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Abstract—This letter proposes an efficient implementation of
the Farrow structure using sum-of-powers-of-two (SOPOT) coeffi-
cients and multiplier-block (MB). In particular, a novel algorithm
for designing the Farrow coefficients in SOPOT form is detailed.
Using the SOPOT coefficient representation, coefficient multipli-
cation can be implemented with limited number of shifts and addi-
tions. Using MB, the redundancy between multipliers can be fully
exploited through the reuse of the intermediate results generated.
Design examples show that the proposed method can greatly re-
duce the complexity of the Farrow structure while providing com-
parable phase and amplitude responses.

Index Terms—Farrow structure, fractional-delay digital filters,
multiplier-block (MB), sum-of-powers-of-two (SOPOT).

I. INTRODUCTION

FRACTIONAL-DELAY digital filters (FD-DF) are very
useful in providing fractional delay of digital signals.

It finds important applications in software radio [1], digital
modems [2], arbitrary sampling rate conversion, time-delay
estimation [3], etc. In general, the fractional-delay digital filters
can be implemented either as finite-duration impulse response
(FIR) or infinite-duration impulse response (IIR) digital filters
[7]. FIR-based FD-DFs are usually implemented by the Farrow
structure [4] because it can provide variable signal delay,
making high-speed online tuning feasible. The implementation
of IIR-based FD-DFs is, however, rather complicated due to
the stability constraints and transient problem. Also, to avoid
the implementation of polynomial fractions, approximate
realization such as the gathering structure [12] has to be used.
Because of these reasons, we only consider FIR-based FD-DFs.

In this letter, an efficient implementation of the Farrow
structure using sum-of-powers-of-two (SOPOT) coefficients
and multiplier-block (MB) is proposed. Furthermore, a novel
algorithm for determining the Farrow coefficients with SOPOT
representation is also presented. More precisely, the coeffi-
cients of the subfilters in the Farrow structure are represented
as SOPOT coefficient or canonical signed digits (CSDs). The
SOPOT coefficient is attractive for very large scale integra-
tion or hardware implementation because multiplication of
SOPOT coefficients can be implemented efficiently using
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limited number of hard-wired shifters and adders only (i.e.,
multiplierless). To further reduce the number of adders required
in this structure, the subfilters in the Farrow structure are
implemented in transposed form, which allows us to implement
all the SOPOT multiplications with a single MB [5], [6]. MB is
an efficient technique for reducing the number of additions in
multiplying a variable input with a fixed set of coefficients in
binary or CSD representations. The basic principle of the MB
is to reuse the intermediate results generated in realizing some
of the coefficients in order to reduce the adders or additions
required for the other coefficients. For example, if there are
two SOPOT coefficients “7” and “21” to be multiplied by
the input signal , the direct implementation will require
three adders, since “ ” equals “ ,” and “ ” equals
“ ” in SOPOT form. However, if the multiplications
are implemented together in an MB , the number “21” will be
rewritten as “ .” Therefore, the result of can
be realized by first computing the result “ ” and then
multiplying it with “ .” By so doing, only two adders
are required in the MB as a result of reusing the intermediate
value . MB has been proposed to implement interpolated
filter and filter banks [5]. Unfortunately, detailed design of
such multiplierless Farrow structure was not addressed. This
motivates the proposed design and implementation methods of
the Farrow structure.

The proposed algorithm consists of two different steps: an
FD-DF in Farrow structure with real-valued coefficients is first
designed using any conventional methods [4], [7], [10]; a flex-
ible and efficient “random search” algorithm is then employed
to search for the SOPOT coefficients around the real-valued co-
efficients while minimizing some criteria such as the number of
SOPOT terms used subject to a given frequency specification.
Design results show that significant saving in hardware com-
plexity can be obtained by the proposed method.

II. EFFICIENT FARROW STRUCTURE WITH SOPOT
COEFFICIENTS ANDMB

The output of the FD-DF is given by

(1)

where is the input signal sampled at a period;
is the impulse response of the FD-DF with a system delay of

, where is an integer constant, andis the fractional
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Fig. 1. Original Farrow structure.

delay parameter between zero and one.is the length of .
To avoid the implementation of a large number of filters with
different delays, Farrow [4] proposed to approximate each im-
pulse response with the following th-order polynomial
in delay value such that the delay control is independent of
the filter coefficients

(2)

Substituting (2) into (1) gives

(3)

Fig. 1 shows the Farrow structure for implementing (3), where
the input signal is passed through a number of subfilters ,

, and is multiplied by the appropriate powers of
to produce the output.
Though the Farrow structure is very useful in providing a con-

tinuous value of signal delay for digital signals by changing the
value of , it still requires large number of multiplications for
the subfilter implementation, especially whenand are large
to provide very precise control of the frequency characteristics
of the FD-DF. One method to avoid the expensive multipliers is
to convert the Farrow coefficients , which is fixed, into the
following SOPOT representation:

(4)

with and ,
where is a positive integer, and its value determines the range
of the coefficients. is the number of terms used in the coef-
ficient approximation and is usually limited to a small number.
The coefficient multiplications can therefore be implemented as
limited shifts and additions, resulting in a significant reduction

in implementation complexity. Very often, there is also signifi-
cant redundancy in these SOPOT coefficients, which appears as
common subexpressions among different SOPOT coefficients.
Due to the operator, it is somewhat difficult to remove these
subexpressions. Fortunately, thanks to the transposed form of
the subfilters, the Farrow structure can be rewritten as in Fig. 2.
In this new structure, the input is multiplied to a number of con-
stant coefficients. Hence, the common subexpressions within
the SOPOT coefficients can be eliminated [8], [9] using a single
MB, which further reduces the complexity of the Farrow struc-
ture. Next, we shall consider the problem of determining the
Farrow coefficients in SOPOT form.

III. SOPOT COEFFICIENTSDESIGN AND MB GENERATION

Let and be the frequency re-
sponses of the ideal fractional delay filter and that of the Farrow
structure with SOPOT coefficients. Our objective is to deter-
mine the SOPOT coefficients such that the distortion from
the ideal response is minimal. Commonly used distortion mea-
sures such as the least squares and the minimax criterion can be
used. Without loss of generality, the minimax criterion is em-
ployed and the problem can be stated as follows.

Given the maximum number of termsin each coefficient,
the dynamic range of the coefficients and the bandwidth of
interest , determine the SOPOT coefficients such
that the maximum phase response erroris minimized subject
to a constraint that the peak amplitude error , where

(5)

Let be the vector containing the real-valued coefficients of
the Farrow structure designed by using any conventional
FD-DF design method and interpolation. The principle of the
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Fig. 2. Proposed implementation of the Farrow structure.

proposed random search algorithm is to generate random can-
didate SOPOT coefficients in the neighborhood ofso as to
search for the optimal discrete solution. More precisely, a new
coefficient vector is generated by adding a random vector
to the original coefficient vector as follows:

(6)

where is a scale factor that controls the size of neighborhood
to be searched; is a vector with its elements being random
numbers in the range [1, 1]; and is the rounding
operation that convert its argument to the nearest SOPOT coeffi-
cients with maximum number of terms in each coefficient being

and dynamic range. The performance measuresand of
the new coefficients are then calculated. The set that yields the
minimum phase error with smaller than a given peak am-
plitude error is the optimum solution under the constraints of

and . As this is a random search algorithm, the longer the
searching time, the higher the chance of finding the optimal so-
lution.

After the SOPOT representation is obtained, the minimum
number of adders needed in the MB is determined using the
algorithm proposed in [6]. Due to space limitation, the detail
is not included here. Interested readers can find more detail in
[6].

This random search algorithm is similar to the mutation of
genetic algorithm and the random walk in stimulated annealing
[13]. The main difference here is that we have limited its search
space to a small neighborhood of the real-valued solution. This
greatly shortens the search time to a few minutes. In fact, for
the problem considered here, the overall design time only takes
less than 5 min to complete on a typical Pentium-400 PC using
Matlab 5.3., including both the design of SOPOT coefficients
and the MB design. Another advantage of this algorithm is that
it can also be used to minimize directly the hardware cost such
as adder cells of the filters, taking into account round-off and
overflow noise [11]. Moreover, a set of possible solutions rep-
resenting different tradeoffs between computational complexity

TABLE I
OPTIMIZED SOPOT COEFFICIENTS INEXAMPLE 1

and performance will be generated during the search. Therefore,
it helps one to achieve an appropriate tradeoff for a given appli-
cation. It is also possible to combine the two stages together to
improve the performance, but the computational time will be
greatly increased. Finally, it should be noted that the proposed
design and realization methods are also applicable to the multi-
plierless realization of the gathering structure recently proposed
in [12] for implementing IIR FD-DFs.

IV. EXAMPLES

Example 1: Let us consider the coefficients provided by
Farrow in [4]. The bandwidth under consideration for this filter
is from 0 to . is set to 0.006. The interpolation order is
three, and the length of each FIR filters used in the Farrow
structure is eight. The value of “” in (4) is chosen to be ten.
The optimized SOPOT coefficients of the Farrow structure are
given in Table I. For the Farrow structure with real-valued coef-
ficients, the peak ripple error and maximum phase delay error
deviated from the ideal frequency response are 0.006 271 and
0.0032, respectively; whereas for the SOPOT Farrow structure,

and are found to be 0.005 371 and 0.0046, respectively.
This shows that a comparable performance can be achieved
using SOPOT coefficients. After common-subexpressions
elimination, the MB requires only 13 adders, which compares
favorably with 32 real multiplications in the original Farrow
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Fig. 3. Comparison of amplitude and phase responses between the proposed
structure (dotted line) and the original Farrow structure with real-valued
coefficients (solid line) in Example 2.

structure. The resultant Farrow structure filter has a much lower
complexity than the real-valued Farrow structure but providing
nearly the same phase delay and amplitude response.

Example 2: This example will be on a Farrow structure with
higher polynomial order. Although there are many methods for
designing FD-DF with real-valued coefficients [4], [7], [10],
the prototype fractional delay filters in this example are de-
signed using complex Chebyshev approximation, because it is
readily available in MATLAB. They are then interpolated by
a fifth-order polynomial to obtain the real-valued Farrow coef-
ficients. The length of each FIR filter in the Farrow structure
is again chosen to be eight, and the value of “” is ten. The
bandwidth under consideration is from 0 to . is set to
0.03. The peak ripple error and maximum phase delay error of
the original Farrow structure are 0.023 256 and 0.0054, respec-
tively. After SOPOT coefficients searching and common-ex-
pression elimination, the subfilters require only 18 adders to
achieve and . In Fig. 3, the fre-
quency responses of the proposed structure (dotted lines) and its
real-values counterpart (solid lines) are compared for different
values of . It can be seen that they are very close to each other.
The performance and arithmetic complexity of the two exam-
ples are summarized in Table II. Again, significant reduction in
hardware complexity by the proposed method is observed.

TABLE II
SUMMARY OF DESIGN EXAMPLES

V. CONCLUSION

A new method for the design and efficient implementation
of Farrow-based FD-DF using SOPOT coefficients and MB is
presented. Considerable saving in hardware complexity can be
achieved by the proposed method with a reasonable fast design
time and a frequency response comparable to their real-valued
counterpart. The usefulness of the method is demonstrated with
several design examples.
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