acceptable amount of error when detec-
tion problems are to be faced in the time-frequency domain? The
two questions prompted the study reported in this paper. After
deriving the probability distribution of spectrogram coefficients
in the context of a non-centred Gaussian correlated signal, the
Kullback-Leibler divergence is first used to evaluate to what
extent the non-whiteness of the signal and the Fourier analysis
window impact the probability distribution of the spectrogram.
To complete the analysis, a detection task formulated as a binary
hypothesis test is considered. We evaluate the error committed on
the probability of false alarm when the likelihood ratio test is ex-
pressed with chi-squared laws. From these results, a chi-squared
description of the spectrogram distribution appears accurate
when the analysis window used to construct the spectrogram
decreases to zero at its boundaries, regardless of the level of
correlation contained in the signal. When other analysis windows
are used, the length of the window and the correlation contained
in the analysed signal impact the validity of the chi-squared
description.

Index Terms—Spectrogram probability distribution, Chi-
squared law, Kullback-Leibler divergence, Time-Frequency sta-
tistical detection.

I. INTRODUCTION

T
HIS paper focuses on the probability density function of
spectrogram coefficients obtained by the squared modulus

of a Discrete Fourier Transform (DFT). In the context of
statistical signal processing, knowledge of these probability
functions is necessary so as to develop detection and estima-
tion methods dedicated to time-frequency analysis [1].

Under the assumptions of a white, centered and Gaussian
signal, the spectrogram constructed with an infinite rectangular
window is distributed as a chi-squared variable (noted χ2)
with 2 degrees of freedom [2]. Under the same assumptions,
the impact of temporal windowing, zero-padding or spectral
windowing was studied by Durrani [3][4]. His analysis reports
a departure of the spectral coefficients distribution from the
χ2 law as soon as zero-padding or non-rectangular temporal
windowing is used. The departure is evaluated in terms of a
decrease in the equivalent degree of freedom. More recently,
relaxing the whiteness assumption, Johnson and Long [5]
derived a general form for the pdf of spectral estimates
obtained by the Welch technique according to the number of
periodograms averaged and their amount of overlap. Departure
of the obtained pdf from a Gaussian distribution is evaluated
with the Kullback-Leibler divergence.

Julien Huillery, Fabien Millioz and Nadine Martin are with the GIPSA-Lab,
Signal and Image Department (DIS), INPG-CNRS, Grenoble, France.

As shown in these studies [3][4][5], the pdfs obtained are
not trivial and of limited practical use. As a result, in appli-
cations, the spectrogram coefficients are classically described
as χ2 variables. For example in [6](p262), in the context of
sinusoidal detection, the pdfs assumed under both hypotheses
are χ2 laws with 2 degrees of freedom. In [7] and [8], Martin
also uses a χ2 pdf with 2 degrees of freedom to describe
the squared modulus of Fourier coefficients. He indicates the
Fourier analysis window should be large enough and the signal
correlation short enough so that this χ2 description strictly
holds.

This study aims at characterizing the differences between
the spectrogram distribution and the χ2 pdf for correlated
Gaussian signals, as initiated in [9], and at giving a quantitative
idea of the short enough or long enough conditions mentioned
in [7].

We assume the signal observed, noted x[m] in the discrete
time domain, is composed of a deterministic part d[m] em-
bedded in a random additive perturbation p[m]:

x[m] = d[m] + p[m]. (1)

The random perturbation is assumed stationary, Gaussian,
centred, with an autocorrelation function Γp[τ ]. The symmetric
covariance matrix associated with this autocorrelation function
is noted R. Each sample x[m] of the signal is distributed
as a Gaussian variable with mean d[m] and autocorrelation
function Γp[τ ] and noted

x[m] ∼ N (d[m], Γp[τ ]) . (2)

From this temporal random model, the probability density
function of a spectrogram coefficient can be evaluated. This
probability function will depend on two kinds of parameters:
the signal model parameters, namely d[m] and R, and the
time-frequency transform parameters which, for the spectro-
gram, are the length and shape of the analysis window and
the zero-padding.

The difference between χ2 pdf and spectrogram pdf will
first be evaluated in terms of the Kullback-Leibler (KL)
divergence. Now, the amount of KL divergence between two
pdfs is of great interest as a minimisation criterion, but does
not easily provide a practical measure of accuracy as regards
the approximation of one pdf with an other.

In order to give more insight to this question, a specific
time-frequency detection task is investigated. For signal model
(1), the detection task consists in deciding whether a con-
sidered time-frequency location contains energy originating
from d[m] (signal hypothesis H1) or not (null hypothesis H0).
The Neyman-Pearson detector is used to evaluate the error
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generated on the probability of false alarm when the χ2 law
is used instead of the exact spectrogram distribution.

This paper is organized as follows: Section II describes the
time-frequency formulation of the signal random model. The
χ2 and spectrogram probability distributions are recalled in
section III. Both central and non central cases are considered.
In section IV, we describe how the parameters of the χ2 law
may be set to fit with the spectrogram pdf. In section V, the
KL divergence is used as a first measure of accuracy of a χ2

description of spectrogram. In section VI, the time-frequency
detection problem is examined. Finally, a discussion on the
respective sensibility of the two measures and the impact of
the analysis window’s shape is provided in section VII. Section
VIII draws conclusions on the description of spectrogram
probabilities with a χ2 law for correlated signals.

II. SPECTROGRAM AND RANDOM TIME-FREQUENCY

MODEL

In this section, the random temporal model of signal (2)
is formulated in the time-frequency domain according to the
transform chosen in this work: the spectrogram.

Given a discrete analysis window w[m] of length M , the
Short-Time Fourier Transform X [n, k] of a discrete signal
x[m] is formed by the successive Discrete Fourier Transforms
of the windowed signal. Throughout this paper, the indices n
and k will refer to the discrete time and frequency locations
respectively. The spectrogram Sx[n, k] corresponds to the
squared modulus of the Short-Time Fourier Transform (STFT)
or equivalently to the sum of the squares of the STFT real and
imaginary parts, Xr[n, k] and X i[n, k] respectively. We start
with the following definitions:

Sx[n, k] = Xr[n, k]2 + X i[n, k]2, (3)

Xr[n, k] =
M−1
∑

m=0

x[nD + m]w[m] cos(−2πk
m

K
), (4)

X i[n, k] =
M−1
∑

m=0

x[nD + m]w[m] sin(−2πk
m

K
), (5)

where K is the length of the computed DFT, D is the window
sliding step and K/M corresponds to the factor of zero-
padding.

Let us now define the STFT vector X[n, k] as

X[n, k] =

(

Xr[n, k]
X i[n, k]

)

, (6)

so that the spectrogram may be written

Sx[n, k] = X
T [n, k]X[n, k]. (7)

Equations (4) and (5) express the real and imaginary parts of
the STFT as linear combinations of signal samples. As x[n] are
Gaussian variables, Xr[n, k] and X i[n, k] are also distributed
with Gaussian laws and X[n, k] is a two-dimensional Gaussian
vector characterized by five parameters: m1, m2, Σ11, Σ22 and

Σ12 defined as






















m1 = E {Xr[n, k]} ,
m2 = E

{

X i[n, k]
}

,
Σ11 = E

{

(Xr[n, k] − m1)
2
}

,
Σ22 = E

{

(X i[n, k] − m2)
2
}

,
Σ12 = E

{

(Xr[n, k] − m1)(X
i[n, k] − m2)

}

,

(8)

where E {.} denotes the expectation. For clarity, the time-
frequency location [n, k] in the probability parameter notations
is dropped. The random time-frequency model can finally be
written as

X[n, k] ∼ N
{(

m1

m2

)

,Σ =

(

Σ11 Σ12

Σ12 Σ22

)}

. (9)

Let us now describe how the five parameters of this model
can be written in terms of the signal and spectrogram pa-
rameters. Because the random perturbation p[m] is assumed
centred, the first order statistics m1 and m2 only depend on the
deterministic STFT real and imaginary parts. From equations
(1), (4) and (5), we have

{

m1 = Re(STFT {d[m]}),
m2 = Im(STFT {d[m]}). (10)

The centered second order statistics of X[n, k] are functions
of the signal covariance matrix R. Combined with the spec-
trogram parameters, we have in algebraic form







Σ11 = W
T
CkRCkW,

Σ22 = W
T
SkRSkW,

Σ12 = W
T
CkRSkW,

(11)

where WT = [w[0] · · ·w[M − 1]] is the analysis window
vector and Ck (resp. Sk) is the cosine (resp. sine) diagonal
matrix,

Ck = diag
[

cos(−2πk
m

K
)
]

m=0,M−1
, (12)

Sk = diag
[

sin(−2πk
m

K
)
]

m=0,M−1
. (13)

Note: as we are interested in a single time-frequency lo-
cation [n, k], the amount of overlap between the successive
analysed frames of the signal (represented by the window
sliding step D in (4) and (5)) is not involved in this time-
frequency model and does not influence the results presented
further.

III. χ2 AND SPECTROGRAM PROBABILITY DENSITY

FUNCTIONS

In this section the definition and pdf of a χ2 variable are
first recalled. Then the pdf of a spectrogram coefficient is
expressed. For the central case (m1 = m2 = 0), an analytical
formulation of the pdf is available. For the noncentral case
however, the spectrogram pdf can not be written in a closed
form. We present a numerical method based on geometrical
considerations that can be used to compute the exact spectro-
gram pdf.
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A. χ2 law

Given N independent and homoscedastic (of same variance)
Gaussian variables Gi ∼ N

(

mi, σ
2
)

, i = 1, . . . , N , the
sum of the squares of the variables Gi is distributed as a
χ2 variable. It is defined by three parameters and we note
χ2(δ, α, θ) where

• δ is the degree of freedom. It corresponds to the number
of independent Gaussian variables summed. δ = N in
the example mentioned above.

• α denotes the coefficient of proportionality. It accounts
for the common variance of the Gaussian variables. Here
we have α = σ2.

• θ stands for the noncentrality parameter. It is defined in
this work as θ =

∑

i m2
i .

For θ 6= 0 and x ≥ 0, the pdf of a χ2 variable is

pχ2(δ,α,θ)(x) =
1

2α

(x

θ

)

δ−2

4

exp

(

−x + θ

2α

)

.I δ−2

2

(√
xθ

α

)

, (14)

where In(.) stands for the n-order modified Bessel function
of the first kind. In the central case (θ = 0), the pdf is

pχ2(δ,α,θ=0)(x) =
1

(2α)
δ

2 Γ( δ
2 )

x
δ−2

2 exp
(

− x

2α

)

, (15)

where Γ(n) =
∫ +∞

0
e−xxn−1dx is the gamma function.

Note: the denomination "chi-squared variable" and its no-
tation "χ2" are usually dedicated to the central case only. In
some reference literature [10], the central and noncentral cases
are covered separately. The χ2 variable is usually defined as
the sum of the squares of Gaussian variables N (0, 1) and
requires only one parameter: the degree of freedom δ. The
definition proposed here is based on non-centred and non-
unit-variance Gaussian variables. This has led the authors to
introduce three parameters (δ, α, θ) within the definition of
the χ2 variable. The reason for this choice is the informative
nature of the means and variances of the Gaussian variables
in the study presented here. They are part of the model and
we found comfortable to handle them in a single formulation.

B. Spectrogram probability distribution

From the definition of the χ2 law given above and the
time-frequency model (9) described in section II, it follows
that a spectrogram coefficient is distributed as a χ2 variable
as soon as the covariance matrix Σ is proportional to the
identity matrix. As already reported in [9], this assumption
is not always valid. The following pdfs are valid for any
covariance matrix Σ.

1) Central case, m1 = m2 = 0: Under the central
case, the spectrogram pdf, noted pSx/0(s), corresponds to the
distribution of a quadratic form in two centered Gaussian

0 1 2 3 4 5
0

0.002

0,006

0.01

s

p
S

x

(s
)

 χ2
 law : Σ

11
 = Σ

22
 = 1, Σ

12
 = 0

heteroscedasticity : Σ
11

 = 0.4, Σ
22

 = 1.6, Σ
12

 = 0

correlation : Σ
11

 = Σ
22

 = 1, Σ
12

 = 0.7

both : Σ
11

 = 0.4, Σ
22

 = 1.6, Σ
12

 = 0.7

Fig. 1. Examples of central distributions corresponding to different covari-
ance matrices Σ.

variables. The moment-generating function of the random
variable X[n,k]

T
X[n,k] is

M(µ) = E

{

e−µX
T
X

}

=
1

|I2 + 2µΣ|1/2
. (16)

The corresponding pdf is obtained by the inverse Laplace
transform of M(µ) and is given by ([3], equation 106)

pSx/0(s) =
1

a
exp (−bs) I0 (cs) , s ≥ 0. (17)

Following [3] (equations 107 or 109), the three parameters a,
b and c are obtained with











a =
√

4 detΣ,
b = tr Σ

4 detΣ ,

c =
[(tr Σ)2−4 detΣ]

1

2

4 detΣ ,

(18)

where ’detΣ’ and ’tr Σ’ stand for the determinant and trace
of the covariance matrix Σ respectively. For Σ proportional
to identity, we have a = 1/b = 2Σ11 and c = 0, leading to
the central χ2 law (15) with δ = 2 and α = Σ11 = Σ22.

Some examples of central spectrogram pdfs are displayed
in figure 1. The continuous line plot corresponds to the
χ2 law. The three other dashed plots report the evolution
of spectrogram probability law when heteroscedasticity
(difference of variances, Σ11 6= Σ22) and/or correlation
(Σ12 6= 0) happens between the components of vector X[n, k].

2) Noncentral case, m1, m2 6= 0: No closed form was
derived for the pdf of a quadratic form in non-centered Gaus-
sian variables. The literature provides many series expansions
using Laguerre polynomials [11][12], χ2 pdfs [13][14][15] or
the hypergeometric function [5]. While one of the references
cited above could have been used, in this paper we propose
a simple geometrical approach to compute the pdf pSx

(s) of
a spectrogram coefficient. The method is applicable to any
squared modulus of a two-dimensional random vector, centred
or not, Gaussian or not.

We look for the density of probability for which a spec-
trogram coefficient Sx[n, k] equals a given positive value s.
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Fig. 2. Examples of noncentral distributions (m2

1
+m2

2
= 8) corresponding

to different covariance matrices Σ. The histograms of 106 equivalent random
variables are also plotted (background colour).

From (3), this event happens when the realisations xr and
xi of the two random variables Xr[n, k] and X i[n, k] satisfy
the equation x2

r + x2
i = s. Within the (Xr, X i) plane, this

describes the circle centred at (0,0) and with radius
√

s. The
spectrogram pdf pSx

(s) can thus be obtained by integrating the
joint pdf p(Xr ,Xi)(xr, xi) of the two random variables Xr and
X i over this domain.

To adapt the notation to the geometry of the problem, the
pdf p(Xr,Xi)(xr , xi) is expressed in polar coordinates (r, φ)
using

{

xr = r cosφ,
xi = r sinφ.

(19)

The spectrogram pdf pSx
(s) is now obtained with integration

over the angular coordinate φ over [0; 2π] and is written

pSx
(s) =

∫ 2π

0

p(Xr ,Xi)(
√

s, φ)dφ. (20)

In this work, the STFT vector X[n, k] is Gaussian. p(Xr,Xi)

is a bi-dimensional Gaussian distribution which is formulated
in polar coordinates as

p(Xr,Xi)(r, φ) =
exp

(

− A(r,φ)
2(1−ρ2)

)

2π
√

Σ11Σ22(1 − ρ2)
, (21)

where

ρ =
Σ12√

Σ11Σ22

(22)

is the correlation coefficient between STFT real and imaginary
parts and

A(r, φ) =
(r cosφ − m1)

2

Σ11
+

(r sin φ − m2)
2

Σ22

−2ρ(r cosφ − m1)(r sin φ − m2)√
Σ11Σ22

. (23)

A discrete version of (20) is used to compute the spectro-
gram pdf. Some examples of noncentral distributions are dis-
played in figure 2 for different covariance matrices Σ. In each

configuration, the histogram of 106 runs of the corresponding
random variable is also plotted so as to validate the accuracy
of the method. The continuous line plot corresponds to a
noncentral χ2 distribution (Σ = I2). The dashed plots show
the evolution of the spectrogram pdf when the components of
the STFT vector X[n, k] have different variances and/or are
correlated.

IV. DESCRIPTION OF THE SPECTROGRAM WITH A χ2 LAW

In this section, we present two different settings of the χ2

law parameters (δ, α and θ) that can be used to approximate
the spectrogram distribution. The noncentrality parameter θ
can be treated separately as it does not generate any difference
between spectrogram and χ2 pdfs. For all cases, it will be
given by θ = m2

1 + m2
2. The differences between spectrogram

and χ2 pdfs originate from the covariance matrix Σ. Two
different ways to link the χ2 parameters α and δ to this matrix
are proposed.

A. Setting 1: fixed δ

In a first approach, the degree of freedom is fixed at δ =
2, which means considering STFT real and imaginary parts
as independent and homoscedastic. This corresponds to the
commonly used χ2 law and leads to the most simple pdf. The
proportionality coefficient α is set according to its maximum
likelihood estimator for a central (θ = 0) χ2 law with δ =
2 degrees of freedom. This estimator is the arithmetic mean
of both real and imaginary STFT part variances. The three
parameters of the first χ2 law used to describe the spectrogram
distribution are written as







δ = 2,

α = Σ11+Σ22

2 ,
θ = m2

1 + m2
2.

(24)

The corresponding pdf is

pχ2(s) =
1

Σ11 + Σ22
exp

(

−s + m2
1 + m2

2

Σ11 + Σ22

)

.I0

(

√

2s(m2
1 + m2

2)

Σ11 + Σ22

)

. (25)

B. Setting 2: adapted δ

The degree of freedom δ of a χ2 law reflects the number of
independent variables that are summed. If the two Gaussian
variables are correlated (i.e Σ12 6= 0), the equivalent degree
of freedom becomes smaller than 2. Also, if the two variances
Σ11 and Σ22 are not equal, one of the Gaussian variable has
more impact on the sum of the squares. Consequently the
equivalent number of independant variables is not anymore
2 but lies between 1 (Σ11 ≫ Σ22) and 2 (Σ11 = Σ22). As
a result, adapting the degree of freedom δ according to the
covariance matrix Σ of the time-frequency model should lead
to a better description of the spectrogram.

The "method of moments" 1 is used for the joint estimation
of the parameters δ and α. The first two statistical moments

1The method of moments consists in equating the statistical moments
between the empirical observations and the model.
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Fig. 3. Kullback-Leibler divergence between spectrogram and χ2 distribution as a function of a) the correlation time ratio λ for 512-point long windows
and b) the length M of the analysis window for a correlation time ratio λ = 30.

of a central χ2 variable are
{

E
{

χ2
}

= αδ,
Var

{

χ2
}

= 2α2δ,
(26)

where Var {.} stands for the variance operator. Now the
first two statistical moments of a ’noise-only’ spectrogram
coefficient are

{

E {Sx} = Σ11 + Σ22,
Var {Sx} = 2[Σ2

11 + Σ2
22 + 2Σ2

12].
(27)

Equating the respective statistical moments leads to the new
description











δ = (Σ11+Σ22)2

Σ2

11
+Σ2

22
+2Σ2

12

,

α = Σ11+Σ22

δ ,
θ = m2

1 + m2
2.

(28)

The final corresponding χ2 pdf is obtained through (14).

To obtain more insight into this new setting, let us define a
coefficient of heteroscedasticity ξ between the STFT real and
imaginary parts as

ξ =
1
2 (Σ11 + Σ22)√

Σ11Σ22

. (29)

The degree of freedom δ can be rewritten as

δ =
2

2 − 1−ρ2

ξ2

, (30)

where ρ is the correlation coefficient (22). This formulation
highlights the impact of both correlation and heteroscedasticity
that tend to diminish the equivalent degree of freedom δ of
the spectrogram coeffcient Sx[n, k], as they increase.

The two proposed χ2 parameter settings lead to two possible
approximations of the spectrogram distribution. To evaluate
these approximations, the χ2 pdfs have to be compared with
the exact spectrogram pdf obtained with (20). The Kullback-
Leibler divergence is now used to this purpose.

V. KL DIVERGENCE MEASUREMENTS

In this section, the Kullback-Leibler divergence
J (pχ2 ||pSx

) is used as a measure of distance between
the spectrogram and χ2 distributions. It is calculated as [16]

J (pχ2 ||pSx
) =

∫ +∞

0

pχ2(s) loge

[

pχ2(s)

pSx
(s)

]

ds. (31)

As the natural logarithm is used in this expression, the KL
divergence unit is the ’nat’.

In the sequel we consider a stationary, centred, Gaussian
and exponentially correlated process p[m]. The autocorrelation
function of this process is

Γp[τ ] = Γ0 exp

(

−|τ |
τc

)

, (32)

where τc is the correlation time and Γ0 is set to 1.

1) Impact of correlation: For a given correlation time τc,
the impact on the spectrogram pdf depends on the analysis
window’s length M . To analyse the impact of the correlation
separately from the impact of the window’s length, the corre-
lation time ratio λ is defined as

λ =
τc

M
. (33)

This parameter represents the span of correlation at the scale
of the analysis.

As shown in Figure 3-a), the KL divergence increases as
the amount of correlation becomes higher. The spectrogram
probability distribution moves away from a χ2 law. When the
correlation time τc is of the order of the window’s length M
(i.e λ = 1), the KL divergence is stabilized.

2) Impact of windowing: Figure 3-a) also highlights the
different sensibilities of the spectrogram pdf to signal cor-
relation according to the shape of the analysis window. The
KL divergence increases and is maximal with the rectangular
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window while it remains constant with the Hanning window.
This point will be discussed in section VII.

Figure 3-b) reports the KL divergence between spectrogram
and χ2 pdfs according to the analysis window’s length. The
correlation time ratio is fixed at λ = 30. As in a white en-
vironment [3], the distance between spectrogram and χ2 pdfs
diminishes as the analysis window lengthens. Also, the KL
divergence is stabilized for windows longer than a threshold
that grows with the correlation time ratio λ (we found 64
samples for λ = 1, 128 for λ = 30 and 512 for λ = 100).

Dissimilarities with the white case also are to be noted. In
a white environment, a long rectangular window assures the
best fit between spectrogram and χ2 pdfs as opposed to other
windows [3]. The opposite phenomenon is observed in a
correlated environment : the best fit is obtained for long and
non-uniform windows. With the rectangular window, The KL
divergence remains constant over the whole range of window
lengths.

3) Impact of zero-padding: The impact of zero-padding
was also investigated. The amount of KL divergence between
spectrogram and χ2 pdfs remained constant as the factor
of zero-padding K/M went from 1 to 3. Our experiments
do not show that this parameter influences the probability
distribution of spectrogram coefficients.

4) Impact of the degree of freedom: An unexpected
difference of KL divergence is observed between the two
proposed χ2 pdfs. The χ2 law with δ = 2 degrees of freedom
appears closer to the spectrogram pdf than its counterpart
with adapted δ. This point will be discussed in section VII.

The interpretation of a numerical amount of KL divergence
between two probability distributions is difficult. This is due
to a lack of a practical normalisation method and the non-
symmetric behavior of this measure. Hence, only qualitative
conclusions have been made from this point. In the following
section, a time-frequency detection problem is investigated.
This will provide more quantitative references so as to answer
the question: what is the level of inaccuracy and on which
parameters attention should specifically be paid if a χ2 law is
used to describe the spectrogram statistics?

VI. APPROXIMATION IN A DETECTION CONTEXT

In this section, the impact of describing the spectrogram
distribution with a χ2 law is evaluated in a time-frequency
detection context.

A. Problem formulation

We consider the model of observation (1) where the signal
under interest is embedded in an additive random perturbation.
The time-frequency detection task consists in determining
whether the energy Sx[n, k] observed at a particular time-
frequency location [n, k] originates from the perturbation p[m]
only (null hypothesis H0) or is also due to the deterministic

part d[m] of the signal (signal hypothesis H1). This time-
frequency binary hypotheses test is formulated as

{

H0 : Sx[n, k] = Sp[n, k],
H1 : Sx[n, k] = Sd+p[n, k].

In the Neyman-Pearson detection approach, the detection
threshold Sth is determined by means of a given probability
of false alarm Pf . Sth is calculated so as to satisfy the relation

Pf =

∫ +∞

Sth

pH0
(s)ds, (34)

where pH0
(s) is the spectrogram pdf under the null hypothesis

H0. The corresponding decision rule is
{

decide H0 if Sx[n, k] < Sth,
decide H1 if Sx[n, k] > Sth.

B. Impact measurements

The overall probability of error of a binary hypotheses test
is the sum of two terms: one is the probability of false alarm
(PFA) while the other is the probability of miss-detection. The
Neyman-Pearson detection strategy minimizes the probability
of miss-detection while restraining the probability of false
alarm to a given value. From this point of view, the respect
of a chosen PFA is the main focus of this detection strategy.
Now, if an approximation pap is used instead of the exact pdf
pH0

, the obtained probability of false alarm Pf,obtained of the
test will shift from the one initially desired Pf,wanted. More
precisely, the detection threshold Sth will satisfy

Pf,wanted =

∫ +∞

Sth

pap(s)ds, (35)

whereas the effective size of the test will be

Pf,obtained =

∫ +∞

Sth

pH0
(s)ds. (36)

We propose to consider the error ∆PFA defined as

∆PFA = |Pf,obtained − Pf,wanted| (37)

=

∫ +∞

Sth

|pH0
(s) − pap(s)|ds (38)

so as to evaluate the practical significance of the divergence
observed between spectrogram and χ2 pdfs. In a system,
the error engendered by a modelisation mismatch has to be
lower than the desired precision. So if the variation of PFA
∆PFA appears higher than the desired PFA Pf,wanted, the
χ2 approximation has to be rejected. If the error ∆PFA is
much lower than Pf,wanted, the modelisation mismatch can
be judged insignificant as it does not noticeably impact the
detection test performances.

1) Impact of correlation: The error ∆PFA on the PFA
as a function of the correlation time ratio λ is reported in
figure 4-a). The desired PFA is fixed at Pf,wanted = 10−5.
As the analysed signal becomes more correlated, the shift of
PFA ∆PFA reaches the significance level of 10−5 with the
rectangular window only. For the Gaussian window, variations
of PFA are stabilized at the level of 10−8. Correspondingly,
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Fig. 4. Error on the PFA as a function of a) the correlation time ratio λ for 512-point long windows and b) the length M of the analysis window for
correlation time ratio λ = 30. For both cases, the initial desired PFA is 10−5.

the modelisation mismatch impact is of order 10−3 compared
with the test precision and can be judge insignificant. The
Hanning window generates even lower and insignificant
impact.

2) Impact of the window’s length: Errors on the PFA as a
function of the window’s length M are reported in figure 4-b).
The correlation time ratio is fixed at λ = 30 and the desired
PFA is Pf,wanted = 10−5. For very short analysis windows
(16 or 32 samples), the impact of a χ2 approximation appears
significant. However, as soon as the Gaussian or Hanning
windows are longer than 64 samples, the effects observed
appear non significant. The situation is different with the
rectangular window: increasing the window’s length has
no effect and the variation of the PFA is always above the
significance level.

3) Impact of the degree of freedom: For both figures 4-
a) and -b), the continuous lines correspond to χ2 laws with
fixed δ = 2 degree of freedom, while dotted lines stand for χ2

laws with an adapted degree of freedom. Contrary to the KL
divergence measurements, the errors on PFA are lower when
the degree of freedom is adjusted to the covariance matrix Σ.
This is especially true as the analysed signal becomes more
and more correlated and for high errors ∆PFA. However,
the improvement is not noticeable enough to generate non-
significant errors.

VII. DISCUSSION

A. Which χ2 law?

We tried to approximate the spectrogram probability dis-
tribution with two different χ2 laws according to a fixed
or adapted degree of freedom. When the approximation was
evaluated with the KL divergence, the χ2 law with 2 degrees
of freedom engendered the best fit with the spectrogram

0

x

lo
g

( 
p

d
f 

)

spectrogram pdf

χ2
 pdf with δ=2

χ2
 pdf with adapted δ

best fit with adapted δ

 best fit with δ=2

Fig. 5. Differences between the χ2 pdfs with fixed or adapted degree of
freedom δ and comparison with the exact spectrogram pdf.

pdf. Conversely, in the detection test, adapting the degree of
freedom of the χ2 law appeared favorable.

The different sensibilitiy of the two measures can explain
this observation: our point is that KL divergence is particularly
sensitive to differences located on the main body of the two
probability distributions. Also, differences between the tails of
the distributions have a small impact on the KL divergence.
As an explanation, the KL divergence is an expectation and
hence a summation weighted by a pdf. Consequently, the
differences located where the pdf is high give more value
to the KL divergence than the differences located where the
pdf is small. On the other hand, it is intuitive that a quantile
corresponding to a given PFA is particularly sensitive to the
tail of the distribution. Henceforth, the two criteria used in this
study mostly react to different modelisation mismatches.

The exact spectrogram pdf as well as the two proposed
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χ2 approximations are plotted in log scale in figure 5. The
spectrogram is constructed with a 512-point rectangular
window and the correlation time ratio is λ = 10. The fixed
degree of freedom produces the best fit regarding the main
body of the distributions. Consequently, the KL divergence
was smaller. On the other hand, the tail of the spectrogram
pdf is better approximated when the degree of freedom of the
χ2 law is adapted, thus producing the smallest variations of
PFA in the detection test.

Now, the use of a χ2 law with fixed or adapted degree of
freedom depends on the main focus of the approximation. If
the approximation has to be global, the χ2 law with δ = 2
degrees of freedom is recommended. If the approximation has
to respect the tail of the distribution, adapting the degree of
freedom is favorable.

B. Impact of the window shape

Throughout this study, noticeable differences among the
analysis windows were observed. The probability distribution
of a spectrogram constructed with a Hanning window ap-
peared insensitive to the correlation of the analysed signal.
Conversely, the rectangular window reacted significantly to
a correlated environment, leading to important modelisation
mismatches. The sensibility of the Gaussian window stands in
the middle.

As observed in [9], different windows lead to different
covariance matrices Σ. With a Hanning window, Σ is always

nearly proportional to identity, i.e Σ11/Σ22 = 1 and Σ12 = 0,
regardless of the level of correlation contained in the signal.
With the rectangular window, the correlation generates large
differences between Σ11 and Σ22, and non-null Σ12. Conse-
quently, the covariance matrix Σ is far from identity and the
spectrogram distribution far from a χ2 law.

Σ11, Σ22 and Σ12, defined in (11), are quadratic forms in the
window vector W. Let us call ’covariance kernels’ the three
matrices K11, K22 and K12 associated with these quadratic
forms, corresponding to

K11 = CkRCk, (39)

K22 = SkRSk, (40)

K12 = CkRSk. (41)

From simple matrix manipulation, the definition of Σ11 can
be reformulated as

Σ11 =
∑

i,j

K11(i, j)W2(i, j), (42)

where W
2 = WW

T . Σ11 appears as the summation of the
covariance kernel elements weighted by the analysis window
matrix W

2. A similar formulation of Σ22 and Σ12 is also
valid. Figure 6 displays the covariance kernel-window products
before summation (42) in the case of a rectangular window
(top three panels) and a Hanning window (bottom panels).
The correlation time ratio is λ = 1.

The cosine and sine functions are dephased by π/2. Con-
sequently, the covariance kernel K22 (formed with sines)
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can be obtained from K11 (formed with cosines) with two
translations, one horizontal and one vertical, of Tk/4 samples
where Tk is the period of the sine and cosine at the observed
frequency k. As seen in figure 6 (top panels), noticeable dif-
ferences between K11 and K22 are present on the boundaries
of the kernels.

If no correlation is present in the analysed signal, the kernels
reduce to diagonal matrices, no differences exist and the
spectrogram is distributed as a χ2 variable. Now, if correlation
exists in the analysed signal, the covariance kernels extend
apart from the main diagonal and differences appear on the
boundaries.

According to the shape of the analysis window, these
differences will be preserved or not. The rectangular window
represents a uniform weighting and preserves such differences.
As a result, Σ11 differs from Σ22. If the analysis window
decreases to zero at its boundaries, as the Hanning window,
the impact of the aforementioned differences is drastically
reduced. The summation (42) leading to Σ11 and Σ22 only
concerns the middle of the covariance kernels where no
such differences exist (see figure 6, bottom panels). As a
consequence, the correlation of the analysed signal does not
lead to different Σ11 and Σ22, and the spectrogram remains
distributed as a χ2 variable.

From these observations, the behavior of the analysis win-
dow at its boundaries appears to be responsible for the more
or less important impact of correlation on the spectrogram
probability distribution. Several currently used analysis win-
dows are depicted in figure 7. For each of these windows, the
KL divergence between the corresponding spectrogram pdf
and a χ2 law with δ = 2 degrees of freedom is evaluated
as a function of the correlation time ratio λ. This figure
clearly shows the link between the behavior of the windows
at their boundaries and the corresponding difference between
spectrogram and χ2 pdfs.

VIII. CONCLUSIONS

May the probability distribution of a spectrogram coefficient
be accurately described with a χ2 law when the analysed signal

is embedded in a correlated centred Gaussian perturbation?
What is the influence of the nature and length of the analysis
window, the zero-padding or the amount of correlation in the
signal?

In this paper, we present two experiments to answer these
questions. The first consists in measuring the KL divergence
between the exact spectrogram distribution and the χ2 law
whose parameters are tuned to match the first statistical
moments of the spectrogram. The second focuses on a more
practical situation: a detection task in the time-frequency
domain. We evaluate the deviation of PFA engendered by the
approximation of the spectrogram pdf with a χ2 law. These
two experiments lead to the following conclusions:

• No restrictions can be formulated as to the use of zero-
padding. Its impact on the spectrogram probability distri-
bution was found null.

• The spectrogram probability distribution differs from a χ2

law as the amount of correlation in the signal increases.
However, the difference is linked with the behavior of
the analysis window at its boundaries. For windows with
null boundaries (as the Hanning or Blackman windows),
the spectrogram pdf remains insensitive to correlation.

• Longer non-uniform analysis windows increase the re-
semblance between spectrogram and χ2 pdfs for corre-
lated signals.

• The χ2 law with 2 degrees of freedom provides the best
fit with the overall spectrogram pdf. However, adapting
the degree of freedom provides a better approximation of
the tail of the distribution.

• The differences observed between spectrogram and χ2

pdfs are significant only when the spectrogram is con-
structed with a rectangular window whose length is
smaller than the correlation time of the signal. For
windows with null boundaries, approximating the spec-
trogram pdf with a χ2 law generates insignificant modeli-
sation mismatches, regardless of the level of correlation.
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