
On the Design and Analysis of Irregular Algorithms

on the Cell Processor: A Case Study of List Ranking ∗

David A. Bader, Virat Agarwal, Kamesh Madduri

College of Computing
Georgia Institute of Technology

Atlanta, GA 30332 USA
{bader, virat, kamesh}@cc.gatech.edu

Abstract

The Sony-Toshiba-IBM Cell Broadband Engine is a

heterogeneous multicore architecture that consists of a

traditional microprocessor (PPE), with eight SIMD co-

processing units (SPEs) integrated on-chip. We present a

complexity model for designing algorithms on the Cell pro-

cessor, along with a systematic procedure for algorithm

analysis. To estimate the execution time of the algorithm,

we consider the computational complexity, memory access

patterns (DMA transfer sizes and latency), and the com-

plexity of branching instructions. This model, coupled with

the analysis procedure, simplifies algorithm design on the

Cell and enables quick identification of potential implemen-

tation bottlenecks. Using the model, we design an efficient

implementation of list ranking, a representative problem

from the class of combinatorial and graph-theoretic appli-

cations. Due to its highly irregular memory patterns, list

ranking is a particularly challenging problem to parallelize

on current cache-based and distributed memory architec-

tures. We describe a generic work-partitioning technique

on the Cell to hide memory access latency, and apply this to

efficiently implement list ranking. We run our algorithm on

a 3.2 GHz Cell processor using an IBM QS20 Cell Blade

and demonstrate a substantial speedup for list ranking on

the Cell in comparison to traditional cache-based micro-

processors. For a random linked list of 1 million nodes, we

achieve an an overall speedup of 8.34 over a PPE-only im-

plementation.

∗This work was supported in part by NSF Grants CNS-0614915,

CAREER CCF-0611589, ITR EF/BIO 03-31654, and DARPA Contract

NBCH30390004.

1-4244-0910-1/07/$20.00 c©2007 IEEE.

1. Introduction

The Cell Broadband Engine (or the Cell BE) [16] is a

novel architectural design by Sony, Toshiba, and IBM (STI),

primarily targeting high performance multimedia and gam-

ing applications. It is a heterogeneous multicore chip that

is significantly different from conventional multi-processor

or multicore architectures. It consists of a traditional mi-

croprocessor (called the PPE) that controls eight SIMD

co-processing units called synergistic processor elements

(SPEs), a high speed memory controller, and a high band-

width bus interface (termed the element interconnect bus, or

EIB), all integrated on a single chip.

Each SPE consists of a synergistic processor unit (SPU)

and a memory flow controller (MFC). The MFC includes

a DMA controller, a memory management unit (MMU), a

bus interface unit, and an atomic unit for synchronization

with other SPUs and the PPE. The EIB supports a peak

bandwidth of 204.8 GBytes/s for intrachip transfers among

the PPE, the SPEs, and the memory and I/O interface con-

trollers. The memory interface controller (MIC) provides

a peak bandwidth of 25.6 GBytes/s to main memory. The

I/O controller provides peak bandwidths of 25 GBytes/s in-

bound and 35 GBytes/s outbound. Kistler et al. [17] analyze

the communication network of the Cell processor and state

that applications that rely heavily on random scatter and or

gather accesses to main memory can take advantage of the

high communication bandwidth and low latency. We refer

the reader to [18, 10, 17, 13, 7] for additional details. The

Cell is used in Sony’s PlayStation 3 gaming console, Mer-

cury Computer System’s dual Cell-based blade servers, and

IBM’s QS20 Cell Blades.

There are several unique architectural features in Cell

that clearly distinguish it from current microprocessors.

The Cell chip is a computational workhorse; it offers a

theoretical peak single-precision floating point performance

of 204.8 GFlops/sec (assuming the current clock speed of

3.2 GHz). We can exploit parallelism at multiple lev-

els on the Cell, each chip has eight SPEs, with two-way

instruction-level parallelism on each SPE. Further, the SPE

supports both scalar as well as single-instruction, multiple

data (SIMD) computations [14]. Also, the on-chip coherent

bus and interconnection network elements have been spe-

cially designed to cater for high performance on bandwidth-

intensive applications (such as those in gaming and multi-

media). The custom, modular system-on-a-chip implemen-

tation results in a power-efficient design.

All these features make the Cell attractive for scientific

computing, as well as an alternative architecture for general

purpose computing. Williams et al. [22] recently analyzed

the performance of Cell for key scientific kernels such as

dense matrix multiply, sparse matrix vector multiply and 1D

and 2D fast Fourier transforms. They demonstrate that the

Cell performs impressively for applications with predictable

memory access patterns, and that on-chip communication

and SPU computation can be overlapped more effectively

on the Cell than on conventional cache-based approaches.

The heterogeneous processors, limited on-chip memory

and multiple avenues of parallelism on the Cell processor

make algorithm design and implementation a new chal-

lenge. Analyzing algorithms using traditional sequential

complexity models like the RAM model fail to account for

all of the Cell architectural intricacies. There is currently no

simple and accepted model of computation for the Cell, and

in general, for multicore architectures. Our primary con-

tribution in this paper is a complexity model for the design

and analysis of parallel algorithms on the Cell architecture.

Taking most unique architectural features of the Cell into

account, we come up with a simple model that estimates

the execution time. We express the algorithm complexity

on the Cell processor using the triplet 〈TC , TD, TB〉, where

TC denotes the computational complexity, TD the number

of DMA requests, and TB the number of branching instruc-

tions, all expressed in terms of the problem size. We explain

the rationale behind the choice of these three parameters in

Section 2. We then present a systematic methodology for

analyzing algorithms using this complexity model, and il-

lustrate with a simple example such as matrix multiplica-

tion.

It is general perception that the Cell architecture is not

suited for problems that involve fine-grained memory ac-

cesses, and where there is insufficient computation to hide

memory latency. The list ranking problem [8, 20, 15]

is representative of such problems, and is a fundamental

paradigm for the design of many parallel combinatorial

and graph-theoretic applications. Using list ranking, we

have designed fast parallel algorithms for shared memory

computers and demonstrated speedups compared with the

best sequential implementation for graph theoretic prob-

lems such as ear decomposition [4], tree contraction and

expression evaluation [5], spanning tree [1] and minimum

spanning forest [2]. Given an arbitrary linked list that is

stored in a contiguous area of memory, the list ranking prob-

lem determines the distance from each node to the head of

the list. Due to lack of locality in this problem, it is difficult

to obtain parallel speedup, and no efficient distributed mem-

ory implementation exists. We have an implementation of

this problem that obtains significant speedup using our new

techniques for latency tolerance and load balancing on Cell.

We present these technique in detail in Section 4.2.

We also present an experimental study of list ranking,

comparing our Cell code with implementations on current

microprocessors and high-end shared memory and multi-

threaded architectures. Our main results are summarized

here:

• Our latency-hiding technique, boosts our Cell perfor-

mance by a factor of about 4.1 for both random and

ordered lists.

• Through the tuning of one parameter in our algorithm,

our list ranking code is load-balanced across the SPEs

with high probability, even for random lists.

• The Cell achieves an average speedup of 8 over the

performance on current cache-based microprocessors

(for input instances that do not fit into the L2 cache).

• On a random list of 1 million nodes, we obtain a

speedup of 8.34 compared to a single-threaded PPE-

only implementation. For an ordered list (with stride-1

accesses only), the speedup over a PPE-only imple-

mentation is 1.56.

2. A complexity model for the Cell architecture

The Cell Broadband Engine (CBE) [13] consists of a tra-

ditional microprocessor (PPE) that controls eight Synergis-

tic processing units (SPEs), a high speed memory controller,

and a high bandwidth bus interface (EIB). There are several

architectural features that can be exploited for performance.

• The (SPEs) are designed as compute-intensive co-

processors, while the PowerPC unit (the PPE) orches-

trates the control flow. So it is necessary to partition

the computation among the SPEs, and an efficient SPE

implementation should also exploit the SIMD instruc-

tion set.

• The SPEs operate on a limited on-chip memory (256

KB local store) that stores both instructions and data

required by the program. Unlike the PPE, the SPE can-

not access memory directly, but has to transfer data

2

and instructions using asynchronous coherent DMA

commands. Algorithm design must account for DMA

transfers (i.e., the latency of DMA transfers, as well as

their frequency) which may be a significant cost.

• The SPE also differs from conventional micropro-

cessors in the way branches are handled. The SPE

does not include dynamic branch prediction, but in-

stead relies on compiler-generated branch hints to im-

prove instruction prefetching. Thus, there is a signifi-

cant penalty associated with branch misprediction, and

branching instructions should be minimized for de-

signing an efficient implementation.

We present a complexity model to simplify the design

of parallel algorithms on the Cell. Let n denote the prob-

lem size. We model the execution time using the triplet

〈TC , TD, TB〉, where TC denotes the computational com-

plexity, TD the number of DMA requests, and TB the num-

ber of branching instructions. We consider the computation

on the SPEs (TC,SPE) and PPE (TC,PPE) separately, and

TC denotes the sum of these terms. TC,SPE is the max-

imum of TC,SPE(i) for 1 ≤ i ≤ p, where p is number

of SPEs. In addition, we have TD, an upper bound on the

number of DMA requests made by a single SPE. This is

an important parameter, as the latency due to a large num-

ber of DMA requests might dominate over the actual com-

putation. In cases when the complexity of TC,SPE domi-

nates over TD, we can ignore the overhead due to DMA re-

quests. Similarly, branch mispredictions constitute a signif-

icant overhead. Since it may be difficult to compute the ac-

tual percentage of mispredictions, we just report the asymp-

totic number of branches in our algorithm. For algorithms

in which the misprediction probability is low, we can ignore

the effects of branching.

Our model is similar to the Helman-JáJá model for SMPs

[11] in that we try to estimate memory latency in addition

to computational complexity. Also, our model is more tai-

lored to heterogeneous multicore systems than general pur-

pose parallel computing models such as LogP [9], BSP [21]

and QSM [19]. The execution time is dominated by the

SPE that does the maximum amount of work. We note that

exploiting the SIMD features results in only a constant fac-

tor improvement in the performance, and does not affect

the asymptotic analysis. This model does not take into ac-

count synchronization mechanisms such as on-chip mail-

boxes, and SPU operation under the isolated mode. Also,

our model does not consider the effect of floating-point pre-

cision on the performance of numerical algorithms, which

can be quite significant [22].

3. A Procedure for Algorithm Analysis

We now discuss a systematic procedure for analyzing al-

gorithms using the above model:

1. We compute the computational complexity TC,SPE .

2. Next, we determine the complexity of DMA requests

TD in terms of the input parameters.

• If the DMA request complexity is a constant,

then typically computation would dominate over

memory accesses and we can ignore the latency

due to DMA transfers.

• Otherwise, we need to further analyze the algo-

rithm, taking into consideration the size of DMA

transfers, as well as the computational granular-

ity.

3. It is possible to issue non-blocking DMA requests on

the SPE, and so we can keep the SPE busy with com-

putation while waiting for a DMA request to be com-

pleted. However, if there is insufficient computation in

the algorithm between a DMA request and its comple-

tion, the SPE will be idle. We analyze this effect by

computing the computational complexity in the aver-

age case between a DMA request and its completion.

If this term is a function of the input parameters, this

implies that memory latency can be hidden by compu-

tation.

4. Finally, we compute the number of branching instruc-

tions TB in the algorithm. These should be minimized

as much as possible in order to design an efficient al-

gorithm.

We present a simple example to illustrate the use of our

model, as well as the above algorithm analysis procedure.

Matrix multiplication (C = A ∗ B, cij =∑n

k=1 aik ∗ bkj , for 1 ≤ i, j ≤ n) on the Cell is analyzed

as follows:

• We partition computation among the eight SPEs by as-

signing each SPE n
p

rows of A and entire B.

• Let us assume that each SPE can obtain b rows of A
and b columns of B in a single DMA transfer. Thus,

we would require O(n2

b2
) DMA transfers, and TD is

O(n2

pb2
).

Chen et al. describe their Cell implementation of this

algorithm in [7]. The algorithmic complexity is given by

TC = O(n3

p
), TD = O(n2

pb2
) and TB = O(n2). Using

the analysis procedure, we note that the DMA request com-

plexity is not a constant. Following step 3, we compute the

average case of the computational complexity between the

3

DMA request and its completion, assuming non-blocking

DMAs and double buffering. This is given by O(nb2) (as

the complexity of computing b2 elements in C is O(n)).
Thus, we can ignore the constant DMA latency for each

transfer, and the algorithm running time is dominated by

computation for sufficiently large n. However, note that we

have O(n2) branches due to the absence of a branch predic-

tor on the SPE, which might degrade performance if they

result in mispredicts. Using SIMD features, it is possible

to achieve a peak CPI of 0.5. Chen et al. in fact obtain

a CPI of 0.508 for their implementation of the above algo-

rithm, incorporating optimizations such as SIMD, double-

buffering and software pipelining.

Algorithm design and analysis is more complex for ir-

regular, memory-intensive applications, and problems ex-

hibiting poor locality. List ranking is representative of this

class of problems, and is a fundamental technique for the

design of several combinatorial and graph-theoretic appli-

cations on parallel processors. After a brief introduction to

list ranking in the next section, we describe our design of an

efficient algorithm for the Cell.

4. List Ranking using Cell

Given an arbitrary linked list that is stored in a contigu-

ous area of memory, the list ranking problem determines the

distance of each node to the head of the list. For a random

list, the memory access patterns are highly irregular, and

this makes list ranking a challenging problem to solve effi-

ciently on parallel architectures. Implementations that yield

parallel speedup on shared memory systems exist [11, 3],

yet none are known for distributed memory systems.

Figure 1. List ranking for ordered and random
list

4.1. Parallel Algorithm

List ranking is an instance of the more general prefix

problem [3]. Let X be an array of n elements stored in ar-

bitrary order. For each element i, let X(i).value denote its

value and X(i).next the index of its successor. Then for any

binary associative operator ⊕, compute X(i).prefix such

that X(head).prefix = X(head).value and X(i).prefix =
X(i).value⊕X(predecessor).prefix, where head is the first

element of the list, i is not equal to head, and predecessor

is the node preceding i in the list. If all values are 1 and

the associative operation is addition, then prefix reduces to

list ranking. We assume that we know the location of the

head h of the list, otherwise we can easily locate it. The

parallel algorithm for a canonical parallel computer with p
processors is as follows:

1. Partition the input list into s sublists by randomly

choosing one node from each memory block of n/(s−
1) nodes, where s is Ω(p log n). Create the array Sub-

lists of size s.

2. Traverse each sublist computing the prefix sum of each

node within the sublists. Each node records its sublist

index. The input value of a node in the Sublists array

is the sublist prefix sum of the last node in the previous

Sublists.

3. The prefix sums of the records in the Sublists array are

then calculated.

4. Each node adds its current prefix sum value (value of

a node within a sublist) and the prefix sum of its cor-

responding Sublists record to get its final prefix sums

value. This prefix sum value is the required label of

the leaves.

We map this to Cell and analyze it as follows. Assume

that we start with eight sublists , one per SPE. Using DMA

fetches, the SPEs keep obtaining the successor elements un-

til they reach a sublist end, or the end of the list. Analyzing

the complexity of this algorithm using our model, we have

TC = O(n
p
), TD = O(n

p
) and TB = O(1). From step 2

of the procedure, since the complexity of DMA fetches is

a function of n, we analyze the computational complexity

in the average case between a DMA request and its com-

pletion. This is clearly O(1), since we do not perform any

significant computation while waiting for the DMA request

to complete. This may lead to processor stalls, and since

the number of DMA requests is O(n), stall cycles might

dominate the optimal O(n) work required for list ranking.

Our asymptotic analysis offers only a limited insight into

the algorithm, and we have to inspect the algorithm at the

instruction-level and design alternative approaches to hide

DMA latency.

4

4.2. A Novel Latency-hiding Technique for
Irregular applications

Due to the limited local store (256 KB) within a SPE,

memory-intensive applications that have irregular memory

access patterns require frequent DMA transfers to fetch the

data. The relatively high latency of a DMA transfer cre-

ates a bottleneck in achieving performance for these appli-

cations. Several combinatorial problems, such as the ones

that arise in graph theory, belong to this class of problems.

Formulating a general strategy that helps overcome the la-

tency overhead will provide direction to the design and op-

timization of irregular applications on Cell.

Since the Cell supports non-blocking memory transfers,

memory transfer latency will not be a problem if we have

sufficient computation between a request and completion.

However, if we do not have enough computation in this

period (for instance, the Helman-JáJá list ranking algo-

rithm), the SPE will stall for the request to be completed.

A generic solution to this problem would be to restructure

the algorithm such that the SPE keeps doing useful compu-

tation until the memory request is completed. This essen-

tially requires identification of an additional level of paral-

lelism/concurrency within each SPE. Note that if the com-

putation can be decomposed into several independent tasks,

we can overcome latency by exploiting concurrency in the

problem.

Our technique is analogous to the concept of tolerating

latency in modern architectures using thread-level paral-

lelism. The SPE does not have support for hardware mul-

tithreading, and so we manage the computation through

software-managed threads. The SPE computation is dis-

tributed to a set of software-managed threads (SM-Threads)

and at any instant, one thread is active. We keep switch-

ing software contexts so that we do computation between a

DMA request and its completetion. We use a round-robin

schedule for the threads.

Figure 2. Illustration of the technique

Through instruction-level profiling, it is possible to de-

termine the minimum number of SM-Threads that are

needed to hide the memory latency. Note that utilizing more

SM-Threads than required also incurs an overhead. Each

SM-Thread introduces additional computation and also re-

quires memory on the limited local store. Thus, we have

a trade-off between the number of SM-Threads and latency

due to DMA stalls. In the next section, we will use this

technique to efficiently implement list ranking on Cell.

4.3. Implementation

Our Cell implementation (described in high-level in the

following four steps) is similar to the Helman–JáJá algo-

rithm. Let us assume p SPEs in the analysis.

1. We uniformly pick s head nodes in the list and assign

them to the SPEs. So, each SPE will traverse s/p sub-

lists.

2. Using these s/p sublists as independent SM-Threads,

we adopt the latency-hiding technique. We divide the

s/p sublists into b DMA list transfers. Using one DMA

list transfer, we fetch the next elements for a set of

s/pb lists. After issuing a DMA list transfer request,

we move onto the next set of sublists and so forth, thus

keeping the SPU busy until this DMA transfer is com-

plete. Figure 3 illustrates step 3 of this algorithm.

Figure 3. Step 2 of List ranking on Cell. (a)
Linked list for which list ranking is to be
done. Colored nodes here are allocated to
SPE(i), (b) View from SPE(i), it has s/p sub-
list head nodes to traverse concurrently, (c)
This array is used to store sublists in con-
tiguous area of memory. When this gets full,
we transfer it back to the main memory.

5

We maintain temporary structures in the Local Store

(LS) for these sublists, so that the LS can create a con-

tiguous sublist out of these randomly scattered sublists,

by creating a chain of next elements for the sublists.

After one complete round, we manually revive this

SM-Thread and wait for the DMA transfer to com-

plete. Note that there will be no stall if we have suffi-

cient number of SM-Threads (we determine this num-

ber in Sec. 4.4) to hide the latency. We store the el-

ements that are fetched into the temporary structures,

initiate a new DMA list transfer request for fetching

the successors of these newly fetched elements, and

move on to the next set of sublists.

When these temporary structures get full, we initiate

a new DMA list transfer request to transfer back these

elements to the main memory.

At the end of Step 2, we have the prefix sum of each

node within the sublist for each sublist within the SPU.

Also, we have the randomly scattered sublists stored

into a contiguous area of memory.

3. Compute the rank of each sublist head node using the

PPU.

The running time for step 2 of the algorithm dominates

over the rest of algorithm by an order of magnitude. In the

asymptotic notation, this step is O(n). It consists of an outer

loop of O(s) and an inner loop of O(length of the sublist).
Since the lengths of the sublists are different, the amount

of work performed by each SM-Thread differs. For a large

number of threads, we get sufficient computation for the

SPE to hide DMA latency even when the load is imbal-

anced. Helman and JáJá [11, 12] established that with high

probability, no processor would traverse more α(s)n
p

ele-

ments for α(s) ≥ 2.62. Thus, the load is balanced among

various SPEs under this constraint. In our implementation,

we incorporate recommended software strategies [6] and

techniques to exploit the architectural features of Cell. For

instance, we use manual loop unrolling, double buffering,

branch hints, and design our implementation for a limited

local store.

4.4. Performance Results

We report our performance results from actual runs on

a IBM BladeCenter QS20, with two 3.2 GHz Cell BE pro-

cessors, 512 KB Level 2 cache per processor, and 1 GB

memory (512 MB per processor). We use one processor

for measuring performance and compile the code using the

gcc compiler provided with Cell SDK 1.1, with level 3 op-

timization.

Similar to [11, 3] we use two classes of lists to test our

code, Ordered and Random. An ordered list representation

places each node in the list according to its rank. Thus node

i is placed at position i, and its successor is at position i +
1. A random list representation places successive elements

randomly in the array.

Our significant contribution to this paper is a generic

work partitioning technique to hide memory latency. We

demonstrate the results of this technique for list ranking:

we use DMA-level parallelism to vary the number of out-

standing DMA requests on each SPE, as well as partition

the problem and allocate more sublists to each SPE. Fig. 4

shows the performance boost we obtain as we tune the

DMA parameter. From instruction level profiling of our

code we determine that the exact number of computational

clock cycles between a DMA transfer request and its com-

pletion are 75. Comparing this with the DMA transfer la-

tency (90ns, i.e. about 270 clock cycles) suggests that four

outstanding DMA requests should be sufficient for hiding

the DMA latency. Our results confirm this analysis and we

obtain an improvement factor of 4.1 using 8 DMA buffers.

In Fig. 5 we present the results for load balancing among

the 8 SPEs, as the number of sublists are varied. For ordered

lists, we allocate equal chunks to each SPE. Thus, load is

balanced among the SPEs in this case. For random lists,

since the length of each sublist varies, the work performed

by each SPE varies. We achieve a better load balancing

by increasing the number of sublists. Fig. 5 illustrates this:

load balancing is better for 64 sublists than the case of 8

sublists.

We present a performance comparison of our implemen-

tation of list ranking on Cell with other single processor

and parallel architectures. We consider both random and

ordered lists with 8 million nodes.

Fig. 6 shows the running time of our Cell implementation

compared with efficient implementations of list ranking on

the following architectures:

Intel x86: 3.2 GHz Intel Xeon processor, 1 MB L2 cache,

Intel C compiler v9.1.

Intel i686: 2.8 GHz Intel Xeon processor, 2 MB L2 cache,

Intel C compiler v9.1.

Intel ia64: 900 MHz Intel Itanium 2 processor, 256 KB L2

cache, Intel C compiler v9.1.

SunUS III: 900 MHz UltraSparc-III processor, Sun C com-

piler v5.8.

MTA-[1,2,8]: 220 MHz Cray MTA-2 processor, no data

cache. We report results for 1,2,8 processors.

SunUS-[1,2,8]: 400 MHz UltraSparc II Symmetric Multi-

processor system (Sun E4500), 4 MB L2 cache, Sun C com-

piler. We report results for 1,2 and 8 processors.

6

Figure 4. Achieving Latency Tolerance for Step 2 of the List ranking algorithm through DMA param-
eter tuning, for lists of size 220

Figure 5. Load Balancing among SPEs for Step 2 of the List ranking algorithm for lists of size 220.
The upper and lower dashed horizontal lines represent the running time of this step of the algorithm
for 8 and 64 sublists respectively.

7

Figure 6. Performance of List ranking on Cell as compared to other single processor and parallel
architectures for lists of size 8 million nodes. The speedup of the Cell implementation over the
architectures is given above the respectives bars.

Figure 7. Performance Comparison of sequential implementation on PPE to our parallel implemen-
tation of List ranking on Cell for Ordered (Left) and Random (Right) lists

8

Finally, we demonstrate a substantial speedup of our Cell

implementation over a sequential implementation using the

PPE only. We compare a simple pointer-chasing approach

to our algorithm using different problem instances. Fig. 7

shows that for random lists we get an overall speedup of

8.34 (1 million vertices), and even for ordered lists we get a

speedup of 1.5.

5. Conclusions and Future Work

In summary, we present a complexity model to simplify

the design of algorithms on the Cell Broadband Engine, and

a systematic procedure to evaluate their performance. To es-

timate the execution time of an algorithm, we consider the

computational complexity, memory access patterns (DMA

transfer sizes and latency), and the complexity of branch-

ing instructions. This model helps identify potential bot-

tlenecks in the algorithm. We also present a generic work

partitioning technique to hide memory latency on Cell. This

technique can be applied to many irregular algorithms hav-

ing exhibiting unpredictable memory access patterns. Using

this technique, we develop a fast parallel implementation of

the list ranking algorithm for the Cell processor and confirm

the efficacy of our technique by demonstrating an improve-

ment factor of 4.1 as we tune the DMA parameter. Most

importantly we demonstrate an overall speedup of 8.34 of

our implementation over an efficient PPE-only sequential

implementation. We show substantial speedups by compar-

ing the performance of our list ranking implementation with

several single processor and parallel architectures.

We thank Sidney Manning (IBM Corporation) and Vipin

Sachdeva (IBM Research) for providing valuable inputs

during the course of our research.

References

[1] D. A. Bader and G. Cong. A fast, parallel spanning

tree algorithm for symmetric multiprocessors (SMPs).

In Proc. Int’l Parallel and Distributed Processing

Symp. (IPDPS 2004), Santa Fe, NM, April 2004.

[2] D. A. Bader and G. Cong. Fast shared-memory algo-

rithms for computing the minimum spanning forest of

sparse graphs. In Proc. Int’l Parallel and Distributed

Processing Symp. (IPDPS 2004), Santa Fe, NM, April

2004.

[3] D.A. Bader, G. Cong, and J. Feo. A comparison

of the performance of list ranking and connected

components algorithms on SMP and MTA shared-

memory systems. Technical report, Electrical and

Computer Engineering Department, The University of

New Mexico, Albuquerque, NM, October 2004. Sub-

mitted for publication.

[4] D.A. Bader, A.K. Illendula, B. M.E. Moret, and

N. Weisse-Bernstein. Using PRAM algorithms on

a uniform-memory-access shared-memory architec-

ture. In G.S. Brodal, D. Frigioni, and A. Marchetti-

Spaccamela, editors, Proc. 5th Int’l Workshop on Al-

gorithm Engineering (WAE 2001), volume 2141 of

Lecture Notes in Computer Science, pages 129–144,

Århus, Denmark, 2001. Springer-Verlag.

[5] D.A. Bader, S. Sreshta, and N. Weisse-Bernstein.

Evaluating arithmetic expressions using tree contrac-

tion: A fast and scalable parallel implementation

for symmetric multiprocessors (SMPs). In S. Sahni,

V.K. Prasanna, and U. Shukla, editors, Proc. 9th

Int’l Conf. on High Performance Computing (HiPC

2002), volume 2552 of Lecture Notes in Computer

Science, pages 63–75, Bangalore, India, December

2002. Springer-Verlag.

[6] D.A. Brokenshire. Maximizing the power of the Cell

Broadband Engine Processor: 25 tips to optimal ap-

plication performance. White paper, June 2006.

[7] T. Chen, R. Raghavan, J. Dale, and E. Iwata. Cell

Broadband Engine Architecture and its first imple-

mentation. IBM White paper, November 2005.

[8] R. Cole and U. Vishkin. Faster optimal prefix sums

and list ranking. Information and Computation,

81(3):344–352, 1989.

[9] D. E. Culler, R. M. Karp, D. A. Patterson, A. Sahay,

K. E. Schauser, E. Santos, R. Subramonian, and T. von

Eicken. LogP: Towards a realistic model of parallel

computation. In 4th Symp. Principles and Practice of

Parallel Programming, pages 1–12. ACM SIGPLAN,

May 1993.

[10] B. Flachs and et al. A streaming processor unit for a

Cell processor. In International Solid State Circuits

Conference, volume 1, pages 134–135, San Fransisco,

CA, USA, February 2005.

[11] D. R. Helman and J. JáJá. Designing practi-

cal efficient algorithms for symmetric multiproces-

sors. In Algorithm Engineering and Experimentation

(ALENEX’99), volume 1619 of Lecture Notes in Com-

puter Science, pages 37–56, Baltimore, MD, January

1999. Springer-Verlag.

[12] D. R. Helman and J. JáJá. Prefix computations on

symmetric multiprocessors. Journal of Parallel and

Distributed Computing, 61(2):265–278, 2001.

[13] H.P. Hofstee. Cell Broadband Engine Architecture

from 20,000 feet. White paper, August 2005.

9

[14] C. Jacobi, H.-J. Oh, K.D. Tran, S.R. Cottier, B.W.

Michael, H. Nishikawa, Y. Totsuka, T. Namatame, and

N. Yano. The vector floating-point unit in a synergistic

processor element of a Cell processor. In Proc. 17th

IEEE Symposium on Computer Arithmetic, pages 59–

67, Washington, DC, USA, 2005. IEEE (ARITH ’05)

Computer Society.

[15] J. JáJá. An Introduction to Parallel Algorithms.

Addison-Wesley Publishing Company, New York,

1992.

[16] J.A. Kahle, M.N. Day, H.P. Hofstee, C.R. Johns, T.R.

Maeurer, and D. Shippy. Introduction to the Cell mul-

tiprocessor. IBM J. Res. Dev., 49(4/5):589–604, 2005.

[17] M. Kistler, M. Perrone, and F. Petrini. Cell multipro-

cessor communication network: Built for speed. IEEE

Micro, 26(3):10–23, 2006.

[18] D. Pham and et al. The design and implementation

of a first-generation Cell processor. In International

Solid State Circuits Conference, volume 1, pages 184–

185, San Fransisco, CA, USA, February 2005.

[19] V. Ramachandran. A general-purpose shared-memory

model for parallel computation. In M. T. Heath,

A. Ranade, and R. S. Schreiber, editors, Algorithms

for Parallel Processing, volume 105, pages 1–18.

Springer-Verlag, New York, 1999.

[20] M. Reid-Miller. List ranking and list scan on the Cray

C-90. J. Comput. Syst. Sci., 53(3):344–356, December

1996.

[21] L. G. Valiant. A bridging model for parallel compu-

tation. Communications of the ACM, 33(8):103–111,

1990.

[22] S. Williams, J. Shalf, L. Oliker, S. Kamil, P. Hus-

bands, and K. Yelick. The potential of the Cell proces-

sor for scientific computing. In Proc. 3rd Conference

on Computing Frontiers (CF ’06), pages 9–20, New

York, NY, USA, 2006. ACM Press.

10

