
17

On the design for testability
of communication protocols

N. Yevtushenko1, A. Petrenko2, R. Dssouli2, K. Karoui2, S. Prokopenko1

1 - Tomsk State University,
36 Lenin str., Tomsk, 634050, RUSSIA.
2 - Universite de Montreal,
C.P. 6128, succ. Centre-Ville, Montreal, H3C 3J7, CANADA,
Phone: (514) 343-7535, Fax: (514) 343-5834,
{petrenko, dssouli, karoui}@iro.umontreal.ca

Abstract
Design For Testability (DFI') is understood as the process of introducing some features into a
protocol entity that facilitate the testing process of protocol implementations. DFI' at the
implementation level deals with a particular realization on a given platfonn, whereas DFI' at the
specification level affects all possible implementations regardless of the implementation process.
The fact that protocols are usually specified only partially, facilitates DFI' at the specification
level. In this paper, we address one particular problem of DFI', the problem of finding a
minimal augmentation of the given protocol behavior (an FSM) such that a newly obtained
specification is more testable than the original one, while maintaining sets of defined states and
events. We propose an approach to augmenting a partially specified FSM such that a test suite
for the resulting FSM with guaranteed fault coverage is shorter than that for the original FSM.

Keywords
Conformance testing, protocol testability, design for testability, partial FSMs, test derivation

1 INTRODUCTION

Behavior of a protocol entity is usually described for a number of situations. A situation in the
entity can be understood as a combination of its state and a current input event from a peer entity
or from the user of this entity. A service definition and protocol specification explicitly define
situations, sometimes called valid, which can happen during normal or abnormal course of
communication. If the protocol behavior is unspecified in a valid situation then the protocol is
said to have an error, called an unspecified reception. A well-formed protocol is neither under
nor over-specified. An over-specified protocol has unreachable states or transitions which can
never be executed. However, even well-formed protocols leave certain situations undefined.
These situations are regarded as invalid, in the sense that some events can never happen in a
particular state. There are also certain signals from the user which do not require any
communication with a remote entity and are processed locally. Local behavior is usually not
standardized and can be implemented in various ways. For this reason, protocols are widely

A. Cavalli et al. (eds.), Protocol Test Systems VIII

© Springer Science+Business Media Dordrecht 1996

266 Part Six Testability

recognized as partially specified systems [BoPe94], [PBD93], [SiLe89]. This feature facilitates
the process of implementing a protocol. Undefined situations are utilized for optimizing a
protocol implementation on a given platform. Various criteria can be applied for optimization.
For complex protocols, testability of their implementations becomes a primary concern of
communication software designers.

In general terms, testability of a protocol entity means that it has some features that will
facilitate the testing process [DsF09J], [VLC93], [PDK93]. Design for testability (DFf) is
understood as the process of introducing these features into the protocol entity. DFf at the
implementation level deals with a particular realization on a given platform, whereas DFf at
the specification level affects all possible implementations regardless of the implementation
process. Unfortunately, most existing protocols have been designed and documented without
testing requirements in mind [VLC93]. To improve the protocol's testability, one should rather
rely only on those combinations of states and events for which the protocol behavior is not
defined. Assuming that the behavior in such situations can be arbitrary defined, the problem of
DFf at the specification level can be formulated as follows.

We must find a minimal augmentation of the given protocol behavior such that a newly
obtained specification is more testable than the original one. A measure of testability of a
protocol entity is assumed to be inversely proportional to the shortest length of a test suite
needed to achieve guaranteed (complete) coverage of certain faults [PDK93]. To the best of our
knowledge, formal methods for DFf of protocols have not yet been explored. Note that the
existing formal methods and techniques for improving testability which have been developed
mainly in the hardware area, see, for example, [ShLe94], [ABF90], [Jose78], cannot be applied
in this domain, since they either rely on the structure of an implementation, or they change the
set of states, or the sets of input/output events, in a way that is similar to the adding of a read
state message in protocol engineering.

In this paper, we consider a simple FSM model of a protocol machine (at least its control
portion) and assume the following scenario of DFT. In the first step, an initial FSM
specification is derived from the given requirements. If the FSM is not completely specified then
its undefined transitions are "don't care" transitions which model situations where the
requirements do not restrict any further protocol behavior. The problem now is how to augment
the partially specified FSM by converting "don't care" transitions into defined transitions such
that a test suite for the resulting FSM with guaranteed fault coverage is shorter than that for the
original FSM. In the last step, the augmented specification of the protocol and its test suite are
released for implementation. Even if the scenario seems somewhat idealistic, we believe that
such an approach should spare efforts required to produce conforming implementations.

This paper is structured as follows. In Section 2, we present some basic definitions and
concepts. In Section 3, we discuss the influence of machine's parameters on the size of a
complete test suite and derive several formulae for estimating its length. Based on this
discussion, we introduce the basic idea underlying our method for assigning "don't care"
transitions presented first for a machine with a single input in Section 4 and then generalized for
an arbitrary machine in Section 5. Section 6 contains application examples, including the
INRES protocol. We conclude in Section 7 by presenting some open research issues.

2 BASIC NOTIONS AND DEFINITIONS

Throughout this paper we make use of the following definitions. A partial Finite State Machine

(FSM) A is a 6-tuple (S, X, Y, 8, A, DA), where S is a set of n states; X and Y are finite sets of

inputs and outputs; 8 and A are transition and output functions; DAis a set of defined transitions

of A, that is a subset of SXX. We assume that each input labels at least one defined transition.
An initialized machine also has a designated initial state so. A becomes a complete (completely

specified) machine if DA = SXX. Transitions in (SxX)'DA are undefined or "don't care"

transitions. Here, we assume the so-called "undefined by default" convention for undefined

On the design for testability of communication protocols 267

transitions [PBD93], that is, if (s, x) E (SxX)\[)A then o(s, x) and A(S, x) can be set to

(assigned) any s', S'E S and any y, yE Y, respectively.
A sequence Xl .. .xk of the set X* of all possible input sequences is called an acceptable input

sequence for state s if there exist k states SJ, ... ,Sk from S such that O(s, Xl) = SI and O(Sj,xj+I)
= Sj+J, i = 1, ... , k-l. We use Xj* to denote a set of aJl input sequences acceptable for state Sj
and XA * for the state so. Two states Sj and Sj of FSM A are said to be distinguishable if there is

an input sequence a E Xj* n Xl such that A(Sj, a) "# A(Sj, a). If any two states of A are

distinguishable then A is a reduced machine. As usual, states Sj and Sj of A are equivalent iff

Xj* = Xl and A(Si, a) = A(Sj, a) for every sequence a.

Let A be a reduced partial FSM. Given a pair of states Sj and Sj, we choose a sequence ajj

that distinguishes them, and form a set Wj = {aij I Sj E Sand j "# i}. The set Wj is caJled an

identifier of state Sj. If the Wj has just a single identifying sequence, i.e. IWjl=1 then it is often
caJled a UIO-sequence. If there exists a set W of input sequences such that any sequence from
W is acceptable for any state and W is a state identifier of any state then we refer to the set Was
a characterization set of A. In the case where the W set consists of just a single identifying
sequence, we refer to this sequence as a distinguishing sequence [Henn64]. Machines with such
sequences usuaJly possess very short tests.

We say that the FSM A is connected if for any state S there is an input sequence p such that

O(so, fJ) = s. A set V = {e, fh ... ,f3n-I} of input sequences is said to be a state cover if for any

state Sj of S there is a sequence f3jE V which takes FSM A from its initial state into state Sj,

where e is the empty sequence: O(so, e) = so, thus Vle.

Let a connected reduced FSM A have a characterization set W. If DA = SXX then Walways

exists. Assume the sets V and W have the foJlowing properties:

1) if a sequence f3 belongs to V then any prefix of it also belongs to V, i.e.

if f3x E V then f3 E V; (2.1)

2) if a sequence a belongs to W then any suffix of it also belongs to W, i.e.

if xa E W then a E W. (2.2)

As an example, a homogeneous distinguishing sequence satisfies (2.2), a sequence is

homogeneous if it is a sequence of the same symbol, i.e. x' = xx:,-I, r~l.
It is known that if V and W have the properties (2.1) and (2.2) then the set TS = TC@Wis a

complete test suite for the FSM A in the class 3n of all FSMs with up to n states [Vasi73]. Here
"@" stands for concatenation operation on sets, and the set TC is a transition cover that contains

Vas well as any sequence f3j from V concatenated with any input that is acceptable for state Sj =

O(so, f3j). [Vasi73] gives this version of the so-caJled W-method [Chow78].
A complete test suite can be shortened if each sequence of the set W is applied after any

sequence from V. However, after any sequence from TC that is not in V, only a part of the set
W is applied, namely, a corresponding state identifier. This is the main idea of the Wp-method

[FBK91]. We use the following notation for such test suites: TS = V@WuTC®W. Here we

consider slightly generalized versions of these methods to cover partial reduced machines. For
more discussions on partial FSMs the reader is referred to [Petr91], [PBD93], [BoPe94].

3 LENGTH OF A TEST SUITE AND "DON'T CARE" TRANSITIONS

3.1 Estimating a test size

Generating a complete test suite for a given FSM involves many choices, most of which are left

268 Part Six Testability

without any guidance in most existing test derivation methods. This makes it extremely difficult
to detennine length of a complete test suite until the test suite is actually derived. Its length
depends on many factors [BPY94]. Among them, properties of the state cover, transition cover
and characterization set chosen for the test derivation seem most essential. We note that the
known bounds [Vasi73] are derived for the case where state covers and characterization sets
satisfy the properties (2.1) and (2.2). These properties facilitate the test length estimation as
well. Here we look for other properties of sets V and W that provide shorter test suites. We fIrst
consider an example.
Example. The FSM A shown in Figure 3.1 possesses several state covers with the property

(2.1). We choose two of them of different lengths: VI = {E, a, aa, b} and V2 = {E, a, aba, ab}.

V/s length is four, whereas V2 contains six symbols.

Figure 3.1 An FSM A.

The machine also possesses different characterization sets with the property (2.2): W =
{aaa}, W' = {a, b}. In the fIrst case, there is a homogeneous distinguishing sequence aaa, from
which it is easy to obtain state identifIers as follows: WI = {aaa}, W2 = {aa}, W3 = {aa}, W4 =
{aaa}. In the second case, W'I = W'2 = W'3 = W'4 = {a, b}. Total length L(W) of W is three;
L(W,) = 2, but it contains two sequences. Based on these sets, it is possible to construct

various test suites complete in the class Sn, where n=4. The Wp-method gives the following
results:

I) VI = fe, a, aa, b}, W = {aaa}. TSI = (aaaaaa, aabaaa, abaaa, baaa, bbaaa). L(TSI)= 26.

2) VI = (e, a, aa, b), W'= (a, b).
TS2= {aaaa, aaab, aaba, aabb, aba, abb, baa, bab' bba, bbb}. L(TS2) = 34.

3) V2 = (E, a, aba, ab), W=(aaa}. TS3 =(aaaa, abaaaaa, ababaaa, abbaaa, baaa). L(TS3) = 28.

4) V2 = fe, a, aba, ab), W· = (a, b).

TS4 = (aaa, aab, abaaa, abaab, ababa, ababb, abba, abbb, ba, bbl. L(TS4) = 38. 0
As can be seen from this example, a characterization set with fewer sequences yields a

shorter test suite even if its total length is not minimal. The number of transfer sequences in a
state cover cannot be reduced, however, a state cover of a shorter length usually leads to a
shorter test suite. We now present some estimations that confIrm these observations in the
general case.

We consider a test suite TS = TC@W of an FSM A which has a characterization set W
assuming that the sets V and W satisfy properties (2.1) and (2.2), respectively. We have seen
from the above example that, all things being equal, length of this test suite is determined by
lengths of sets V and Wand by the cardinality of W. If A is a partial machine then the size of a
test suite depends also on the number of defIned transitions. Let p be the number of defIned
transitions of A, i.e. p S; mn, where m is a number of inputs.
Proposition 3.1. Given an FSM A with n states, a state cover V with the property (2.1), a
transition cover TC of p defIned transitions, and a characterization set W with the property
(2.2), the total length L(TS) of a complete test suite TS = TC@W does not exceed
L(TC)IWI +L(W)(p-n+I). (3.1)
Proof. In fact, the total length of a set TC@W does not exceed the value of

L [L(vi) + L(wj)]'

viETC,WjEW

On the design for testability of communication protocols

Then L(TC@W) :5: [L(VI) + L(WI)] + ... +[L(v,) + L(Wt)] = [L(VI) + ... +L(v,)] IWI + L(W)r,
where r is a number of sequences in TC. Thus
L(TC@W):5:L(TC)IWI +L(W)ITCI.

269

Now it is sufficient to show that the number of sequences in TC is (p - n + 1). Consider the
set of input sequences TC and a corresponding successors tree of A with its initial state as a root
of this tree. Due to (2.1), the tree has exactly p edges from its internal nodes, therefore this tree
has p nodes excluding the root of this tree. Since n nodes are internal, there are exactly (p - n +
1) terminal nodes, i.e. ITCI = P - n + 1. [J

Consider again the FSM A shown in Figure 3.1. In the case of a completely specified FSM,
p = mn. Assume that VI and W are chosen for test derivation. For the test suite TSI we have
L(TC) = 12, p-n+l = 5, IWI = I, L(W) = 3, and therefore the length is 27. It is close to the
actual length of 26. In the case where V2 and W' are chosen, we have L(TC) = 14, p-n+ 1= 5,

IW'I = 2, L(W) = 2, and 14·2 + 5-2 = 38. This is length of the test suite TS4.
Since (p-n+ 1) is the number of sequences in the set TC, we usually have L(TC) » (p-n+ 1).

For this reason, length of a complete test suite primarily depends on the number
of sequences in the set W, rather than on its total length.

It is also worth noting than based on (3.1), it is possible to derive the least upper bound on
the length of a complete test suite. Assume for simplicity that the machine is completely

specified. Then it is known that the bound is O(mn3), where m is the number of inputs
[Vasi73], [LeYa94]. We need a more precise estimation. [TyBa75] gives L(W):5:n(n-l)/2,
IWI:5:n-l, L(V):5:n(n-l)/2 provided that the properties (2.1) and (2.2) hold. It is not difficult to
check that L(TC) :5: n(m-l) + n(n-l)/2 + 1. (p-n+ 1) = nm - n + 1. Then

L(TS):5: [n2m + 2nm - 2n + 2](n-l)/2 = Lmax.

Thus, L(TS) :5: Lmax < mn3 for completely specified reduced machines with n~2 states and
~ inputs. The least upper bound on tests for partially specified machines remains unknown,
as they are still the subject of active research [BPY94], [BoPe94].

Next, we estimate length of a test suite for a partial FSM that possesses homogeneous
identifying sequences.

Proposition 3.2. Given an FSM A with n states, a state cover V with the property (2.1), a
transition cover TC of p defined transitions, and a characterization set W with k homogeneous
identifying sequences of length up to h, there exists a complete test suite of length not more than
[L(V) + hn]k + L(TC) + h(p-n+ 1). (3.2)
Proof. Based on the Wp-method, we construct a complete test suite of the form TS =
V@WvTC®W. The set V@W means that every sequence from V is concatenated by k
sequences of length up to h. In the worst case, this part of the test suite is no longer than L(V)k

+ hnk. The set TC®W means that just a single identifying sequence of length up to h is applied

to the state reached after any sequence from the transition cover TC. Similar to the previous

proof, ITCI = p-n+l, and the total length of sequences of the set TC®W does not exceed the

value L [L(vj) + h] = L L(vj) + hlTCI = L(TC) + h(p-n+ 1). [J

vjETC vjETC

Corollary 3.3. The length of a complete test suite of an FSM A with n states and a transition
cover TC of p defined transitions is no less than
L(TC) + (p-n+ 1) = Lmin. (3.3)

(3.1)-(3.3) can be used to determine the expected size of a test suite which is complete for the
given machine in the class of all machines with an equal or fewer number of states.

3.2 A criterion for assigning "don't care" transitions

Practice has not yet provided us with protocol machines such that the length of complete test
suites approaches the least upper bound Lmax. However, there exists a class of FSMs for which
the length of a complete test suite meets the lower bound Lmin. These are machines with a

270 Part Six Testability

distinguishing sequence of length one. Unfortunately, protocol machines seldom fall into this
class. It is known that certain machines have neither distinguishing nor state identifying
seqences, and there are machines whose states have identifying (VIO) sequences, but only of
exponential length [Le Ya94]. Their least upper bound remains unknown, especially for partial
FSMs. In the general case, n states may require identifiers consisting of up to n-l sequences,
and it is possible to construct a sequence of length up to n(n-l)/2 distinguishing two states in a
given partial reduced FSM. Thus, in most cases, we deal with partial FSMs which are not easily
testable in the sense that they require a complete test suite of length far from the best possible.

If a protocol machine is specified completely then some measures can be taken to improve the
protocol testability at the implementation level only. However, if it is specified only partially
then its testability can be improved at the specification level ensuring that all implementations
derived from the augmented specification are more testable than that derived from the original
specification. Given a partial FSM with n states, t inputs, m outputs and p defined transitions,
there are (nt-p) "don't care" transitions. Each undefined transition can be either left undefmed or

transformed into a defined one in nm different ways. Thus, there exist (nm+ l)(nt-p) FSMs
which are quasi-equivalent to the given machine [Gill62]. We call them augmented machines
with respect to the original machine. An exhaustive procedure would enumerate all (nm+ 1)(nt-p)

machines, derive a complete test suite for each of them and search for the one with the shortest
test suite. We wish to avoid such a brute force search, called also "perebor", and should find a
criterion to guide the process of assigning "don't care" transitions.

As follows from the discussion of Section 3.1, a homogeneous distinguishing sequence
ensures IWI=1 and leads to a short test suite. Since such a sequence may not always exist, the
next best case is when each state possesses a homogeneous identifying sequence which might
be common for several states. Thus, the transformation of "don't care" transitions that
maximizes the number of states possessing homogeneous identifying sequences can be regarded
as a successful transformation. The approach we take is based on these heuristics.

However, the numerical characteristics of homogeneous identifying sequences alone such as
their number and total length are not sufficient to choose the best assignment of "don't care"
transitions. The problem is that their assignment affects length of a test suite in two opposite
ways. On the one hand, if newly added transitions create short identifying or even diagnostic
sequences of the machine which had no such sequences prior to the assignment then the size of
the test suite most probably will be reduced. On the other hand, the number of defined
transitions increases, thus, additional test sequences are required to test new transitions. If the
increase in length caused by an assignment exceeds the savings gained then the assignment
would deteriorate the testability of the given machine. For this reason, the expected or actual
length of a complete test suite should eventually be used to estimate the effect of assignments.

We demonstrate later in this paper that if a state has at least one "don't care" transition then it
is always possible to construct an augmented machine such that this state has a homogeneous
identifying sequence. Moreover, if the necessary and sufficient conditions established below are
satisfied then there exists an augmented machine with a homogeneous distinguishing sequence.
In the worst case, the length of identifying sequences reaches n, the number of states.

4 AN FSM WITH A SINGLE INPUT

In this section, we assume that a given machine has just one input and propose a method for
finding assignments of all "don't care" transitions such that their initial states possess
identifying sequences in an augmented machine. We also show that under certain conditions the
augmented machine has a distinguishing sequence. By the construction, the obtained sequences
are also homogeneous for the original machine which contains the machine with a single input
as its submachine.

On the design for testability of communication protocols 271

4.1. Auxiliary notions

Let B be a reduced partial FSM. Consider its submachine A which is obtained by restricting its

input set X to an arbitrary input xeX which labels at least one "don't care" transition. Thus, A

= (S, {x}, Y, 0, A, DA) is an FSM with a single input x.

The state transition graph of the FSM A has a cycle (SI->S2-> ... ->siJ if 8(Sj, x) = Sj+I for i =
1, .•. ,k-1, k~l; and 8(s/c, x) = SI. For each state of the cycle, any input sequence is acceptable.

If length of an input sequence w is a multiple of k, i.e. w = ~, ~ 1, then

8(Sj, xmlc) = Sj for all i = 1, ... ,k. (4.1)

Given a sequence~-I of length mk-1, we also have

8(Sj, xmlc-I) = Sj_I for all i = 2, ... ,k and O(s J, ~-I) = SIc. (4.2)
State S is said to be a starting state of A if there is no transition leading to this state. Consider

an arbitrary path Sr>S2-> ... ->s/c from a starting state SI. We say that the path terminates in state
SIc (a terminating path) if (st. x) is a "don't care" transition; or the path cycles (a cycling path) if

O(s/c, x) = Sj+I for some k>i~l, i.e. Sj+I-> ... ->S" is a cycle. The behavior of the FSM A is
defined in every state of a cycling path, thereby such path does not traverse any state with a
"don't care" transition.

~~7~ o 1 1

1 1 0 1 0
1 3 8 9 3

Figure 4.1 The FSM with a single input.

Example. Consider an FSM shown in Figure 4.1. Its transitions are labeled with outputs only,
since the machine has just one input. Starting states of A are 0, 4, 5, 9, 13. State 2 has a "don't
care" transition. There is only one terminating path from the starting state 5 which terminates in
state 2. Four other paths are cycling. All states except 2 and 5 accept all input sequences. The
FSM has the following sets of equivalent states: {I, 7,11}, to, 3, 6, lO}, {4, 8, 12}, {9, 13}.
Notice that starting states 9 and 13 are equivalent, but each of them is not equivalent to any other

state of its path. Moreover, they are not equivalent to any other state of this machine. [J

Based on this observation, we claim a more general property of an FSM with a single input.
Proposition 4.1. Let the FSM A have a cycling path P = (SI-> ... ->s/C) from a starting state SI
that is not equivalent to any other state of this path. Then A has a cycling path r= (S'I-> ... -
>s'iJ from a starting state S'I that is not equivalent to any other state of A which is not a starting
state.
Proof. If the starting state s] of P is not equivalent to any other state of A then P itself is the
path of the proposition. Suppose therefore that there is another state sj equivalent to SI and sj
is an intermediate state of a cycle (S'I-> ... ->s't) or of a cycling path (S'I-> ... sj-> ... ->s't),
where j> 1. For any input sequence, the successors of the equivalent states are also equivalent,

therefore states 8(s I, xt) and 8(sj, xt) are equivalent.

If sj is an intermediate state of a cycle (s'r> ... ->s't) then, because of (4.1), O(sj,.xI) = sj. In

this case, state s] and state 8(sJ, xt) of the same path are also equivalent. This contradict our

assumption that the state s I that is not equivalent to any other state of this path.
Assume then sj is an intermediate state of a cycling path (s'r> ... si~> ... ->s't), where j> 1.
Now, we must show that the starting state S'I is not equivalent to any state of P = (sr> ... ->siJ.

In fact, if states S'I and sp,p~l are equivalent, so are states O(S'I, xi-I) and 8(sp, xi-I). 8(s'I,

xi-I) = sj and is equivalent to SI. Now, states 8(sp, xi-I) and SI are required to be equivalent as

272 Part Six Testability

well. This is the contradiction. We can exclude the path (sr> •.. ->st} from our consideration.
As a result, we could only find another cycling path whose starting state is equivalent to the
starting state s / of the given path P. (J

A cycling path whose starting state is not equivalent to any other starting state of cycling
paths is termed a dominant cycling path of the FSM A. In the above example, among four
cycling paths, there are two dominant cycling paths: (9,8,6,7) and (13,12,10,11). As will be
shown in next section, dominant cycling paths play an important role for the assignment of
"don't care" transitions.

4.2 A single transition

We consider in this section the case where the FSM A with a single input has only one "don't
care" transition (s, x) and show that it is always possible to assign this transition such that state
s becomes distinguishable from any other state in the newly obtained completely specified FSM.

Given an FSM A = (S, (xl, Y, ~, A., DA), where (SXX)\[)A = «s, x», we consider its state
transition graph and determine all its cycles, terminating paths, cycling paths, and dominant
cycling paths. Note that a terminating path can only end in state s, but it might be empty if s has
no incoming transition in A. There are four possible cases each of which requires a distinct
assignment of the "don't care" transition (s, x):
1) There is no cycle in A, so all paths terminate in state s.
2) In A, there are only cycles and paths terminating in state s.
3) A has also cycling paths, but it has no dominant cycling paths.
4) A has a dominant cycling path.

Next we consider how the "don't care" transition (s, x) should be assigned in each of these
caseS in order to obtain a homogeneous identifying sequence of state s.

Casel
(s, x) is a "don't care" transition. All paths terminate in s. A has no cycle.
We determine the longest path Sr>S2-> ... ->Sf;">S and define a transition in state s on inputx

~s, x) = s/ and A(S, x) = y, where output y is such that the sequence A(S}, x), ...• A(Sk' x)y
cannot be represented as any of its proper prefixes repeated several times. If IYl> 1 then it is
always possible to find such output. Assigning the transition (s, x), we obtain a completely
specified FSM A'.
Proposition 4.2. In case 1, state s is distinguishable from any other state of A'.
Proof. In fact, due to the chosen output assignment, state s cannot be equivalent to any other
state in the obtained cycle (Sr>S2-> ... ->Sk->S). Assume therefore, that s is equivalent to state
sj, lS;jS;t, which belongs to another path s'r> ... ->sj ... ->s',->s->s/-> ... ->Sk. If states s and

sj are equivalent then states ~sj, xt·j+/) = s and 8(s, xt·j+/) are also equivalent. State ~s, xt

j+/) belongs to the cycle s->s/-> ... ->Sk and it is not state s because ts;/c andj~l. Then state s

should be equivalent to another state of the cycle, but this is impossible. (J

Example 1. Consider the FSM shown in Figure 4.2.

® o .0)..... 0 @..... 1 @~ 0 (9
Figure 4.2 The FSM with no cycles.

This machine has a single "don't care" transition in state S/. There are two paths: so->s/ and S4-

>S3->S2->S/ which tenninate in state S/. We choose the longest one and assign 8(s/, x) = S4.

The output set has two symbols, 0 and 1. If A(S/, x) is assigned 1 then A(S4, X)A(s3, X)A(s2,

x)A(sJ, x) = 0101 and it can be represented as its proper prefix 01 repeated two times, i.e. 0101
= (01)(01). In this case, state s/ would become equivalent to S3, and so would S2 and S4. To

distinguish state s/ from other states we must define A(sJ, x) = O. We obtain a new transition:

On the design for testability of communication protocols 273

S}-X/O->S4. Now sequence x distinguishes state S} from Sj; sequence xx distinguishes state S}
from S4; and xxx distinguishes S} from So and S2. Thus, the sequence xxx is a homogeneous

identifying sequence of state s} in the augmented FSM. Q

Case 2
(s. x) is a "don't care" transition. A has cycles. but its paths terminate in s. In this case, we take

an arbitrary cycle (sr> ... ->sv and define a transition from state s to the state SJ, i.e. 8(s. x) =

SJ, with the output l(s. x) = y such that y '* l(Sko x). By assigning the transition (s. x), we
again obtain a new completely specified FSM A'.
Proposition 4.3. In case 2, state s is distinguishable from any other state of A'.
Proof. The obtained FSM A' has some cycles and cycling paths with a cycle (sr> ... ->Sk)
only. Let s'r> ... ->s',->s->S}-> ... ->Sk be such a path. If state s is equivalent to a state in the
path then it is also equivalent to another state in the cycle (sr> ... ->sv since the successors of
equivalent states are equivalent for any input sequence. Therefore, we may assume that state s is
equivalent to a state s') in a cycle (s'r> ... ->s'/), Consider now an input sequence xtk of length

tk. State 8(s. x'i:) and state 8(s'], X'i:) are equivalent states, as they are successors of sand S'l.

By virtue of (4.2) and (4.1), 8(s. X'i:) = O(Sl. X'k-1) = Sk and ~(S'l. Xlk) = S'l. This means s

and Sk should be equivalent states, but this is not possible, because l(s. x) '* l(Sk. x).
Q

Example 2. Consider the FSM with two cycles shown in Figure 4.3.

~(i)~
Figure 4.3 The FSM with cycles.

Based on the cycle (S2. Sj. S4. ss), we define 8(s], x) = S2 and A.(s], x) = 0, since l(ss. x) = 1.
We obtain a new transition: srX/1->S2. The machine augmented with this transition has a

sequence xxx that distinguishes state 1 from any other state. In fact, l(so. xxx) = 000, l(s}.

xxx) = 001, l(S2. xx) = 010, l(sj. xxx) = 101, l(S4. xxx) = 010, l(ss. xxx) = 101.

Alternatively, we could assign 8(s 1. x) = So and A.(S}, x) = 1, since A.(so. x) = O. In either case,
the sequence xxx can be used as a homogeneous identifying sequence of Sl in the completely

specified machine. The original machine had no identifying sequence for this state. Q

Case 3
A has cycling paths, but none of them is dominant. In this case, the starting state of each cycling
path is equivalent to another state of this path_ To assign the "don't care" transition (s. x) we
choose an arbitrary path (SI-> ... ->Si+r> ... ->sv which ends with the cycle (Si+I->",->Sk),
where l~ 1. Since state s 1 is equivalent to a certain state of the path, it is also equivalent to a state

Sj of this cycle, i+ l~jSk. Then we assign 8(s. x) = Sj with the output l(s. x) = y such that y '*
A.(Sj-], x). If j=1 then y '* l(Sko x). As a result, the augmented machine A' is obtained.

Proposition 4.4. In case 3. state s is distinguishable from any other state of A'.

Proof. We have 8(s. x) = Sj and l(s. x) '* l(Sj_I. x)_ Let state S be equivalent in A' to a state
sj,. State sj, belongs either to a cycle (s'r> .. _->s',), where p~t, or to a cycling path s'r> ... -
>S', with a cycle (s',+r>--.->s',), where l~t.
In the first case, the equivalence of sand sj, implies the equivalence of Sj and S'p+I (or Sj and

S'I if p=t). Moreover, states ~(Sj, X'k-I) and ~(s'p+j, xlk-I) are also equivalent. Because of

(4.2), 8(Sj. xlk-I) = Sj-I, ~(Sj,+I. xlk-I) = s'p. Thus, if states Sj-I and s'p are equivalent, then

274 Part Six Testability

states S and Sj should be equivalent as well, but this is impossible, because A,(s, x) '" A(Sj.J. x).
In the second case, state S is equivalent to state sp from the path s'r> ... ->s', which terminates
in cycle (s',+/-> .•. ->s',), where lSrSt. If this patti is defined in A then, by the assumption, its
starting state is equivalent to another state of the path, and we have the situation considered
above. Assume finally that state s is equivalent to state sf from the path (s'/-> •.. ->s',-> ... ->s
>sr> .•. ->Sk) obtained in A'. Again, state s becomes eqUIvalent to a state of a cycle, and we

have exactly the same situation as above. 0
Example 3. Consider the FSM shown in Figure 4.4.

~~
Figure 4.4 The FSM with equivalent states.

There is a cycling path. Its starting state S3 is equivalent to state S/. We add a transition from

state S5 to state s/ labeled with output A(S5, x) = 0",)..(S2, x). Then state S5 becomes

distinguishable from any other state by the sequence xu. 0

Case 4
A has a dominant cycling path. In this case, there exists a cycling path P = (s/-> ... Sj+]-> ... -
>s,J, i~l such that s/ is not equivalent to any other state of P, moreover, in accordance with
Proposition 4.1, only another starting state of a cycling path might be equivalent to s /.

We transform the "don't care" transition (s, x) into a defined one in the following way. fi..s,

x) = s/ and A(s, x) is assigned any ye Y. Similarly to the cases considered above, we claim that
state s is now distinguishable from any other state of the augmented FSM A'. .
Proposition 4.5. In case 4, state s is distinguishable from any other state of A'.
Proof. Assume s is equivalent to a state S]. If S] is involved in a path (s'/-> ... ->s',) in A then
s/ of P can be equivalent to a starting state of another dominant cycling path, because P is also a
dominant path. State s cannot be equivalent to any state of such a path. In this case, s can only
be equivalent to some state of a cycling path (s'r> ... ->s->s/-> ... Sj+/-> ... ->s,,). However, s}
becomes equivalent to some state of the cycle (Sj+r> ... ->skJ. This contradicts our assumption
that P is a dominant cycling path. 0
Example 4. Consider the FSM shown in Figure 4. L This machine has two dominant cycling
paths with states (9, 8, 6, 7) and (13, 12, 10, 11). We can choose the first path and define
transition from state 2 to state 9. Regardless of the output of this transition, the sequence xu

becomes an identifying sequence of state 2. 0
Propositions 4.2 - 4.5 implies the following theorem.

Theorem 4.6. Given an FSM A = (S, {x}, Y, ~, A, VA), where (SxX)'lDA = (s, x)}, it is
always possible to assign its "don't care" transition such that state s of the augmented
completely specified FSM is distinguishable from any other state and has a homogeneous state

identifying sequence of length not exceeding the number of states. 0
In certain cases, the augmented FSM has a homogeneous distinguishing sequence, as the

following theorem shows. States Sj and Sj are said to be converging iff fi..Sj, x) = fi..Sj, x) and

A(Sj, x) = A(Sj, x).

Theorem 4.7. Given an FSM A = (S, {x}, Y,~, A, VA), where (SxX)'lDA = {(s, x)}, it is
always possible to assign its "don't care" transition such that the augmented completely
specified FSM has a homogeneous distinguishing sequence of length not exceeding the number
of states iff A has neither converging nor equivalent states.
Proof. If A has at least two converging states then regardless of the transition's assignment,
these states would become equivalent in any augmented machine. Assume now that we have
assigned the transition (s, x) and state s becomes distinguishable from any other state. Theorem

On the design for testability of communication protocols 275

4.6 states that it is always possible. If two states Sj and Sj are such that any input sequence is
acceptable for each of them then they are nonequivalent in A as well as in an augmented FSM.
Suppose therefore that for one of these states, say, for state Sj, not all sequences are acceptable.

In this case, there is an acceptable sequence OJ for Sj of A such that li(Sj, OJ) = s, since (s,x) is

the only "don't care" transition in A. Now state li(Sj' OJ) should be equivalent to state s. Then

li(Sj' ro) = s. The latter is possible only if A has converging states.
The completed FSM has only cycling paths, and the cycles are no longer than n. By

construction, every two states are distinguishable by a sequence of length k, where k is the

length of a cycle. Thus, kSn. [J

We have examined all configurations possible in a given FSM with a single "don't care"
transition in state S and thus, we have devised a technique for converting such a partial FSM
into a completely specified FSM where state S possesses an identifying sequence. Under certain
conditions, the resulting identifying sequence may also be a distinguishing sequence. Next, this
technique will be generalized to cover the case where there exist several "don't care" transitions.

4.3 Several transitions

Given an FSM A = (S, {x}, Y, 0, A, DA), where I(SxX)\DAI~l, let the subset Su contain all

states with "don't care" transitions, i.e. Sit = {s I (s, x) i! DA}. We also define a subset Sd of
states which accept all possible input sequences {x} *; these states are involved in cycles or in

cycling paths. The set Sd might be empty. For a state SjE Su, let Sj denote the set of states from

which state Sj is reachable, SjE Sj. Clearly, Sj nSj = 0 for all i*j and Sj ("\ Sd = 0, since A is a

deterministic machine. Based on the set SdUSj, we construct a submachine Aj = (SdUSj, {x},

Y, ~, Aj, Dj) of the FSM A by deleting from A all states S\f..SdUSj) along with their transitions.

Aj has exactly one "don't care" transition. The technique of Section 4.2 can now be applied.
We present an algorithm for augmenting a given FSM with a single input in order to obtain

an identifying sequence.

Algorithm 1.

Input: A partial FSM A = (S, {x}, Y, 0, A, DA) with a single input and ISItI~l "don't care"

transitions.

Output: An augmented completely specified FSM A' = (S, (x), Y, 0', A'). Each state of Su
has an identifying sequence.
Step 1. Construct the subset Sd for A.

Step 2. Choose a state SjE Sit with the maximaIIS,~

Construct a submachine Aj = (SdUSj, {x}, Y, OJ, Aj, Dj).
Step 3. Call the technique of Section 4.2 to assign (Sj, x) in Aj (and therefore in A).

Step 4. Sd := SdUSj
Su := Su\{sil

If Sit * 0 then GO TO Step 2. [J

The resulting machine can be characterized by the following two theorems which are
generalized from Theorems 4.6 and 4.7 and are proven in a similar manner.

Theorem 4.8. Suppose that A = (S, {x}, Y, 0, A, DA), where I(SxX)\DAI~l is a given FSM
and an FSM A' is the output of Algorithm 1. Then every initial state of "don't care" transitions
is distinguishable from any other state in A' and has a homogeneous identifying sequence of

length not exceeding the number of states. [J

276 Part Six Testability

Theorem 4.9. Suppose that A = (S, {x}, Y, 0, A, DA), where I(SxX)\DAI~1 is a given FSM

and an FSMA'is the output of Algorithm 1. Then the augmented completely specified FSMA'
has a homogeneous distinguishing sequence of length not exceeding the number of states iff A

has neither converging nor equivalent states. 0
Example. Consider the FSM A shown in Figure 4.5a. The necessary and sufficient conditions
of Theorem 4.9 are satisfied, since the machine has no converging or equivalent states, so
Algorithm 1 should augment it in such a way that the resulting machine has a homogeneous
distinguishing sequence of length not exceeding the number of states.

®J0~~
(a) (b)

Figure 4.5 The FSM and its augmented FSM.

States 2 and 3 have "don't care" transitions, so the set S,. = {2, 3}. No state of A accepts all

input sequences, the set S d = 0. We choose state 2 and find the set S 2 = {I, 2}. A submachine

contains the transition 1->2. It is the case 1 of the technique from Section 4.2. We assign 0(2,

x) = 1 and A(2, x) = 1. Now Sd = {I, 2}, Su = {3}. S3 = {3, 4}. We have the case 2 of Section

4.2. 0(3, x) = 1 and A(3, x) = O. The augmented machine is shown in Figure 4.5b. It has a

homogeneous distinguishing sequence xxx. The identifying sequence for state 1 is xx, for 2 - x,
and for 3 and 4 - xxx.

5 ASSIGNING "DON'T CARE" TRANS mONS

We now present an algorithm for augmenting a partial reduced FSM with several inputs. The
algorithm uses formulae (3.1) - (3.3) to estimate the expected length of a test suite. If it exceeds
the lower bound Lmin defined by (3.3), the algorithm repeatedly tries all inputs labeling "don't
care" transitions and calls Algorithm 1. The Wp-method [FBK91] is used to derive a resulting
test suite which is complete in the class of machines with an equal or fewer number of states.

Algorithm 2.
Input: A partial reduced FSM A.
Output: An augmented FSM A' and a complete test suite of length not greater than that of A.
Step 1. Calculate the expected length LA of a test suite for A.
If LA = £nUn then GO TO STEP 3.
Step 2. C:= A.
Step 2. Let X,. = {Xl, •.• , Xq } be the set of inputs labeling "don't care" transitions in C.

For each XiEX,.

Call Algorithm 1 to assign "don't care" transitions labeled with the input Xi.

Add newly defined transitions into the FSM C.
Let the augmented machine be Ci.
Calculate the expected length of a test suite for Ci.

Step 3. Let C* be an FSM Ci or C with the shortest expected test suite.
If C* = C then GO TO STEP 4.

C:= C*. X,. = Xu\{xd. If X,. '" 0 then GO TO STEP 2.

Step 4. A ':= C*. Call the Wp-method to derive a complete test suite for the machine A'. 0

Remarks on Algorithm 2:
1) We assume that an FSM is given in its reduced form; however, this assumption is indeed not
restrictive. The algorithm also accepts FSMs that are not reduced, i.e. that have compatible
states [Gill62]. However, under the "undefined by default" convention for "don't care"

On the design for testability of communication protocols 277

transitions, it is recommended first to reduce such a machine by merging compatible states, and
then to apply Algorithm 2 to its reduced fonn. This is because a machine with fewer states
usually requires shorter tests. There may exist several reduced fonns of a nonreducedpartial
FSM, unlike the case of complete FSMs; and it is desirable to choose the most testable reduced
fonn in this case. More research is required in this direction.
2) The resulting FSM is not necessarily a completely specified machine, some "don't care"
transitions might be left intact. As discussed in Section 3, a shorter state cover usually leads to a
shorter test suite. Undefmed transitions can be assigned to reduce the total length of a state
cover of the machine and eventually that of a complete test suite.
3) The algorithm tries all inputs which label "don't care" transitions. To facilitate its early
termination we can arrange inputs such that the overall number of converging and equivalent
states for a corresponding input fonn a non-decreasing sequence. In particular, if there exists an
input, such that the necessary and sufficient conditions for the existence of a homogeneous
distinguishing sequence are satisfied, then Algorithm 2 assigns the "don't care" transitions
labeled with that input.
4) Comparison of possible augmentations with respect to different inputs is based on the
expected test suite length. If instead, a test derivation method, such as the Wp-method, is called
to derive a test suite whenever its length is required to make a decision, the user can stop the
process once a test suite of an acceptable size is obtained. In the worst-case scenario, the
method would be called q(q+ 1)/2 times, where q is the number of inputs labeling "don't care"
transitions in the original machine.

6 APPLICATION EXAMPLES

Example 6.1
Consider the FSM A shown in Figure 6.1a. It is reduced and partially specified. There are five
"don't care" transitions in this machine. Each of the transitions can lead to one of five states

with output 0 or 1; alternatively, it can be left intact. Altogether, there exist 115 = 161051
completely and partially specified machines that are augmentations of the given FSM A. A
"perebor", i.e. an exhaustive procedure must try all of them, derive a complete test suite for
each, and choose a machine with the shortest test suite. Instead, we apply our method.

4/1

J---~2

(a) (b)
Figure 6.1 The FSM and its augmented FSM.

First we derive a complete test suite for the given machine using the Wp-method. Assuming

state 1 as an initial state, the state cover is V = {e, 1, 2, 23}. The transition cover is TC = {e, 1,

2,4,11,12,13,21,23,232,233, 234}. The set W = {I, 2, 3} is a characterization set of A.
The state identifiers are: WI = (I, 2). W2 = {I, 2, 3}, W3 = {I, 3}, W4 = {I, 3}. The
resulting test suite complete in the class of FSMs with up to four states is: {111, 112, 113, 121,
123, 131, 132, 133,211,212,213,2321,2322,2331,2332,2333,2341,2343, 41, 42, 43}.
There are 21 test cases of total length 67. The fonnula (3.1) gives the expected length of 90.
(3.3) returns the lower bound Lmin = 30.

Every input labels at least one "don't care" transition, but only for input 4 are there no
converging states. We choose this input and construct a submachine of A. It is, in fact, the

278 Part Six Testability

machine shown in Figure 4.5a. The corresponding augmented submachine is the one shown in
Figure 4.5b. It has a homogeneous distinguishing sequence 444. According to this submachine,
two transitions must be added to the original machine, namely 2-4/1->1 and 3-4/0->1. We
include them into the FSM A and obtain the augmented FSM A' shown in Figure 6.1b. The
additional transitions are depicted in bold. Notice that three other "don't care" transitions are left
intact. A' has the following state identifiers (as constructed in Section 3.3): W'1 = {44}, W'2 =
{4}, W'3 = {444}, W'4 = {444}. Based on the obtained identifiers, we can derive a complete
test suite of length 39. As a result, the length is reduced by about 40%. The "don't care"
transitions labeled with inputs 1, 2 and 3 remain, since the length cannot be further reduced.

Example 6.2. The INRES protocol
To illustrate the proposed approach to improving the testability of a partially specified protocol
machine, we consider the INRES protocol [Hogr91]. The behavior of the responder part of this
protocol can be specified by an FSM given in Figure 6.2 (plain lines only).

1

Figure 6.2 The INRES Responder.
The input alphabet is: 1- CR, 2 - IDISr, 3 - ICONrsp, 4 - DTO, 5 - DT1. The output alphabet

is 1 - ICONi; 2 - DR; 3 - CC; 4 - ACKO; 5 - ACKO, IDATi; 6 - ACKl; 7 - ACKl, IDATi; 8-
null. The machine is partially specified. The traditional way of augmenting such a machine is
based on the completeness assumption [SiLe89], [PBD93]. In particular, all "don't care"
transitions are replaced by looping transitions with the null output (not depicted). Following this
approach, we first obtain a completely specified FSM and derive a test suite complete for

implementations with up to four states, as follows. A state cover is V = {e, 1, 13, 135}. W =

{41}. We apply the Wp-method and obtain a test suite with 19 test cases of total length 76.
Next, we assume that the behavior of the responder for all service primitives from the

INRES user can be defined in an arbitrary way, whereas the completeness assumption should
still be applied for all incoming PDUs. In particular, the transitions (1, 2), (1, 3), (3, 3), (4, 3)
in states 1 and 3 on inputs 2 (IDISr) and 3 (ICONrsp) are "don't care" transitions. This machine
requires a complete test suite with 15 test cases of total length 61.

Now we follow the proposed approach to find an augmented machine with a shorter test
suite. Applying Algorithm 2 we can obtain the transitions 1-3/c->4, 3-3/a->2, 4-3/b->2 shown
in Figure 6.2 as bold lines. Here a, b, and c are different ouputs which can be arbitrary chosen
from the set {I, 2, 4, 5, 6, 7, 8}. The obtained machine has a homogeneous distinguishing
sequence, that is W' = {3} (ICONrsp). There is only one "don't care" transition left in state 1
on input 2. We define a transition 1-2/d->3, where d is an arbitrary output in order to reduce a

state cover. It now has fewer symbols: V' = {E, 1,2, 3}. Given the sets W' and V', we now
have a complete test suite (produced by the same method): TS = {41, 541, 441, 341, 241,
1241, 13241, 135241, 141, 1541, 1441, 1141, 1344, 1334, 1314, 13544, 13554, 13534,
13514}. It comprises 17 test cases of total length 49. Thus, the obtained version of the INRES
responder is more testable than the original one and the version based the completeness
assumption. This assumption widely cited in the literature may deteriorate the testability of a
protocol, as our example shows.

To assess the effectiveness of the method we have conducted the following experiment. A

tool was designed to enumerate all (1 +4·8)4 = 1185921 of the possible augmented machines for
the INRES responder, derive a complete test suite for each of them, and find an FSM with the

On the design for testability of communication protocols 279

shortest one. A test derivation tool used to generate test suites implements the method developed
for partial FSMs in [Petr91]. The experiment shown that all augmented FSMs require no fewer
than 49 test events for a complete test suite.

7 CONCLUSION

In this paper, we have addressed one particular problem of design for testability of protocols on
the specification level. We have developed an approach to improving testability of the given
protocol taking advantage of the fact that a protocol is usually specified only partially and certain
state/input combinations can be set in an arbitrary way. The feasibility of the approach was
proven on partially specified FSMs with "don't care" transitions. Its effectiveness was
demonstrated by conducting an experiment on the INRES protocol.

Though an algorithm given in this paper guarantees that the identifying sequences in the
resulting FSM are quite short (their lengths do not exceed the number of states), it does not yet
guarantee to produce the shortest possible ones. Thus, our algorithm can be further refined to
construct an augmented machine with near-optimal identifying sequences. We continue our
research in this direction. The work in progress also concerns the adaptation of the basic ideas
underlying the proposed approach to nondetenninistic and extended finite state machines.

In this paper, we have also presented some useful estimations of the expected length of
complete test suites which are used to guide the process of augmenting partially specified
machines. These estimations can also be used to select parameters of transition covers and
characterization sets usually left without any guidance by most existing test derivation methods.

We have considered DFI' in the context of the test derivation methods that rely on a reset
facility, however the presented algorithms can be used in conjunction with other methods which
do not use the reset. By augmenting a partial machine, a variety of UIO's or even distinguishing
sequences are usually created. A nice property of the resulting machine is that lengths of
identifying sequences never exceed the number of states. Therefore, any UIO-based method
should yield a short test sequence. The presented approach can also be easily generalized to
incorporate additional factors influencing the testability, such as length of transfer sequences
(test preambles and postambles), the cost assigned to protocol messages, and others.

Acknowledgments
This work was partly supported by the HP-NSERC-Cm Industrial Research Chair on
Communication Protocols at Universite de Montreal, the NSERC Individual Research Grant (R.
Dssouli) #20629188, and by the Russian Found for Fundamental Research. The authors wish
to thank Q. M. Tan who has designed a test derivation tool for his help in experiments and S.
A. Ezust for comments.

8 REFERENCES

[ABF90] M. Abramovici, M. A. Breuer, and A. D. Friedman, Digital Systems Testing and
Testable Design, Computer Science Press, Oxford, England, 1990.

[BoPe94] G. v. Bochmann and A. Petrenko, "Protocol Testing: Review of Methods and
Relevance for Software Testing", ISSTA'94, ACM International Symposium on Software
Testing and Analysis, Seattle, U.S.A., 1994, pp. 109-124.

[BPY94] G. v. Bochmann, A. Petrenko, and M. Yao, "Fault Coverage of Tests Based on
Finite State Models", the Proceedings of IFIP TC6 Seventh IWPTS'94, Japan.

[Chow78] T. S. Chow, "Testing Software Design Modeled by Finite-State Machines", IEEE
Transactions on Software Engineering, Vol. SE-4, No.3, 1978, pp.178-187.

[DsFo91] R. Dssouli and R. Fournier, "Communication Software Testability", IFIP
Transactions, Protocol Testing Systems III (the Proceedings of IFIP TC6 Third
International Workshop on Protocol Test Systems), Ed. by I. Davidson and W. Litwack,
North Holland, 1991, pp.45-55.

280 Part Six Testability

[FBK91] S. Fujiwara, G. v. Bochmann, F. Khendek, M. Amalou, A. Ghedamsi, "Test
Selection Based on Finite State Models", IEEE Transactions on Software Engineering,
Vol. SE-17, No.6, 1991, pp.591-603.

[GiIl62] A. Gill, Introduction to the Theory of Finite-State Machines, McGraw-Hill, 1962.
[Henn64] F. C. Hennie, "Fault Detecting Experiments for Sequential Circuits", IEEE 5th Ann.

Syrnp. on Switching Circuits Theory and Logical Design, 1964, pp. 95-110.
[Hogr91] D. Hogrefe, "OSI Formal Specification Case Study: The Inres Protocol and Service",

University of Berne, Technical Report IAM-91-012, University of Berne, 1991.
[Jose78] J. Joseph, "On Easily Diagnosable Sequential Machines", IEEE Transactions on

Computers, Vol. C-27, February, 1978, pp.159-162.
[LeYa94] D. Lee and M. Yannakakis, "Testing Finite-State Machines: State Identification and

Verification", IEEE Trans. on Computers, Vol. 43, No.3, 1994, pp. 306-320.
[Petr91] A. Petrenko, "Checking Experiments with Protocol Machines", IFIP Transactions,

Protocol Test Systems, IV (the Proceedings of IFIP TC6 Fourth International Workshop
on Protocol Test Systems, 1991), Ed. by Jan Kroon, Rudolf 1. Heijink and Ed
Brinksma, 1992, North-Holland, pp. 83-94.

[PBD93] A. Petrenko, G. v. Bochmann, and R. Dssouli, "Conformance Relations and Test
Derivation", IFIP Transactions, Protocol Test Systems, VI, (the Proceedings of IFIP TC6
Fifth International Workshop on Protocol Test Systems, 1993), Ed. by O. Rafiq, 1994,
North-Holland, pp.157-178.

[PDK93] A. Petrenko, R. Dssouli, and H. Konig, "On Evaluation of Testability of Protocol
Structures", IFIP Transactions, Protocol Test Systems, VI, (the Proceedings of IFIP TC6
Fifth International Workshop on Protocol Test Systems, 1993), Ed. by O. Rafiq, 1994,
North-Holland, pp.1l1-123.

[ShLe94] M. L. Sheu and C. L. Lee, "Symplifying Sequential Circuit Test Generation", IEEE
Design and Test of Computers, Fall 1994, pp. 28-38.

[SiLe89] D. P. Sidhu and T. K. Leung, "Formal Methods for Protocol Testing: A Detailed
Study", IEEE Trans. on Software Engineering, Vol. SE-15, No.4, 1989, pp.413-426.

[TyBa75] T. Tylaska and 1. D. Bargainer, "An Improved Bound for Checking Experiments that
Use Simple Input-Output and Characterizing Sequences", IEEE Transactions on
Computers, Vol. C-24, No.6, 1975, pp. 670-673.

[Vasi73] M. P. Vasilevski, "Failure Diagnosis of Automata", Cybernetics, Plenum Publishing
Corporation, New York, No.4, 1973, pp.653-665.

[VLC93] S. T. Vuong, A. A. F. Loureiro, and S. T. Chanson, "A Framework for the Design
for Testabilitiy of Communication Protocols", in the Proceedings of IFIP TC6 Fifth
IWPTS'93, Ed. by O. Rafiq, 1994, North-Holland, pp.89-108.

9 BIOGRAPHY

Nina Yevtushenko received the Dipl. degree in radio-physics in 1971 and Ph. D. in
computer science in 1983, both from the Tomsk State University, Russia. She is now a
Professor at that University. Her research interests include the automata and FSM theory and
testing problems.
Alexandre Petrenko received the Dip!. degree in electrical and computer engineering from
Riga Polytechnic Institute in 1970 and the Ph.D. in computer science from the Institute of
Electronics and Computer Science, Riga, USSR, in 1974. Since 1992, he has been with the
Universite de Montreal, Canada. His current research interests include communication software
engineering, protocol engineering, conformance testing, and testability.
Rachida Dssouli received the Doctorat d'universite degree in computer science from the
Universite Paul-Sabatier of Toulouse, France, in 1981, and the Ph.D. degree in computer
science in 1987, from the Universite de Montreal, Canada. She is currently an Associate
professor at the University of Montreal. Her research area is software engineering and her
research interests include software specification and testability, protocol testing and observation.
Kamel Karoui is a Ph.D. student of the Universite de Montreal, Canada.
Svetlana Prokopenko is a Ph.D. student of the Tomsk State University, Russia.

