IEEE SIGNAL PROCESSING LETTERS, VOL. 10, NO. 7, JULY 2003 189

On the Design and Efficient Implementation
of the Farrow Structure
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Abstract—This letter proposes an efficient implementation of limited number of hard-wired shifters and adders only (i.e.,
the Farrow structure using sum-of-powers-of-two (SOPOT) coeffi-  multiplierless). To further reduce the number of adders required
cients and multiplier-block (MB). In particular, a novel algorithm i, this structure, the subfilters in the Farrow structure are

for designing the Farrow coefficients in SOPOT form is detailed. . | tedint df hich all to impl t
Using the SOPOT coefficient representation, coefficient multipli- impiemented in ransposed orm, WhiCh allows us 10 Implemen

cation can be implemented with limited number of shifts and addi- ll the SOPOT multiplications with a single MB [5], [6]. MB is
tions. Using MB, the redundancy between multipliers can be fully an efficient technique for reducing the number of additions in
exploited through the reuse of the intermediate results generated. multiplying a variable input with a fixed set of coefficients in
Design examples show that the proposed method can greatly re-yinary or CSD representations. The basic principle of the MB
duce the complexity of the Farrow structure while providing com- . ¢ the int diat it ted i lizi
parable phase and amplitude responses. is to reuse the intermediate results generated in realizing some
ndex Terms_r actional-delay didital fi of the coefficients in order to reduce the adders or additions
ndex Terms—arrow structure, fractional-delay digital filters,  reqyired for the other coefficients. For example, if there are
multiplier-block (MB), sum-of-powers-of-two (SOPOT). two SOPOT coefficients “7” and “21” to be multiplied by
the input signalz, the direct implementation will require
[. INTRODUCTION three adders, sinc&rt” equals {8 — 1)z,” and “21z” equals
RACTIONAL-DELAY digital filters (FD-DF) are very (18,+2|+1)"’ i dStOPCi:]' form. HOI\‘/'l"Be"et;’] ifthe ”t‘)“'“f’z"ff‘“c.’lrl‘i
useful in providing fractional delay of digital signals.are Implemented together in an » (N€ number wiltbe

It finds important applications in software radio [1], digitarewmte_n as T x (2+1)” Therefore, the“result” oflz can
realized by first computing the resuly “= 72" and then

modems [2], arbitrary sampling rate conversion, time-del ltiolving it with “3 — (24 1) * B doi v two add
estimation [3], etc. In general, the fractional-delay digital filter uitiplying rtwi = (2+1)."By so oing, only two adders
required in the MB as a result of reusing the intermediate

can be implemented either as finite-duration impulse respo MB has b d to imol ¢ int lated
(FIR) or infinite-duration impulse response (lIR) digital filters 2'U€ Y- as been proposed fo implement Interpolate

[7]- FIR-based FD-DFs are usually implemented by the Farrof\'luer and _filt_er banks [5]. Unfortunately, detailed design Of.
structure [4] because it can provide variable signal dela ch multiplierless Farrow structure was not addressed. This

making high-speed online tuning feasible. The implementati Jotivates the proposed design and implementation methods of

of 1IR-based FD-DFs is, however, rather complicated due [B(?”I]:arrow strugturle. ith ists of two diff { steps:
the stability constraints and transient problem. Also, to avoj € proposed algorithm consists ot two ditiérent steps. an

the implementation of polynomial fractions, approximat D-DF in Farrow structure with real-valued coefficients is first

realization such as the gathering structure [12] has to be us ﬁsigned using any conventional methods [4], [7], [10]; a flex-

Because of these reasons, we only consider FIR-based FD-DFE and efficient random sea_rc_h algorithm is then employed
In this letter, an efficient implementation of the Farrov&o search for the SOPOT coefficients around the real-valued co-

structure using sum-of-powers-of-two (SOPOT) coefficien fg(;gl_;stwhne mm:jmmtr)]_g stotme cr!terlafsuch as the nur??-be:of
and multiplier-block (MB) is proposed. Furthermore, a nov erms used subject to a given Irequency speciication.

algorithm for determining the Farrow coefficients with SOPO esign results shoyv that significant saving in hardware com-
representation is also presented. More precisely, the coemgx'w can be obtained by the proposed method.
cients of the subfilters in the Farrow structure are represented

as SOPOT coefficient or canonical signed digits (CSDs). The  |l. EFFICIENT FARROW STRUCTURE WITH SOPOT
SOPOT coefficient is attractive for very large scale integra- COEFFICIENTS ANDMB

tion or hardware implementation because multiplication of

SOPOT coefficients can be implemented efficiently using The output of the FD-Dy[(m + D + )T is given by
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Fig. 1. Original Farrow structure.

delay parameter between zero and a¥iés the length of, ().  in implementation complexity. Very often, there is also signifi-
To avoid the implementation of a large number of filters witleant redundancy in these SOPOT coefficients, which appears as
different delays, Farrow [4] proposed to approximate each imemmon subexpressions among different SOPOT coefficients.
pulse responsk,, (i) with the following Pth-order polynomial Due to thez operator, it is somewhat difficult to remove these

in delay valuey such that the delay control is independent cfubexpressions. Fortunately, thanks to the transposed form of

the filter coefficients the subfilters, the Farrow structure can be rewritten as in Fig. 2.
P In this new structure, the input is multiplied to a number of con-
. N stant coefficients. Hence, the common subexpressions within
h(i) =" ba(i)u". 2) o

the SOPOT coefficients can be eliminated [8], [9] using a single
MB, which further reduces the complexity of the Farrow struc-
Substituting (2) into (1) gives ture. Next, we shall consider the problem of determining the
Farrow coefficients in SOPOT form.

n=0

P [N-1

ylm+D+ T = 3| 3 al(m — )17 bnu)] C

n=0 [ i=0

. SOPOT GoEFFICIENTSDESIGN AND MB GENERATION

Let H (e, 1) = e/* and H(e?*, 1) be the frequency re-
Eebonses of the ideal fractional delay filter and that of the Farrow
. - . tructure with SOPOT coefficients. Our objective is to deter-

n=0,..., P, and s multiplied by the appropriate powers 0fninethe SOPOT coefficients, (i) such that the distortion from

H EI(_)hprOd#Cr]e tEe output, . ful " the ideal response is minimal. Commonly used distortion mea-
ough the Farrow structure Is very useful in providing a cony o «,ch as the least squares and the minimax criterion can be

t|n|uousfvalt_1e q;‘|3|gngl dellay for d'g'tsl S'gf”a'slt?yl,"ha_”g'”gf tn?Sed. Without loss of generality, the minimax criterion is em-
value ofy, it still requires large number of multiplications Or ployed and the problem can be stated as follows.

the subfilterimplementation, especially wherandN arelarge "~ S o0 the maximum number of ternisin each coefficient,

to provide very precise control of the frequency characteristiﬁ?e dynamic rangé of the coefficients and the bandwidth of
of the FD-DF. One method to avoid the expensive multipliers fﬁterest(o. w,), determine the SOPOT coefficier&,s(z') such
to convert the Farrow coefﬁcie_nbg(i), which is fixed, into the that the m/axli)mum phase response efigis minimized subject
following SOPOT representation: to a constraint that the peak amplitude e#p ¢, where

Fig. 1 shows the Farrow structure for implementing (3), whe
the input signal is passed through a number of subfilig(s),

L
b (i) = Z b, k(i) - 29 (4) wp — arg {H (ei*, u)}
=1 op = max
0<w<wp, |pn|<0.5 w
with by, (7)) € {1, 1} anday € {-I, ..., -1,0, 1, ..., I}, 5 L (o .
wherel is a positive integer, and its value determines the range “¢ — o<w<$%)|il|<o.5 [ - ’ (e, N)H] : ®)

of the coefficients. is the number of terms used in the coef-

ficient approximation and is usually limited to a small number. Letb; be the vector containing the real-valued coefficients of
The coefficient multiplications can therefore be implemented #se Farrow structuré,, (i) designed by using any conventional
limited shifts and additions, resulting in a significant reductioRD-DF design method and interpolation. The principle of the
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Fig. 2. Proposed implementation of the Farrow structure.
proposed random search algorithm is to generate random can- TABLE |
didate SOPOT coefficients in the neighborhoodhpfso as to OPTIMIZED SOPOT @EFFICIENTS INEXAMPLE 1
searc_:h_ for the optimal _dlscrete solution. More precisely, anew by(n) b, (n) b, (n) by (%)
coefficient vectobxgyw is generated by adding a random vector 0T 5 57 0 5T
to the original coefficient vectds; as follows: 1 1 2%52%2% [ 2250542 2% 2357
2 [-242727 [ 2742 427 | 272%42F [ 272727
bxew = |br + a - br]soror (6) 3 1223025 (21502 [ 2225 [ 22
0,73 A3 1,535,738 0,52 A3 1,73 A7
whereq is a scale factor that controls the size of neighborhood g '221;23 +'225 '221:223:227 2231225228 _22; 25: 3.9
to be searchedir is a vector with its elements being random 6 [-292%5:0% [ 224254278 2% 2357
numbers in the range-{1, 1]; and|:|sopor is the rounding 7 79658 2957 0 ERIR

operation that convert its argument to the nearest SOPOT coeffi-
cients with maximum number of terms in each coefficient beingn

L and dynamic range The performance measurgsands, of d performance will be generated during the search. Therefore,

the new coefficients are then calculated. The set that yields {hgglps one to ach|evg an approprllate tradeoff for a given appli-
minimum phase erraf, with §, smaller than a given peak am_patlon. It is also possible to combine the two .stageg toget.her to
plitude errore is the optimum solution under the constraints of\prove the perform.ance,.but the computational time will be
L andl. As this is a random search algorithm, the longer t e:?\tly mcrease_:d. I_:lnally, it should be noted _that the propose_d
searching time, the higher the chance of finding the optimal s =S1an and rgah;anon methods are also applicable to the multi-
lution. pllerless rgahzatlon o_f the gathering structure recently proposed
After the SOPOT representation is obtained, the minimulfl [12] for implementing IIR FD-DFs.
number of adders needed in the MB is determined using the
algorithm proposed in [6]. Due to space limitation, the detail
is not included here. Interested readers can find more detail irExample 1:Let us consider the coefficients provided by
[6]. Farrow in [4]. The bandwidth under consideration for this filter
This random search algorithm is similar to the mutation a$ from 0 t00.6x. ¢ is set to 0.006. The interpolation order is
genetic algorithm and the random walk in stimulated annealitigree, and the length of each FIR filters used in the Farrow
[13]. The main difference here is that we have limited its searskructure is eight. The value of™in (4) is chosen to be ten.
space to a small neighborhood of the real-valued solution. THike optimized SOPOT coefficients of the Farrow structure are
greatly shortens the search time to a few minutes. In fact, fgiven in Table I. For the Farrow structure with real-valued coef-
the problem considered here, the overall design time only takesents, the peak ripple error and maximum phase delay error
less than 5 min to complete on a typical Pentium-400 PC usidgviated from the ideal frequency response are 0.006 271 and
Matlab 5.3., including both the design of SOPOT coefficient3.0032, respectively; whereas for the SOPOT Farrow structure,
and the MB design. Another advantage of this algorithm is th&t and ¢, are found to be 0.005371 and 0.0046, respectively.
it can also be used to minimize directly the hardware cost suthis shows that a comparable performance can be achieved
as adder cells of the filters, taking into account round-off angsing SOPOT coefficients. After common-subexpressions
overflow noise [11]. Moreover, a set of possible solutions reglimination, the MB requires only 13 adders, which compares
resenting different tradeoffs between computational complexitgvorably with 32 real multiplications in the original Farrow

IV. EXAMPLES
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TABLE 1
SUMMARY OF DESIGN EXAMPLES
Ex 1. Ex 2.
Original peak ripple error 0.006271 | 0.023256
Original max. phase delay error 0.0032 0.0054
Peak ripple error using SOPOT | 0.005371 | 0.026376
coefficients
Max. phase delay error using| 0.0046 0.0059
SOPOT coefficients
Bandwidth of interest (0,0.6m) | (0,0.75m)
Original number of multipliers 32 48
Number of adders using SOPOT 48 78
coefficients
Number of adders using SOPOT 13 18
coefficients and MB
% of adders reduction using MB 72.92% 76.92%
Design Time used on Pentium-400 4 6
(Minutes)

V. CONCLUSION

A new method for the design and efficient implementation
of Farrow-based FD-DF using SOPOT coefficients and MB is
presented. Considerable saving in hardware complexity can be
achieved by the proposed method with a reasonable fast design
time and a frequency response comparable to their real-valued
counterpart. The usefulness of the method is demonstrated with
several design examples.
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