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Abstract—This paper studies the design and implementation of
finite-impulse response (FIR) and infinite-impulse response (IIR)
variable digital filters (VDFs), whose frequency characteristics can
be controlled continuously by some control or tuning parameters.
A least squares (LS) approach is proposed for the design of FIR
VDFs by expressing the impulse response of the filter as a linear
combination of basis functions. It is shown that the optimal LS so-
lution can be obtained by solving a system of linear equations. By
choosing the basis functions as piecewise polynomials, VDFs with
larger tuning range than that of ordinary polynomial based ap-
proach results. The proposed VDF can be efficiently implemented
using the familiar Farrow structure. Making use of the FIR VDF
so obtained, an Eigensystem Realization Algorithm (ERA)-based
model reduction technique is proposed to approximate the FIR
VDF by a stable IIR VDF with lower system order. The advan-
tages of the model reduction approach are: 1) it is computational
simple which only requires the computation of the singular value
decomposition of a Hankel matrix; 2) the IIR VDF obtained is
guaranteed to be stable; and 3) the frequency response such as the
phase response of the FIR prototype is well preserved. Apart from
the above advantages, the proposed IIR VDF does not suffer from
undesirable transient response during parameter tuning found in
other approaches based on direct tuning of filter parameters. For
frequency selective VDFs, about 40% of the multiplications can be
saved using the IIR VDFs. The implementation of the proposed
FIR VDF using sum-of-powers-of-two (SOPOT) coefficient and the
multiplier block (MB) technique are also studied. Results show that
about two-third of the additions in implementing the multiplication
of the SOPOT coefficients can be saved using the multiplier block,
which leads to significant savings in hardware complexity.

Index Terms—Design and implementation, finite-impulse
response (FIR) filters, infinite-impulse response (IIR) filters, least
squares design, model reduction, multiplier block, variable or
tunable digital filters.

I. INTRODUCTION

V
ARIABLE digital filters (VDFs) are digital filters with

controllable spectral characteristics such as variable cutoff

frequency response, adjustable passband width, controllable

fractional delay, etc. They find applications in different areas

of signal processing and communications, e.g., fractional delay

digital filters for timing adjustment in digital receivers [1],
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[2]. Methods for designing variable digital filters can broadly

be classified into two categories: transformation [3], [4] and

spectral parameter approximation [6]–[10], [13], [14] methods.

In the former, a prototype filter with certain desirable frequency

characteristics is first designed. Certain transformation such as

the allpass transformation method [3] is then applied to the pro-

totype filter to obtain the final VDF. In general, transformation

method is applicable to VDFs with variable cutoff frequencies,

but not general variable characteristics say variable fractional

delay. The spectral parameter approximation method is more

general in that it assumes that either the impulse responses

[7]–[10] or the poles and zeros [6], [14] of the filters are

polynomials of certain spectral parameters. The coefficients

of the polynomials are then determined to provide continuous

tuning of the VDF by the spectral parameters. The spectral

parameter method was proposed by Zarour and Fahmy [14],

where the poles and zeros of an infinite impulse response (IIR)

filter are assumed to be polynomials of the spectral or tuning

parameters. Most of the works on VDFs reported are focused

on the design of IIR VDF (see [6], [13] and references therein),

and methods for guaranteeing their stability [6]. More recently,

the design of 1-D [5], [10], [21] and 2-D [7], [8] finite-impulse

response (FIR) VDF (by parameterizing the impulse response

as polynomials) have received considerably attention due to

their simple design procedure and good filter performance.

Also, the close link between the Farrow-based fractional delay

digital filter and such FIR VDF becomes more apparent [8].

This paper studies the design and implementation of FIR and

IIR VDF. First of all, the least squares approach in [7], [10] for

designing FIR VDFs is generalized to a linear combination of

basis functions, which can be more general functions than poly-

nomials. It is shown that the optimal LS solution can also be

obtained by solving a system of linear equations. This differs

from the weighted least squares approach in [10] in that 1) no

discretization of the tuning and frequency variables are used,

which helps to reduce the design complexity by means of closed

form formulas (like the method proposed in [21]); 2) the approx-

imation function is assumed to be a linear combination of basis

functions. In particular, it is shown that tunable filter using a

piecewise polynomial yields larger tuning range than ordinary

polynomial based approach. The resulting VDF can be imple-

mented with the familiar Farrow structure [9]. The piecewise

polynomial-based approach also reduces the number of general

multipliers required in the Farrow structure because of the lower

1057-7130/02$17.00 © 2002 IEEE
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order of the piecewise polynomial used. Making use of the FIR

VDFs obtained by the proposed approach, an Eigensystem Re-

alization Algorithm (ERA)-based model reduction technique is

proposed to approximate the FIR VDF by a stable IIR VDF

with lower system order. Model reduction techniques have been

proposed previously to design IIR filters with approximately

linear-phase. An FIR filter is first designed using the Park-Mc-

Cllelan or other algorithms to meet certain specifications. Model

order reduction is then applied to this FIR filter to obtain the

desired IIR filter with lower system order and, hence, arith-

metic complexity. The reduction process is very simple which

involves the computation of the singular value decomposition of

a Hankel matrix. Therefore, time consuming iterative optimiza-

tion method is not necessary. In addition, the model reduced

IIR system is guaranteed to be stable and it tries to preserve

the frequency characteristics of the original system. If the orig-

inal FIR filter is approximately linear-phase, then the reduced

system will also be approximately linear-phase. Apart from the

above advantages, the proposed IIR VDF does not suffer from

undesirable transient response during parameter tuning found

in other approaches based on direct tuning of filter parameters

[6], [12], [14]–[16]. This is because the states of the IIR subfil-

ters in the proposed structure are not abruptly changed during

the parameter tuning process. Instead, their outputs are prop-

erly combined according to the tuning parameter to obtain the

desired output. Since the proposed VDF structure involves a

number of subfilters with fixed coefficients, it is desirable to

reduce the implementation complexity of these subfilters. In

the present work, the implementation of the FIR VDFs using

the sum-of-powers-of-two (SOPOT) or canonical signed digits

(CSD) representation of the filter coefficients and the multiplier

block technique [19] is studied. More precisely, the filter coef-

ficients of the subfilters are represented in SOPOT representa-

tion, which can be implemented with limited numbers of simple

shift and addition operations. Since the tunable filter might re-

quire slightly higher order of polynomial approximation, the

number of subfilters and the redundancies among their SOPOT

coefficients can be considerable. To remove these redundant op-

erations, the multiplier block (MB) method [19] is applied to

the transposed form of the Farrow structure to further reduce

the number of adders for its implementation. The design of the

SOPOT subfilters is performed by means of a random search

algorithm, which is able to determine very good candidates rep-

resenting different tradeoff between arithmetic complexity and

performance. Results show that about two-third of the additions

in implementing the multiplication of the SOPOT coefficients

can be saved using the multiplier block, which leads to signifi-

cant savings in hardware complexity.

This paper is organized as follows: In Section II, the design

method of the FIR VDF using the least squares method is de-

scribed. The design of the IIR VDF using the ERA model reduc-

tion method is then studied in Section III. The implementation

of the FIR VDF using the SOPOT representation and the multi-

plier block techniques is described in Section IV. Several design

examples are given in Section V. Conclusions of this work are

drawn in Section VI.

II. LEAST SQUARES DESIGN OF FIR VARIABLE DIGITAL

FILTERS

In the spectral parameter method, the impulse response or the

poles and zeros of the variable or tunable digital filters are as-

sumed to be polynomial function of the tuning parameter. Since

direct tuning of the poles and zeros will in general generate un-

desirable transient response during tuning, only the former will

be considered. The impulse response of the variable FIR filter

under consideration is assumed to be a linear combi-

nation of some functions of the spectral parameters ,

instead of a polynomial. That is

(2-1)

where is the coefficient of expansion. The functions

can be chosen as an orthonormal basis or other

functions, depending on the applications. Our objective is to

determine given so that the frequency response

of will approximate some desirable variable frequency

response as a function of . First of all, let us consider the

-transform of the VDF as follows:

(2-2)

Interchanging the order of summation, (2-2) can be rewritten as

(2-3)

This suggests the general structure for its implementation as

shown in Fig. 1(a). It can also be viewed as a generalization

of the Farrow structure for implementing a fractional delay dig-

ital filter where is approximated by a polynomial in the

delay parameter , that is . If is

the desired frequency response, the approximation error is

(2-4)

It can be seen that is a linear function of the expansion

coefficients . The norm of will, therefore, be a

quadratic function of , which has a unique minimum char-

acterized by a system of linear equations. More precisely, the

norm of is given by

(2-5)

where is a positive weighting function used to con-

trol the amount of approximation error in the frequency and the

tuning space. The set is the frequency support over which

is to be approximated. For example, it can be the

passband and stopband regions of a variable cutoff digital filter.
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(a)

(b)

Fig. 1. (a) General FIR VDF. (b) The FIR VDF with the subfilters in
transposed form.

Similarly, the set is the parameter space over which the spec-

tral parameter vector is to be varied. To simplify notation, let-

ting and in (2-1), one gets

(2-6)

where and . Substituting

(2-6) into (2-5) and simplifying gives

(2-7)

where ,

,

,

,

and .

Differentiating (2-7) with respect to and setting the

derivatives to zero, one gets the following system of linear

equation and the optimal LS solution, as

and (2-8)

As an illustration, let us consider the design of a low-pass FIR

filter with variable cutoff frequency. The passband cutoff fre-

quencies and the stopband cutoff frequency are assumed

to vary linearly with as shown in the following

(2-9)

Therefore, the frequency support of the filter and the desired

response are, respectively

(2-10)

and

(2-11)

where is the group delay which is assumed to be a constant.

If is approximated by a polynomial, then the function

is simply given by . Putting the weighting function

into (2-7), one obtains the

expressions for and as follows: See (2-12)–(2-13) at the

bottom of the page where , and . In

deriving (2-12) and (2-13), the range of integration is symmet-

rical about the origin. Equation (2-12) and (2-13) can readily

be calculated by the reduction formula or in general numerical

integration. The optimal weighted least square solution can be

calculated from (2-8). The design of other variable digital filters

such as variable bandpass filters and two-dimensional VDFs

can be derived similarly. One problem with approximating

by a polynomial is that the order of the polynomial and,

hence, the number of subfilters grows rapidly with the tuning

range. To overcome this problem, it is desirable to approximate

by a piecewise polynomial in . The tuning range

is divided into disjoint intervals and in each interval is

approximated by a polynomial in with lower order. Fig. 2(b)

shows a simple example where two piecewise polynomials

with order 2 are employed. The operator is only necessary

for the IIR VDF to be discussed in Section III. For FIR VDFs,

is not needed and are just the subfilters

for the two second-order piecewise polynomials. In filtering

applications where only the passband ripples, stopband atten-

uation and phase characteristics are of concern, the smoothing

constraints between this piecewise polynomial, say continuity

at the intersections of the intervals, can be relaxed. In other

(2-12)

(2-13)
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(a)

(b)

Fig. 2. (a) Proposed IIR VDF structure. (b) Proposed piecewise polynomial-based VDF structure. For FIR VDF 	 = I and H (z) are the subfilters.

words, they can be designed separately using say the least

squares method to meet the filter specifications. As we shall see

later in Section V that this approach can considerably extend

the tuning range of the VDF. In addition, the number of general

multipliers to implement the VDF is also reduced. Both the

proposed FIR VDF and IIR VDFs are readily generalized to

two dimensions.

III. DESIGN OF IIR VDF USING MODEL ORDER REDUCTION

As mentioned earlier, there are several methods for designing

IIR VDF. The spectral method approximates the impulse re-

sponse [9], [10] of the FIR VDF or the zeros and poles of the

IIR VDF [6], [14] as certain polynomials of spectral or tuning

parameters. These parameters will then be used for continuous

tuning of the VDF. The spectral parameter method was first pro-

posed by Zarour and Fahmy [14], where the poles and zeros

of an infinite impulse response (IIR) filter are assumed to be

polynomials of the spectral or tuning parameters. Most of the

works on VDFs reported focus on the design of IIR VDFs,

and methods for guaranteeing their stability [6], [13]. Unlike

VDFs based on FIR filters, the design of IIR VDFs requires

nonlinear optimization [6], [13], [14], which is rather time con-

suming. Another important problem of IIR VDFs with direct



PUN et al.: DESIGN AND IMPLEMENTATION OF FIR AND IIR DIGITAL FILTERS 693

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 3. Design results of Example 1. (a) and (c) Frequency responses of FIR VDF. (b) and (d) Frequency responses of IIR VDF. (e) Frequency responses of FIR
VDF evenly sampled in the range � = [0; 1]. (f) Frequency responses of IIR VDF evenly sampled in the range � = [0; 1]. (g) Transient responses of the IIR
VDF. (h) Group delay of the IIR VDF.
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tuning of the poles and zeros of the digital filters is the unde-

sirable transient response generated during parameter tuning. It

is because the previous state of the IIR filter is different from

the one that is currently being used, which generates transient

response with considerable magnitude. On the other hand, the

VDF structure in Fig. 1 does not suffer from this problem (ex-

cept at the very beginning), because the states of the subfilters

are not modified during parameter tuning. Instead, their outputs

are properly combined to generate the desired output. To design

an IIR VDF using this structure, the subfilters in (2-3)

can be determined by minimizing some performance measure

such as the least squares or minimax errors, subject to the filter

stability constraints. This is a highly nonlinear constrained op-

timization problem, which is rather time consuming to solve.

It might also converge to unsatisfactory local minimum, which

may require repeatedly restarting the optimization procedure

with different initial guess. The approach proposed in this paper

is based on the model reduction of the FIR subfilters .

Model reduction is a useful technique for designing IIR filters,

especially approximately linear-phase IIR filters, from FIR fil-

ters. A FIR filter with the given specification is usually designed

using the Remez or complex Remez algorithms, which are very

efficient and produce optimal minimax solutions. Model reduc-

tion is then applied to convert this FIR filter to an IIR filter

with similar frequency characteristic but with lower order. There

are several advantages of the model reduction approach: 1) it is

computational simple which only requires the computation of

the singular value decomposition of a Hankel matrix; 2) the IIR

VDF is guaranteed to be stable; and 3) the frequency response

such as the phase response of the FIR prototype is well pre-

served. In other words, they can be used to design approximately

linear-phase IIR filter. Direct application of model reduction to

the subfilters , however, does not lead to satisfactory re-

sults. It is because the , though related to the frequency

selective VDF , are not frequency selective. Its coeffi-

cients are in fact the coefficients of the interpolating polynomial.

Most of the singular values of the Hankel matrix of the impulse

response are rather large. Model reduction, which removes the

less significant singular values is, therefore, unable to offer great

reduction in system order. In what follows, a transformation is

used so that another set of subfilters, which is more amendable

to model reduction, is implemented instead of . First of

all, let us rewrite (2-3) in matrix form as follows:

(3-1)

where and

. Sampling the transfer

function at values of the tuning parameter

, yields

(3-2)

where . Equation (3-2) can also be written in

matrix form as follows:

(3-3)

TABLE I
PARAMETERS FOR THE TUNABLE LOWPASS FILTER IN EXAMPLE 1

(a)

(b)

Fig. 4. (a) Frequency responses of multiplier-less FIR VDF evenly sampled in
the range � = [0; 1]. (b) Worst-case stopband attenuation as a function of the
order of the interpolation polynomial.

TABLE II
PARAMETERS FOR THE EFFICIENT IMPLEMENTATION OF THE TUNABLE

LOWPASS FILTER IN EXAMPLE 1
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(a) (b)

(c) (d)

(e)

Fig. 5. Design results of Example 2. (a) Frequency responses of FIR VDF. (b) Frequency responses of IIR VDF. (c) Frequency responses of FIR VDF evenly
sampled in the range� = [0; 2]. (d) Frequency responses of IIR VDF evenly sampled in the range� = [0; 2]. (e) Group delay of the IIR VDF.

where is a matrix and

. If in (3-3) is non-

singular, then we can express in terms of as follows:

(3-4)

In other words, the subfilters ’s can be replaced by

another set of subfilters followed by a linear trans-

formation . For polynomial basis functions, we have

. If the values of are evenly spaced, i.e.,

is chosen as ( ), then is the Vandermonde matrix

and it is nonsingular. The advantage of this transformation, as

mentioned earlier, is that model reduction will be applied to

, which will produce a reduced system with lower

order than using , if is frequency selective. For

example, if is a low-pass filter with variable cutoff

frequency, will be the desired low-pass filter with

cutoff frequency governed by . When undergoes

model order reduction, it will yield much lower order than that

from model reducing , which is no longer a low-pass

filter. It is because ’s are frequency selective and

are similar in frequency characteristic. They are thus more

amendable to model reduction.
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As mentioned earlier, designing VDF with wide tuning range

using the polynomial basis will in general require large number

of branches. This will increase the order of the matrix and,

hence, the complexity. To remedy this problem, it is desirable to

split the tuning range into several consecutive tuning ranges. A

separate FIR VDF is designed for each segment, which helps to

reduce the order of the interpolation polynomial and, hence, the

number of branches. In addition, the number of general multi-

plier required and the order of the matrix will also be re-

duced. Next we consider the model order reduction of .

The algorithm that we employed is the Eigensystem realization

algorithm (ERA) [17], [18]. First of all, we note that the sub-

filters can be viewed as a single input-multiple output

(SIMO) system. To carry out model reduction of these subfil-

ters, we first rewrite them in state space model (SSM) with order

[22], where is the filter length of in (3-2), as

follows:

(3-5)

(3-6)

where

...
. . .

...
...

is a 1 zero matrix, and is an identity matrix.

Let , , be the ( 1) pulse-response matrix or

Markov parameters obtained by applying a single impulse to the

input at , i.e., and From

the state space model in (3-5) and (3-6), one gets the following

formula for the Markov parameters:

(3-7)

The ERA system begins by forming the generalized

Hankel matrix composed of the Markov parameters

as follows:

...
...

. . .
...

(3-8)

For simplicity, we choose (order of SSM), and

. Next, the singular value decomposition (SVD) of the

Hankel matrix with is computed

(3-9)

TABLE III
PARAMETERS FOR THE TUNABLE LOWPASS FILTERS IN EXAMPLE 2 [(TWO

BLOCKS EACH WITH THREE BRANCHES. EACH BLOCK USES LAGRANGE

INTERPOLATOR (ORDER-TWO)]

TABLE IV
PARAMETERS FOR THE EFFICIENT IMPLEMENTATION OF THE TUNABLE

LOWPASS FILTER IN EXAMPLE 2

*: include the adders in the delay chain.

where the columns of matrices and are orthonormal and

is a rectangular matrix given by

with (3-10)

, are the singular values arranged in de-

scending order of their magnitude

(3-11)

Let be the order of the model-reduced system and and

be the matrices formed by the first columns of and ,

respectively. Similar, let be the matrix formed by the first

columns and first rows of . To reduce the ( )

matrices to the reduced system ( ), let us form

the following reduced Hankel matrix:

(3-12)

It can be shown that is composed of the controllability

matrix and the observability matrix as follows:

(3-13)

where ,

. More generally, we have

(3-14)



PUN et al.: DESIGN AND IMPLEMENTATION OF FIR AND IIR DIGITAL FILTERS 697

(a) (b)

(c) (d)

(e) (f)

Fig. 6. Design results in Example 2. (a) Frequency response of FIR VDF. (b) Frequency response of IIR VDF. (c) Frequency response of FIR VDF evenly sampled
in the range� = [0; 2]. (d) Frequency response of IIR VDF evenly sampled in the range� = [0; 2]. (e) Group delay of the FIR VDF. (f) Group delay of the IIR
VDF.

Comparing (3-12) and (3-13) with gives

and (3-15)

From (3-13), it is clear that the first column of forms the

reduced input matrix whereas the first rows of form

the reduced output matrix . The reduced matrix is exactly

equal to the matrix. To determine , consider (3-14) and

(3-15) with

(3-16)

Rearranging, one gets the following reduced state matrix

(3-17)
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Now, all ( ) matrices have been determined.

Using the reduced state space model, one can determine a new

set of transfer functions, which have a common denominator.

Thus, the system transfer function will consist of numerators

and a denominator, all with order . An important property

of the ERA algorithm is that the reduced system is stable if

the original system is stable. Moreover, since model reduc-

tion will try to preserve the frequency characteristics of the

original system, the IIR filter obtained will be approximately

linear-phase, if the original FIR VDF is linear or approximately

linear-phase.

Let the model-reduced vector of be denoted as . As men-

tioned earlier, the new reduced transfer function will have the

same denominator and the numerators, denoted by

. Therefore, we have

(3-18)

where . The final SIMO

model-reduced transfer function is

(3-19)

Since there is only one denominator, the implementation com-

plexity associated with the denominator of the transfer functions

is greatly reduced. In addition, for certain types of tunable filter,

the use of SIMO ERA can dramatically reduce the order of the

system and, hence, the arithmetic complexity, as we will see

later in the design examples. The structure of the final IIR VDF

is shown in Fig. 2(a).

The design method of the proposed IIR VDF is summarized

as follows.

1) Design an FIR VDF according to the design specification

using the polynomial basis or piecewise polynomial basis.

This gives the subfilters .

2) Using , compute the transfer function at evenly

sampled values of , . This gives

.

3) Apply the ERA model reduction method to the SIMO

system . This gives .

Finally, it is noted that the implementation of can be

avoided by forming offline. The efficient imple-

mentation of the FIR VDF will be considered in the following

section. Due to space limitation, the hardware implementation

of the IIR VDF is not discussed in this paper.

IV. EFFICIENT IMPLEMENTATION OF FIR VDF

To reduce the implementation complexity, the subfilters are

implemented as multiplier-less FIR filters using the SOPOT co-

efficients in the form

(4-1)

where and .

is a positive integer and its value determines the range of the

TABLE V
PARAMETERS FOR THE TUNABLE LOW-DELAY LOWPASS FILTERS IN EXAMPLE 2

(TWO BLOCKS, EACH WITH THREE BRANCHES. EACH BLOCK USES

LAGRANGE INTERPOLATOR OF ORDER-TWO)

coefficients, and is the number of terms used in the coeffi-

cient approximation and is usually limited to a small number.

The coefficient multiplication can then be implemented as lim-

ited number of shifts and additions. To design the SOPOT sub-

filters, we minimize the norm of its difference in frequency

response with the ideal one as shown in the following:

(4-2)

is the ideal frequency response and is the fre-

quency response calculated for a given SOPOT filter coeffi-

cients. In other words, we try to minimize the peak ripple error

for the whole frequency range of interest and the whole tun-

able range . The design procedure consists of two

stages. First, the filter coefficients are optimized using

a random search algorithm with respect to the criteria stated in

(4-2). Then, the technique of the multiplier block is used to fur-

ther reduce the number of adders required to implement all the

SOPOT coefficients.

To be more specific, the real-valued coefficients are

first determined by the least square method described in Sec-

tion II. Let be the vector containing these coefficients. Then

the random search algorithm will repetitively calculate a can-

didate SOPOT vector by adding to a random perturbation

vector and then rounding it to the nearest SOPOT represen-

tation. That is

(4-3)

The vector is a random vector with elements chosen in

the range 1, and is a user-defined variable used to control

the size of the neighborhood to be searched. is the

rounding operator that converts every element inside the input

vector to its closest SOPOT value with a given value of . The

performance measure of the new coefficients is then calcu-

lated. The set that yields the minimum peak error under the

given constraints of total number of terms and is recorded as

the final solution. Since this is a random search algorithm, the

longer the searching time, the higher the chance of finding the

optimal solution. There are several advantages of this algorithm.

First of all, with the computational power of personal computer

(PC) nowadays, the time for obtaining high quality solutions is

manageable. In fact, for the problem considered here, the overall

design time takes less than 10 minutes to complete on a typical
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(a) (b)

(c) (d)

(e)

Fig. 7. Design results in Example 4. (a) Frequency response of the FIR Bandpass VDF at � , � = 0,0.5, 1. (b) 3-D perspective plot of the frequency
response of the FIR Bandpass VDF. (c) Frequency response of the IIR Bandpass VDF at � , � = 0,0.5, 1.7. (d) 3-D perspective plot of the frequency
response of the IIR Bandpass VDF at � = � = � 2 [0:1]. (e) Structure of the variable bandpass filter.

Pentium-400 PC using MATLAB1 5.3, including both the de-

sign of SOPOT coefficients and the multiplier block. Secondly,

it is applicable to problems with general objective functions

probably with very complicated inequality constraints (such as

round-off error [20] and power constraints). Moreover, a set of

possible solutions representing different tradeoffs between com-

putational complexity and performance will be generated during

the search. The random search algorithm is similar in concept

to the stimulated annealing algorithm. However, we have used

the real-valued optimal solution as a starting point to reduce the

searching time required.

1MATLAB is a registered trademark of The MathWorks, Natick, MA.

Detailed implementation of the FIR VDF will now be

described. Referring to the general structure of the VDF in

Fig. 1(a). To implement the subfilters using the multi-

plier block, we can redraw them in transposed form as shown

in Fig. 1(b). Now, we need to implement the multiplication of

the input sample with a large number of constant coefficients in

SOPOT form. These products can be efficiently implemented

using a technique called the multiplier block. The basic idea of

the multiplier block is to reduce the redundancies in multiplying

a given input with a set of integer coefficients by removing

any possible common subexpressions in their representations.

Using the MB, it is possible to reduce significantly the additions

in implementing the multiplier-less subfilters leading to great
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hardware savings. The generation of the multiplier block in

our case follows closely the work of [19]. From the design

examples to be presented in the following section, it is observed

that 2/3 of the additions in implementing the SOPOT coefficient

multiplications can be reduced by using the multiplier block.

V. DESIGN EXAMPLES

A. Example 1 — Tunable Linear-Phase FIR and Approximately

Linear-Phase IIR Low-Pass Filters

In this example, tunable linear-phase FIR and IIR low-pass

filters are designed using the proposed method. The transition

bandwidth is fixed at 0.2 and the passband edge is varied from

0.2 to 0.2 . The FIR VDF has a subfilter length of 32 and

an interpolation order of 5 using the polynomial basis function.

The frequency response of the FIR VDF so obtained is shown in

Fig. 3(a), (c), and (e). After model reduction, the lengths of the

numerator and denominator polynomial are 17. The frequency

response, group delay and transient response of the IIR VDF are

shown in Fig. 3(b), (d), (f), (g), and (h). It can be seen that the

magnitude and phase responses of the IIR VDF are similar to

that of FIR VDF. The parameters of the FIR and IIR VDFs are

summarized in Table I. It can be observed that a modest amount

of performance loss is given up in exchange for an approximate

40% reduction in multiplications. To examine the transient ef-

fect during parameter tuning, a sinusoid with a digital frequency

of 0.4 is applied to this IIR VDF. In the first 50 samples, is

set to zero, and the cutoff frequency of the IIR VDF is around

0.2 . It can be seen that there is a transient response at the filter

output when the data is first applied, which is an inherent char-

acteristic of digital filters. This transient soon died down and the

amplitude of the output is nearly zero. After that, the tuning pa-

rameter is increased by 0.25 every 50 samples, i.e., the pass-

band is increased by 0.2 successively. It can be seen that the

amplitude of the VDF output increases at each block of 50 sam-

ples. This is because the input sinusoid starts to fall into the pass-

band of the IIR VDF. However, except for the initial transient,

no transients due to abrupt change in tuning parameter are

observed. This is because the states of the IIR subfilters are not

abruptly changed by the tuning parameters, unlike other VDF

approaches based on direct tuning of the filter parameters. In

summary, the IIR VDF approximates the FIR VDF well in terms

of frequency response without any transients during tuning.

B. Efficient Realization

We now consider the efficient realization of the above FIR

VDF. The random search algorithm mentioned in Section IV

was used to determine the SOPOT coefficients of the subfilters.

The average number of terms in each SOPOT coefficients was

found to be 4.1, and the worst-case stopband attenuation is 46.1

dB. Fig. 4(a) shows the frequency responses of the VDF at

different control parameters. It can be seen that the frequency

response is approximately equal-ripple in the stopband over the

entire tuning range. Table II summarizes the design results of

these VDF low-pass filters. Another point worth mentioning is

that the multiplier block (MB) is able to reduce the required

number of adders to about one-third of its original value.

Hence, the system complexity is dramatically reduced with

TABLE VI
DETAILED COMPARISON BETWEEN THE METHOD IN [13] AND THE PROPOSED

LEAST SQUARES (LS) APPROACH ! (�) AND ! (�) REPRESENT THE

LOWER STOPBAND AND PASSBAND EDGES OF THE BANDPASS VDF,
RESPECTIVELY ! (�) AND ! (�) REPRESENT THE HIGHER STOPBAND AND

PASSBAND EDGES OF THE BANDPASS VDF, RESPECTIVELY

* : using SOPOT coefficients.

only slight or negligible degradation in performance. We have

also designed a number of VDF using different orders of

interpolation with the same filter specifications. Fig. 4(b) plots

the worst-case stopband attenuation as a function of the order

of the interpolation polynomial.

C. Example 2 — Tunable Linear-Phase FIR and Approximate

Linear-Phase IIR Low-Pass Filters Using Piecewise

Polynomial

In this example, a tunable linear-phase FIR VDF and an

approximately linear-phase IIR VDF are designed. The target

tuning range of the passband is from 0.2 to 0.4 and the

transition bandwidth is fixed at 0.2 . Instead of using six

branches of subfilters as in the previous example, we divide

the tuning range into two intervals with three subfilters per

interval. Each subfilter has 40 taps. The frequency response

of the FIR VDF designed using the least squares method is

shown in Fig. 5(a) and (c). The structure of the VDF is shown

in Fig. 2(b). It can be seen that the transfer functions ,

are separated into two groups, and each group

is associated with one tuning range. The outputs from one of

the groups are connected to the matrix at any one time,

through the multiplexer, and it is determined by the tuning

parameter . is limited between 0 and 2. For ,

, 0,2,4, are used and it supports the passband tuning

range from 0.2 to 0.3 . Whereas, for , ,

1,3,5, are selected and its tuning range is from 0.3 to 0.4 .

The corresponding ( 3) is

(5-1)
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(a) (b)

(c) (d)

Fig. 8. Design results in Example 5: (a) Frequency responses of the digital bandpass VDF designed by using the LS approach. (b) Frequency responses of the
digital bandpass VDF designed by using the piecewise polynomial approach. (c) Frequency responses of the digital bandpass VDF designed by using the LS
approach (� = 0,0.25,0.5,0.75,1). (d) Frequency responses of the digital bandpass VDF designed by using with piecewise polynomial approach (� =

� = 0,0.5,1).

The overall six-branch-FIR VDF is model reduced to obtain the

required IIR VDF using the proposed method described in Sec-

tion IV. The frequency response and group delay are plotted in

Fig. 5(b), (d), and (e). Details comparison of the FIR and IIR

VDF are summarized in Table III. Since the order of the IIR

VDF is reduced to half and there is only one denominator for

all the subfilters, the total number of multiplications is reduced

approximately by 40% as compared with the FIR VDF. The fre-

quency response of the IIR VDF is seen to be comparable to the

original FIR VDF.

D. Efficient Realization

The random search algorithm was used to determine the

SOPOT coefficients of the subfilters in the FIR VDF obtained

above. The average number of terms in each SOPOT coef-

ficients was found to be 3.8, and the worst-case stopband

attenuation is 50 dB. Table IV summarizes the design results

of this VDF low-pass filter. Again, it can be seen that the

multiplier block (MB) is able to reduce the required number

of adders by around 65%. Hence, the system complexity is

dramatically reduced with only slight or negligible degradation

in performance.

E. Example 3 — Tunable Low-Delay FIR/IIR Low-Pass Filters

Using Piecewise Polynomials

In this example, tunable low-delay FIR/IIR low-pass filters

using piecewise polynomials are designed. All the FIR VDF

specifications are the same as the one in Example 2, except that

the group delay of the FIR VDFs is now reduced. The group

delay is reduced from 19.5 to 16.5 samples. The low-delay FIR

VDF was first designed using the least squares design method.

This low-delay FIR VDF was then model reduced to an IIR VDF

using the ERA algorithm proposed in Section IV. The frequency

responses and group delay are plotted in Fig. 6. Details compar-

ison of the FIR and IIR VDF are summarized in Table V. From

the figures, it can be seen that the frequency response of the IIR

VDF closely resembles that of the FIR VDF and the number of

multiplications is reduced by approximately 40%. Due to space

limitation, results for the multiplier-less realization is omitted.

F. Example 4 — Bandpass Filter With Tunable Cutoff

Frequencies

In this example, we are going to design a bandpass filter with

tunable cutoff frequency using the previous result on tunable

low-pass filter. The basic idea is to cascade a tunable low-pass

and a tunable high-pass filters together so that we can control its
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TABLE VII
DESIGN RESULTS USING THE PIECEWISE POLYNOMIAL AND LS APPROACHES

! (�) AND ! (�) REPRESENT THE LOWER STOPBAND AND PASSBAND

EDGES OF THE BANDPASS VDF, RESPECTIVELY. ! (�) AND ! (�)
REPRESENT THE HIGHER STOPBAND AND PASSBAND EDGES OF THE

BANDPASS VDF, RESPECTIVELY

* : using SOPOT coefficients.

cutoff frequencies individually. The proposed structure is illus-

trated in Fig. 7(e). It can be seen that the bandwidth of the filter

can be controlled by two variables: and , which con-

trol the cutoff frequencies of the low-pass filter and the

high-pass filter , respectively. It is possible to reduce the

overall system delay by interpolating the impulse response of

the filter by two-dimensional polynomial, but the overall com-

plexity will increase dramatically with the square of the order

used instead of linearly with the proposed cascade structure.

For simplicity, the tunable high-pass filter is obtained from

the tunable low-pass filter using the following

frequency transformation

(5-2)

Hence, the overall VDF bandpass filter

is given by

(5-3)

An interesting feature of this special structure is that the

coefficients of and are iden-

tical except for appropriate sign changes. More precisely,

if the low-pass VDF is given by

, then the high-pass

VDF so obtained is given by

. So, the filter co-

efficients of the low-pass VDF might be reused in the high-pass

VDF, if the hardware is able to work at higher speed.

For simplicity, the low-pass VDF, , is taken

from Example 2. The frequency responses of the resulting band-

pass FIR and IIR VDFs are shown in Fig. 7. From these figures,

it can be seen that the IIR bandpass VDF approximates very

well its FIR counterpart. Due to page limitation, results for their

efficient realizations are omitted.

G. Example 5

The final example considered is the bandpass digital FIR

VDF obtained using the outer product expansion in [13]. The

center frequency of the VDF is kept constant at 0.5 , while its

bandpass bandwidth is controlled by the spectral parameter .

The detailed specifications are shown in Table VI. Although

we have used a different range for the parameter (between 0

and 1) from that of [13], the specifications for both VDFs are

the same. The proposed least squares design and random search

algorithms were used to obtain a VDF with SOPOT coefficient

up to 12-bits wordlength. Its frequency response is plotted in

Fig. 8(a) and (c). Table VI compares the result obtained in

[13] with the proposed method. It can be seen that they are

comparable to each other. On the other hand, the design of the

proposed method is very simple because it requires the solution

of a system of linear equation, instead of using nonlinear opti-

mization in [13]. The number of adders saved in this bandpass

FIR VDF with the use of MB is very significant. In fact, it saves

nearly two-third of the adders in the SOPOT realization. Next,

we compare the proposed piecewise polynomial approach with

the conventional polynomial approach. The tuning range is

divided into two nonoverlapping regions, and a bandpass FIR

VDF is separately designed for each region. The details of these

two VDFs are shown in Table VII and the frequency responses

are plotted in Fig. 8(b) and (d). From these figures, it can be

seen that the piecewise polynomial approach gives a better

stopband attenuation than the conventional approach. The

improvement will increase with wider tuning range. Through

the use of MB, again, we can save approximately over one-half

of the original adders.

VI. CONCLUSION

A systematic method for the design and implementation of

FIR and IIR VDFs is presented. A least squares (LS) approach

for designing FIR VDFs by expressing the impulse response

of the VDF as a linear combination of basis functions is first

presented. The optimal LS solution can be obtained by solving

a system of linear equations. By choosing the basis functions

as piecewise polynomials, VDFs with larger tuning range than

ordinary polynomial based approach can be obtained. The re-

sulting VDFs can be efficiently implemented using the familiar

Farrow structure. Making use of the FIR VDF so obtained, an

ERA-based model reduction technique is proposed to approxi-

mate the FIR VDF by a stable IIR VDF with lower system order.

The model reduction approach is computational simple, which

only requires the computation of the singular value decomposi-

tion of a Hankel matrix. The IIR VDF obtained is guaranteed to

be stable. In addition, the proposed IIR VDF does not suffer

from undesirable transient response during parameter tuning

found in other approaches based on direct tuning of filter param-

eters. For frequency selective VDFs, about 40% of the multipli-

cations can be saved using the IIR VDF. The implementation of

the proposed FIR VDF using sum-of-powers-of-two (SOPOT)
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coefficient and the multiplier block (MB) technique is also pre-

sented. Results show that about two-third of the additions in im-

plementing the multiplication of the SOPOT coefficients can be

saved using the multiplier block, which leads to significant sav-

ings in hardware complexity.
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