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Abstract 
Design For Testability (DFI') is understood as the process of introducing some features into a 
protocol entity that facilitate the testing process of protocol implementations. DFI' at the 
implementation level deals with a particular realization on a given platfonn, whereas DFI' at the 
specification level affects all possible implementations regardless of the implementation process. 
The fact that protocols are usually specified only partially, facilitates DFI' at the specification 
level. In this paper, we address one particular problem of DFI', the problem of finding a 
minimal augmentation of the given protocol behavior (an FSM) such that a newly obtained 
specification is more testable than the original one, while maintaining sets of defined states and 
events. We propose an approach to augmenting a partially specified FSM such that a test suite 
for the resulting FSM with guaranteed fault coverage is shorter than that for the original FSM. 
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1 INTRODUCTION 

Behavior of a protocol entity is usually described for a number of situations. A situation in the 
entity can be understood as a combination of its state and a current input event from a peer entity 
or from the user of this entity. A service definition and protocol specification explicitly define 
situations, sometimes called valid, which can happen during normal or abnormal course of 
communication. If the protocol behavior is unspecified in a valid situation then the protocol is 
said to have an error, called an unspecified reception. A well-formed protocol is neither under
nor over-specified. An over-specified protocol has unreachable states or transitions which can 
never be executed. However, even well-formed protocols leave certain situations undefined. 
These situations are regarded as invalid, in the sense that some events can never happen in a 
particular state. There are also certain signals from the user which do not require any 
communication with a remote entity and are processed locally. Local behavior is usually not 
standardized and can be implemented in various ways. For this reason, protocols are widely 
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266 Part Six Testability 

recognized as partially specified systems [BoPe94], [PBD93], [SiLe89]. This feature facilitates 
the process of implementing a protocol. Undefined situations are utilized for optimizing a 
protocol implementation on a given platform. Various criteria can be applied for optimization. 
For complex protocols, testability of their implementations becomes a primary concern of 
communication software designers. 

In general terms, testability of a protocol entity means that it has some features that will 
facilitate the testing process [DsF09J], [VLC93], [PDK93]. Design for testability (DFf) is 
understood as the process of introducing these features into the protocol entity. DFf at the 
implementation level deals with a particular realization on a given platform, whereas DFf at 
the specification level affects all possible implementations regardless of the implementation 
process. Unfortunately, most existing protocols have been designed and documented without 
testing requirements in mind [VLC93]. To improve the protocol's testability, one should rather 
rely only on those combinations of states and events for which the protocol behavior is not 
defined. Assuming that the behavior in such situations can be arbitrary defined, the problem of 
DFf at the specification level can be formulated as follows. 

We must find a minimal augmentation of the given protocol behavior such that a newly 
obtained specification is more testable than the original one. A measure of testability of a 
protocol entity is assumed to be inversely proportional to the shortest length of a test suite 
needed to achieve guaranteed (complete) coverage of certain faults [PDK93]. To the best of our 
knowledge, formal methods for DFf of protocols have not yet been explored. Note that the 
existing formal methods and techniques for improving testability which have been developed 
mainly in the hardware area, see, for example, [ShLe94], [ABF90], [Jose78], cannot be applied 
in this domain, since they either rely on the structure of an implementation, or they change the 
set of states, or the sets of input/output events, in a way that is similar to the adding of a read
state message in protocol engineering. 

In this paper, we consider a simple FSM model of a protocol machine (at least its control 
portion) and assume the following scenario of DFT. In the first step, an initial FSM 
specification is derived from the given requirements. If the FSM is not completely specified then 
its undefined transitions are "don't care" transitions which model situations where the 
requirements do not restrict any further protocol behavior. The problem now is how to augment 
the partially specified FSM by converting "don't care" transitions into defined transitions such 
that a test suite for the resulting FSM with guaranteed fault coverage is shorter than that for the 
original FSM. In the last step, the augmented specification of the protocol and its test suite are 
released for implementation. Even if the scenario seems somewhat idealistic, we believe that 
such an approach should spare efforts required to produce conforming implementations. 

This paper is structured as follows. In Section 2, we present some basic definitions and 
concepts. In Section 3, we discuss the influence of machine's parameters on the size of a 
complete test suite and derive several formulae for estimating its length. Based on this 
discussion, we introduce the basic idea underlying our method for assigning "don't care" 
transitions presented first for a machine with a single input in Section 4 and then generalized for 
an arbitrary machine in Section 5. Section 6 contains application examples, including the 
INRES protocol. We conclude in Section 7 by presenting some open research issues. 

2 BASIC NOTIONS AND DEFINITIONS 

Throughout this paper we make use of the following definitions. A partial Finite State Machine 

(FSM) A is a 6-tuple (S, X, Y, 8, A, DA), where S is a set of n states; X and Y are finite sets of 

inputs and outputs; 8 and A are transition and output functions; DAis a set of defined transitions 

of A, that is a subset of SXX. We assume that each input labels at least one defined transition. 
An initialized machine also has a designated initial state so. A becomes a complete (completely 

specified) machine if DA = SXX. Transitions in (SxX)'DA are undefined or "don't care" 

transitions. Here, we assume the so-called "undefined by default" convention for undefined 
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transitions [PBD93], that is, if (s, x) E (SxX)\[)A then o(s, x) and A(S, x) can be set to 

(assigned) any s', S'E S and any y, yE Y, respectively. 
A sequence Xl .. .xk of the set X* of all possible input sequences is called an acceptable input 

sequence for state s if there exist k states SJ, ... ,Sk from S such that O(s, Xl) = SI and O(Sj,xj+I) 
= Sj+J, i = 1, ... , k-l. We use Xj* to denote a set of aJl input sequences acceptable for state Sj 
and XA * for the state so. Two states Sj and Sj of FSM A are said to be distinguishable if there is 

an input sequence a E Xj* n Xl such that A(Sj, a) "# A(Sj, a). If any two states of A are 

distinguishable then A is a reduced machine. As usual, states Sj and Sj of A are equivalent iff 

Xj* = Xl and A(Si, a) = A(Sj, a) for every sequence a. 

Let A be a reduced partial FSM. Given a pair of states Sj and Sj, we choose a sequence ajj 

that distinguishes them, and form a set Wj = {aij I Sj E Sand j "# i}. The set Wj is caJled an 

identifier of state Sj. If the Wj has just a single identifying sequence, i.e. IWjl=1 then it is often 
caJled a UIO-sequence. If there exists a set W of input sequences such that any sequence from 
W is acceptable for any state and W is a state identifier of any state then we refer to the set Was 
a characterization set of A. In the case where the W set consists of just a single identifying 
sequence, we refer to this sequence as a distinguishing sequence [Henn64]. Machines with such 
sequences usuaJly possess very short tests. 

We say that the FSM A is connected if for any state S there is an input sequence p such that 

O(so, fJ) = s. A set V = {e, fh ... ,f3n-I} of input sequences is said to be a state cover if for any 

state Sj of S there is a sequence f3jE V which takes FSM A from its initial state into state Sj, 

where e is the empty sequence: O(so, e) = so, thus Vle. 

Let a connected reduced FSM A have a characterization set W. If DA = SXX then Walways 

exists. Assume the sets V and W have the foJlowing properties: 

1) if a sequence f3 belongs to V then any prefix of it also belongs to V, i.e. 

if f3x E V then f3 E V; (2.1) 

2) if a sequence a belongs to W then any suffix of it also belongs to W, i.e. 

if xa E W then a E W. (2.2) 

As an example, a homogeneous distinguishing sequence satisfies (2.2), a sequence is 

homogeneous if it is a sequence of the same symbol, i.e. x' = xx:,-I, r~l. 
It is known that if V and W have the properties (2.1) and (2.2) then the set TS = TC@Wis a 

complete test suite for the FSM A in the class 3n of all FSMs with up to n states [Vasi73]. Here 
"@" stands for concatenation operation on sets, and the set TC is a transition cover that contains 

Vas well as any sequence f3j from V concatenated with any input that is acceptable for state Sj = 

O(so, f3j). [Vasi73] gives this version of the so-caJled W-method [Chow78]. 
A complete test suite can be shortened if each sequence of the set W is applied after any 

sequence from V. However, after any sequence from TC that is not in V, only a part of the set 
W is applied, namely, a corresponding state identifier. This is the main idea of the Wp-method 

[FBK91]. We use the following notation for such test suites: TS = V@WuTC®W. Here we 

consider slightly generalized versions of these methods to cover partial reduced machines. For 
more discussions on partial FSMs the reader is referred to [Petr91], [PBD93], [BoPe94]. 

3 LENGTH OF A TEST SUITE AND "DON'T CARE" TRANSITIONS 

3.1 Estimating a test size 

Generating a complete test suite for a given FSM involves many choices, most of which are left 
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without any guidance in most existing test derivation methods. This makes it extremely difficult 
to detennine length of a complete test suite until the test suite is actually derived. Its length 
depends on many factors [BPY94]. Among them, properties of the state cover, transition cover 
and characterization set chosen for the test derivation seem most essential. We note that the 
known bounds [Vasi73] are derived for the case where state covers and characterization sets 
satisfy the properties (2.1) and (2.2). These properties facilitate the test length estimation as 
well. Here we look for other properties of sets V and W that provide shorter test suites. We fIrst 
consider an example. 
Example. The FSM A shown in Figure 3.1 possesses several state covers with the property 

(2.1). We choose two of them of different lengths: VI = {E, a, aa, b} and V2 = {E, a, aba, ab}. 

V/s length is four, whereas V2 contains six symbols. 

Figure 3.1 An FSM A. 

The machine also possesses different characterization sets with the property (2.2): W = 
{aaa}, W' = {a, b}. In the fIrst case, there is a homogeneous distinguishing sequence aaa, from 
which it is easy to obtain state identifIers as follows: WI = {aaa}, W2 = {aa}, W3 = {aa}, W4 = 
{aaa}. In the second case, W'I = W'2 = W'3 = W'4 = {a, b}. Total length L(W) of W is three; 
L(W,) = 2, but it contains two sequences. Based on these sets, it is possible to construct 

various test suites complete in the class Sn, where n=4. The Wp-method gives the following 
results: 

I) VI = fe, a, aa, b}, W = {aaa}. TSI = (aaaaaa, aabaaa, abaaa, baaa, bbaaa). L(TSI)= 26. 

2) VI = (e, a, aa, b), W'= (a, b). 
TS2= {aaaa, aaab, aaba, aabb, aba, abb, baa, bab' bba, bbb}. L(TS2) = 34. 

3) V2 = (E, a, aba, ab), W=( aaa}. TS3 =( aaaa, abaaaaa, ababaaa, abbaaa, baaa). L(TS3) = 28. 

4) V2 = fe, a, aba, ab), W· = (a, b). 

TS4 = (aaa, aab, abaaa, abaab, ababa, ababb, abba, abbb, ba, bbl. L(TS4) = 38. 0 
As can be seen from this example, a characterization set with fewer sequences yields a 

shorter test suite even if its total length is not minimal. The number of transfer sequences in a 
state cover cannot be reduced, however, a state cover of a shorter length usually leads to a 
shorter test suite. We now present some estimations that confIrm these observations in the 
general case. 

We consider a test suite TS = TC@W of an FSM A which has a characterization set W 
assuming that the sets V and W satisfy properties (2.1) and (2.2), respectively. We have seen 
from the above example that, all things being equal, length of this test suite is determined by 
lengths of sets V and Wand by the cardinality of W. If A is a partial machine then the size of a 
test suite depends also on the number of defIned transitions. Let p be the number of defIned 
transitions of A, i.e. p S; mn, where m is a number of inputs. 
Proposition 3.1. Given an FSM A with n states, a state cover V with the property (2.1), a 
transition cover TC of p defIned transitions, and a characterization set W with the property 
(2.2), the total length L(TS) of a complete test suite TS = TC@W does not exceed 
L(TC)IWI +L(W)(p-n+I). (3.1) 
Proof. In fact, the total length of a set TC@W does not exceed the value of 

L [L(vi) + L(wj)]' 

viETC,WjEW 
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Then L(TC@W) :5: [L(VI) + L(WI)] + ... +[L(v,) + L(Wt)] = [L(VI) + ... +L(v,)] IWI + L(W)r, 
where r is a number of sequences in TC. Thus 
L(TC@W):5:L(TC)IWI +L(W)ITCI. 

269 

Now it is sufficient to show that the number of sequences in TC is (p - n + 1). Consider the 
set of input sequences TC and a corresponding successors tree of A with its initial state as a root 
of this tree. Due to (2.1), the tree has exactly p edges from its internal nodes, therefore this tree 
has p nodes excluding the root of this tree. Since n nodes are internal, there are exactly (p - n + 
1) terminal nodes, i.e. ITCI = P - n + 1. [J 

Consider again the FSM A shown in Figure 3.1. In the case of a completely specified FSM, 
p = mn. Assume that VI and W are chosen for test derivation. For the test suite TSI we have 
L(TC) = 12, p-n+l = 5, IWI = I, L(W) = 3, and therefore the length is 27. It is close to the 
actual length of 26. In the case where V2 and W' are chosen, we have L(TC) = 14, p-n+ 1= 5, 

IW'I = 2, L(W) = 2, and 14·2 + 5-2 = 38. This is length of the test suite TS4. 
Since (p-n+ 1) is the number of sequences in the set TC, we usually have L(TC) » (p-n+ 1). 

For this reason, length of a complete test suite primarily depends on the number 
of sequences in the set W, rather than on its total length. 

It is also worth noting than based on (3.1), it is possible to derive the least upper bound on 
the length of a complete test suite. Assume for simplicity that the machine is completely 

specified. Then it is known that the bound is O(mn3), where m is the number of inputs 
[Vasi73], [LeYa94]. We need a more precise estimation. [TyBa75] gives L(W):5:n(n-l)/2, 
IWI:5:n-l, L(V):5:n(n-l)/2 provided that the properties (2.1) and (2.2) hold. It is not difficult to 
check that L(TC) :5: n(m-l) + n(n-l)/2 + 1. (p-n+ 1) = nm - n + 1. Then 

L(TS):5: [n2m + 2nm - 2n + 2](n-l)/2 = Lmax. 

Thus, L(TS) :5: Lmax < mn3 for completely specified reduced machines with n~2 states and 
~ inputs. The least upper bound on tests for partially specified machines remains unknown, 
as they are still the subject of active research [BPY94], [BoPe94]. 

Next, we estimate length of a test suite for a partial FSM that possesses homogeneous 
identifying sequences. 

Proposition 3.2. Given an FSM A with n states, a state cover V with the property (2.1), a 
transition cover TC of p defined transitions, and a characterization set W with k homogeneous 
identifying sequences of length up to h, there exists a complete test suite of length not more than 
[L(V) + hn]k + L(TC) + h(p-n+ 1). (3.2) 
Proof. Based on the Wp-method, we construct a complete test suite of the form TS = 
V@WvTC®W. The set V@W means that every sequence from V is concatenated by k 
sequences of length up to h. In the worst case, this part of the test suite is no longer than L(V)k 

+ hnk. The set TC®W means that just a single identifying sequence of length up to h is applied 

to the state reached after any sequence from the transition cover TC. Similar to the previous 

proof, ITCI = p-n+l, and the total length of sequences of the set TC®W does not exceed the 

value L [L(vj) + h] = L L(vj) + hlTCI = L(TC) + h(p-n+ 1). [J 

vjETC vjETC 

Corollary 3.3. The length of a complete test suite of an FSM A with n states and a transition 
cover TC of p defined transitions is no less than 
L(TC) + (p-n+ 1) = Lmin. (3.3) 

(3.1)-(3.3) can be used to determine the expected size of a test suite which is complete for the 
given machine in the class of all machines with an equal or fewer number of states. 

3.2 A criterion for assigning "don't care" transitions 

Practice has not yet provided us with protocol machines such that the length of complete test 
suites approaches the least upper bound Lmax. However, there exists a class of FSMs for which 
the length of a complete test suite meets the lower bound Lmin. These are machines with a 
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distinguishing sequence of length one. Unfortunately, protocol machines seldom fall into this 
class. It is known that certain machines have neither distinguishing nor state identifying 
seqences, and there are machines whose states have identifying (VIO) sequences, but only of 
exponential length [Le Ya94]. Their least upper bound remains unknown, especially for partial 
FSMs. In the general case, n states may require identifiers consisting of up to n-l sequences, 
and it is possible to construct a sequence of length up to n(n-l)/2 distinguishing two states in a 
given partial reduced FSM. Thus, in most cases, we deal with partial FSMs which are not easily 
testable in the sense that they require a complete test suite of length far from the best possible. 

If a protocol machine is specified completely then some measures can be taken to improve the 
protocol testability at the implementation level only. However, if it is specified only partially 
then its testability can be improved at the specification level ensuring that all implementations 
derived from the augmented specification are more testable than that derived from the original 
specification. Given a partial FSM with n states, t inputs, m outputs and p defined transitions, 
there are (nt-p) "don't care" transitions. Each undefined transition can be either left undefmed or 

transformed into a defined one in nm different ways. Thus, there exist (nm+ l)(nt-p) FSMs 
which are quasi-equivalent to the given machine [Gill62]. We call them augmented machines 
with respect to the original machine. An exhaustive procedure would enumerate all (nm+ 1)(nt-p) 

machines, derive a complete test suite for each of them and search for the one with the shortest 
test suite. We wish to avoid such a brute force search, called also "perebor", and should find a 
criterion to guide the process of assigning "don't care" transitions. 

As follows from the discussion of Section 3.1, a homogeneous distinguishing sequence 
ensures IWI=1 and leads to a short test suite. Since such a sequence may not always exist, the 
next best case is when each state possesses a homogeneous identifying sequence which might 
be common for several states. Thus, the transformation of "don't care" transitions that 
maximizes the number of states possessing homogeneous identifying sequences can be regarded 
as a successful transformation. The approach we take is based on these heuristics. 

However, the numerical characteristics of homogeneous identifying sequences alone such as 
their number and total length are not sufficient to choose the best assignment of "don't care" 
transitions. The problem is that their assignment affects length of a test suite in two opposite 
ways. On the one hand, if newly added transitions create short identifying or even diagnostic 
sequences of the machine which had no such sequences prior to the assignment then the size of 
the test suite most probably will be reduced. On the other hand, the number of defined 
transitions increases, thus, additional test sequences are required to test new transitions. If the 
increase in length caused by an assignment exceeds the savings gained then the assignment 
would deteriorate the testability of the given machine. For this reason, the expected or actual 
length of a complete test suite should eventually be used to estimate the effect of assignments. 

We demonstrate later in this paper that if a state has at least one "don't care" transition then it 
is always possible to construct an augmented machine such that this state has a homogeneous 
identifying sequence. Moreover, if the necessary and sufficient conditions established below are 
satisfied then there exists an augmented machine with a homogeneous distinguishing sequence. 
In the worst case, the length of identifying sequences reaches n, the number of states. 

4 AN FSM WITH A SINGLE INPUT 

In this section, we assume that a given machine has just one input and propose a method for 
finding assignments of all "don't care" transitions such that their initial states possess 
identifying sequences in an augmented machine. We also show that under certain conditions the 
augmented machine has a distinguishing sequence. By the construction, the obtained sequences 
are also homogeneous for the original machine which contains the machine with a single input 
as its submachine. 
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4.1. Auxiliary notions 

Let B be a reduced partial FSM. Consider its submachine A which is obtained by restricting its 

input set X to an arbitrary input xeX which labels at least one "don't care" transition. Thus, A 

= (S, {x}, Y, 0, A, DA) is an FSM with a single input x. 

The state transition graph of the FSM A has a cycle (SI->S2-> ... ->siJ if 8(Sj, x) = Sj+I for i = 
1, .•. ,k-1, k~l; and 8(s/c, x) = SI. For each state of the cycle, any input sequence is acceptable. 

If length of an input sequence w is a multiple of k, i.e. w = ~, ~ 1, then 

8(Sj, xmlc) = Sj for all i = 1, ... ,k. (4.1) 

Given a sequence~-I of length mk-1, we also have 

8(Sj, xmlc-I) = Sj_I for all i = 2, ... ,k and O(s J, ~-I) = SIc. (4.2) 
State S is said to be a starting state of A if there is no transition leading to this state. Consider 

an arbitrary path Sr>S2-> ... ->s/c from a starting state SI. We say that the path terminates in state 
SIc (a terminating path) if (st. x) is a "don't care" transition; or the path cycles (a cycling path) if 

O(s/c, x) = Sj+I for some k>i~l, i.e. Sj+I-> ... ->S" is a cycle. The behavior of the FSM A is 
defined in every state of a cycling path, thereby such path does not traverse any state with a 
"don't care" transition. 

~~7~ o 1 1 

1 1 0 1 0 
1 3 8 9 3 

Figure 4.1 The FSM with a single input. 

Example. Consider an FSM shown in Figure 4.1. Its transitions are labeled with outputs only, 
since the machine has just one input. Starting states of A are 0, 4, 5, 9, 13. State 2 has a "don't 
care" transition. There is only one terminating path from the starting state 5 which terminates in 
state 2. Four other paths are cycling. All states except 2 and 5 accept all input sequences. The 
FSM has the following sets of equivalent states: {I, 7,11}, to, 3, 6, lO}, {4, 8, 12}, {9, 13}. 
Notice that starting states 9 and 13 are equivalent, but each of them is not equivalent to any other 

state of its path. Moreover, they are not equivalent to any other state of this machine. [J 

Based on this observation, we claim a more general property of an FSM with a single input. 
Proposition 4.1. Let the FSM A have a cycling path P = (SI-> ... ->s/C) from a starting state SI 
that is not equivalent to any other state of this path. Then A has a cycling path r= (S'I-> ... -
>s'iJ from a starting state S'I that is not equivalent to any other state of A which is not a starting 
state. 
Proof. If the starting state s] of P is not equivalent to any other state of A then P itself is the 
path of the proposition. Suppose therefore that there is another state sj equivalent to SI and sj 
is an intermediate state of a cycle (S'I-> ... ->s't) or of a cycling path (S'I-> ... sj-> ... ->s't), 
where j> 1. For any input sequence, the successors of the equivalent states are also equivalent, 

therefore states 8(s I, xt) and 8(sj, xt) are equivalent. 

If sj is an intermediate state of a cycle (s'r> ... ->s't) then, because of (4.1), O(sj,.xI) = sj. In 

this case, state s] and state 8(sJ, xt) of the same path are also equivalent. This contradict our 

assumption that the state s I that is not equivalent to any other state of this path. 
Assume then sj is an intermediate state of a cycling path (s'r> ... si~> ... ->s't), where j> 1. 
Now, we must show that the starting state S'I is not equivalent to any state of P = (sr> ... ->siJ. 

In fact, if states S'I and sp,p~l are equivalent, so are states O(S'I, xi-I) and 8(sp, xi-I). 8(s'I, 

xi-I) = sj and is equivalent to SI. Now, states 8(sp, xi-I) and SI are required to be equivalent as 
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well. This is the contradiction. We can exclude the path (sr> •.. ->st} from our consideration. 
As a result, we could only find another cycling path whose starting state is equivalent to the 
starting state s / of the given path P. (J 

A cycling path whose starting state is not equivalent to any other starting state of cycling 
paths is termed a dominant cycling path of the FSM A. In the above example, among four 
cycling paths, there are two dominant cycling paths: (9,8,6,7) and (13,12,10,11). As will be 
shown in next section, dominant cycling paths play an important role for the assignment of 
"don't care" transitions. 

4.2 A single transition 

We consider in this section the case where the FSM A with a single input has only one "don't 
care" transition (s, x) and show that it is always possible to assign this transition such that state 
s becomes distinguishable from any other state in the newly obtained completely specified FSM. 

Given an FSM A = (S, (xl, Y, ~, A., DA), where (SXX)\[)A = «s, x», we consider its state 
transition graph and determine all its cycles, terminating paths, cycling paths, and dominant 
cycling paths. Note that a terminating path can only end in state s, but it might be empty if s has 
no incoming transition in A. There are four possible cases each of which requires a distinct 
assignment of the "don't care" transition (s, x): 
1) There is no cycle in A, so all paths terminate in state s. 
2) In A, there are only cycles and paths terminating in state s. 
3) A has also cycling paths, but it has no dominant cycling paths. 
4) A has a dominant cycling path. 

Next we consider how the "don't care" transition (s, x) should be assigned in each of these 
caseS in order to obtain a homogeneous identifying sequence of state s. 

Casel 
(s, x) is a "don't care" transition. All paths terminate in s. A has no cycle. 
We determine the longest path Sr>S2-> ... ->Sf;">S and define a transition in state s on inputx 

~s, x) = s/ and A(S, x) = y, where output y is such that the sequence A(S}, x), ...• A(Sk' x)y 
cannot be represented as any of its proper prefixes repeated several times. If IYl> 1 then it is 
always possible to find such output. Assigning the transition (s, x), we obtain a completely 
specified FSM A'. 
Proposition 4.2. In case 1, state s is distinguishable from any other state of A'. 
Proof. In fact, due to the chosen output assignment, state s cannot be equivalent to any other 
state in the obtained cycle (Sr>S2-> ... ->Sk->S). Assume therefore, that s is equivalent to state 
sj, lS;jS;t, which belongs to another path s'r> ... ->sj ... ->s',->s->s/-> ... ->Sk. If states s and 

sj are equivalent then states ~sj, xt·j+/) = s and 8(s, xt·j+/) are also equivalent. State ~s, xt

j+/) belongs to the cycle s->s/-> ... ->Sk and it is not state s because ts;/c andj~l. Then state s 

should be equivalent to another state of the cycle, but this is impossible. (J 

Example 1. Consider the FSM shown in Figure 4.2. 

® o .0)..... 0 @..... 1 @~ 0 (9 
Figure 4.2 The FSM with no cycles. 

This machine has a single "don't care" transition in state S/. There are two paths: so->s/ and S4-

>S3->S2->S/ which tenninate in state S/. We choose the longest one and assign 8(s/, x) = S4. 

The output set has two symbols, 0 and 1. If A(S/, x) is assigned 1 then A(S4, X)A(s3, X)A(s2, 

x)A(sJ, x) = 0101 and it can be represented as its proper prefix 01 repeated two times, i.e. 0101 
= (01)(01). In this case, state s/ would become equivalent to S3, and so would S2 and S4. To 

distinguish state s/ from other states we must define A(sJ, x) = O. We obtain a new transition: 
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S}-X/O->S4. Now sequence x distinguishes state S} from Sj; sequence xx distinguishes state S} 
from S4; and xxx distinguishes S} from So and S2. Thus, the sequence xxx is a homogeneous 

identifying sequence of state s} in the augmented FSM. Q 

Case 2 
(s. x) is a "don't care" transition. A has cycles. but its paths terminate in s. In this case, we take 

an arbitrary cycle (sr> ... ->sv and define a transition from state s to the state SJ, i.e. 8(s. x) = 

SJ, with the output l(s. x) = y such that y '* l(Sko x). By assigning the transition (s. x), we 
again obtain a new completely specified FSM A'. 
Proposition 4.3. In case 2, state s is distinguishable from any other state of A'. 
Proof. The obtained FSM A' has some cycles and cycling paths with a cycle (sr> ... ->Sk) 
only. Let s'r> ... ->s',->s->S}-> ... ->Sk be such a path. If state s is equivalent to a state in the 
path then it is also equivalent to another state in the cycle (sr> ... ->sv since the successors of 
equivalent states are equivalent for any input sequence. Therefore, we may assume that state s is 
equivalent to a state s') in a cycle (s'r> ... ->s'/), Consider now an input sequence xtk of length 

tk. State 8(s. x'i:) and state 8(s'], X'i:) are equivalent states, as they are successors of sand S'l. 

By virtue of (4.2) and (4.1), 8(s. X'i:) = O(Sl. X'k-1) = Sk and ~(S'l. Xlk) = S'l. This means s 

and Sk should be equivalent states, but this is not possible, because l(s. x) '* l(Sk. x). 
Q 

Example 2. Consider the FSM with two cycles shown in Figure 4.3. 

~(i)~ 
Figure 4.3 The FSM with cycles. 

Based on the cycle (S2. Sj. S4. ss), we define 8(s], x) = S2 and A.(s], x) = 0, since l(ss. x) = 1. 
We obtain a new transition: srX/1->S2. The machine augmented with this transition has a 

sequence xxx that distinguishes state 1 from any other state. In fact, l(so. xxx) = 000, l(s}. 

xxx) = 001, l(S2. xx) = 010, l(sj. xxx) = 101, l(S4. xxx) = 010, l(ss. xxx) = 101. 

Alternatively, we could assign 8(s 1. x) = So and A.(S}, x) = 1, since A.(so. x) = O. In either case, 
the sequence xxx can be used as a homogeneous identifying sequence of Sl in the completely 

specified machine. The original machine had no identifying sequence for this state. Q 

Case 3 
A has cycling paths, but none of them is dominant. In this case, the starting state of each cycling 
path is equivalent to another state of this path_ To assign the "don't care" transition (s. x) we 
choose an arbitrary path (SI-> ... ->Si+r> ... ->sv which ends with the cycle (Si+I->",->Sk), 
where l~ 1. Since state s 1 is equivalent to a certain state of the path, it is also equivalent to a state 

Sj of this cycle, i+ l~jSk. Then we assign 8(s. x) = Sj with the output l(s. x) = y such that y '* 
A.(Sj-], x). If j=1 then y '* l(Sko x). As a result, the augmented machine A' is obtained. 

Proposition 4.4. In case 3. state s is distinguishable from any other state of A'. 

Proof. We have 8(s. x) = Sj and l(s. x) '* l(Sj_I. x)_ Let state S be equivalent in A' to a state 
sj,. State sj, belongs either to a cycle (s'r> .. _->s',), where p~t, or to a cycling path s'r> ... -
>S', with a cycle (s',+r>--.->s',), where l~t. 
In the first case, the equivalence of sand sj, implies the equivalence of Sj and S'p+I (or Sj and 

S'I if p=t). Moreover, states ~(Sj, X'k-I) and ~(s'p+j, xlk-I) are also equivalent. Because of 

(4.2), 8(Sj. xlk-I) = Sj-I, ~(Sj,+I. xlk-I) = s'p. Thus, if states Sj-I and s'p are equivalent, then 
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states S and Sj should be equivalent as well, but this is impossible, because A,(s, x) '" A(Sj.J. x). 
In the second case, state S is equivalent to state sp from the path s'r> ... ->s', which terminates 
in cycle (s',+/-> .•. ->s',), where lSrSt. If this patti is defined in A then, by the assumption, its 
starting state is equivalent to another state of the path, and we have the situation considered 
above. Assume finally that state s is equivalent to state sf from the path (s'/-> •.. ->s',-> ... ->s
>sr> .•. ->Sk) obtained in A'. Again, state s becomes eqUIvalent to a state of a cycle, and we 

have exactly the same situation as above. 0 
Example 3. Consider the FSM shown in Figure 4.4. 

~~ 
Figure 4.4 The FSM with equivalent states. 

There is a cycling path. Its starting state S3 is equivalent to state S/. We add a transition from 

state S5 to state s/ labeled with output A(S5, x) = 0", )..(S2, x). Then state S5 becomes 

distinguishable from any other state by the sequence xu. 0 

Case 4 
A has a dominant cycling path. In this case, there exists a cycling path P = (s/-> ... Sj+]-> ... -
>s,J, i~l such that s/ is not equivalent to any other state of P, moreover, in accordance with 
Proposition 4.1, only another starting state of a cycling path might be equivalent to s /. 

We transform the "don't care" transition (s, x) into a defined one in the following way. fi..s, 

x) = s/ and A(s, x) is assigned any ye Y. Similarly to the cases considered above, we claim that 
state s is now distinguishable from any other state of the augmented FSM A'. . 
Proposition 4.5. In case 4, state s is distinguishable from any other state of A'. 
Proof. Assume s is equivalent to a state S]. If S] is involved in a path (s'/-> ... ->s',) in A then 
s/ of P can be equivalent to a starting state of another dominant cycling path, because P is also a 
dominant path. State s cannot be equivalent to any state of such a path. In this case, s can only 
be equivalent to some state of a cycling path (s'r> ... ->s->s/-> ... Sj+/-> ... ->s,,). However, s} 
becomes equivalent to some state of the cycle (Sj+r> ... ->skJ. This contradicts our assumption 
that P is a dominant cycling path. 0 
Example 4. Consider the FSM shown in Figure 4. L This machine has two dominant cycling 
paths with states (9, 8, 6, 7) and (13, 12, 10, 11). We can choose the first path and define 
transition from state 2 to state 9. Regardless of the output of this transition, the sequence xu 

becomes an identifying sequence of state 2. 0 
Propositions 4.2 - 4.5 implies the following theorem. 

Theorem 4.6. Given an FSM A = (S, {x}, Y, ~, A, VA), where (SxX)'lDA = (s, x)}, it is 
always possible to assign its "don't care" transition such that state s of the augmented 
completely specified FSM is distinguishable from any other state and has a homogeneous state 

identifying sequence of length not exceeding the number of states. 0 
In certain cases, the augmented FSM has a homogeneous distinguishing sequence, as the 

following theorem shows. States Sj and Sj are said to be converging iff fi..Sj, x) = fi..Sj, x) and 

A(Sj, x) = A(Sj, x). 

Theorem 4.7. Given an FSM A = (S, {x}, Y,~, A, VA), where (SxX)'lDA = {(s, x)}, it is 
always possible to assign its "don't care" transition such that the augmented completely 
specified FSM has a homogeneous distinguishing sequence of length not exceeding the number 
of states iff A has neither converging nor equivalent states. 
Proof. If A has at least two converging states then regardless of the transition's assignment, 
these states would become equivalent in any augmented machine. Assume now that we have 
assigned the transition (s, x) and state s becomes distinguishable from any other state. Theorem 
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4.6 states that it is always possible. If two states Sj and Sj are such that any input sequence is 
acceptable for each of them then they are nonequivalent in A as well as in an augmented FSM. 
Suppose therefore that for one of these states, say, for state Sj, not all sequences are acceptable. 

In this case, there is an acceptable sequence OJ for Sj of A such that li(Sj, OJ) = s, since (s,x) is 

the only "don't care" transition in A. Now state li(Sj' OJ) should be equivalent to state s. Then 

li(Sj' ro) = s. The latter is possible only if A has converging states. 
The completed FSM has only cycling paths, and the cycles are no longer than n. By 

construction, every two states are distinguishable by a sequence of length k, where k is the 

length of a cycle. Thus, kSn. [J 

We have examined all configurations possible in a given FSM with a single "don't care" 
transition in state S and thus, we have devised a technique for converting such a partial FSM 
into a completely specified FSM where state S possesses an identifying sequence. Under certain 
conditions, the resulting identifying sequence may also be a distinguishing sequence. Next, this 
technique will be generalized to cover the case where there exist several "don't care" transitions. 

4.3 Several transitions 

Given an FSM A = (S, {x}, Y, 0, A, DA), where I(SxX)\DAI~l, let the subset Su contain all 

states with "don't care" transitions, i.e. Sit = {s I (s, x) i! DA}. We also define a subset Sd of 
states which accept all possible input sequences {x} *; these states are involved in cycles or in 

cycling paths. The set Sd might be empty. For a state SjE Su, let Sj denote the set of states from 

which state Sj is reachable, SjE Sj. Clearly, Sj nSj = 0 for all i*j and Sj ("\ Sd = 0, since A is a 

deterministic machine. Based on the set SdUSj, we construct a submachine Aj = (SdUSj, {x}, 

Y, ~, Aj, Dj) of the FSM A by deleting from A all states S\f..SdUSj) along with their transitions. 

Aj has exactly one "don't care" transition. The technique of Section 4.2 can now be applied. 
We present an algorithm for augmenting a given FSM with a single input in order to obtain 

an identifying sequence. 

Algorithm 1. 

Input: A partial FSM A = (S, {x}, Y, 0, A, DA) with a single input and ISItI~l "don't care" 

transitions. 

Output: An augmented completely specified FSM A' = (S, (x), Y, 0', A'). Each state of Su 
has an identifying sequence. 
Step 1. Construct the subset Sd for A. 

Step 2. Choose a state SjE Sit with the maximaIIS,~ 

Construct a submachine Aj = (SdUSj, {x}, Y, OJ, Aj, Dj). 
Step 3. Call the technique of Section 4.2 to assign (Sj, x) in Aj (and therefore in A). 

Step 4. Sd := SdUSj 
Su := Su\{sil 

If Sit * 0 then GO TO Step 2. [J 

The resulting machine can be characterized by the following two theorems which are 
generalized from Theorems 4.6 and 4.7 and are proven in a similar manner. 

Theorem 4.8. Suppose that A = (S, {x}, Y, 0, A, DA), where I(SxX)\DAI~l is a given FSM 
and an FSM A' is the output of Algorithm 1. Then every initial state of "don't care" transitions 
is distinguishable from any other state in A' and has a homogeneous identifying sequence of 

length not exceeding the number of states. [J 
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Theorem 4.9. Suppose that A = (S, {x}, Y, 0, A, DA), where I(SxX)\DAI~1 is a given FSM 

and an FSMA'is the output of Algorithm 1. Then the augmented completely specified FSMA' 
has a homogeneous distinguishing sequence of length not exceeding the number of states iff A 

has neither converging nor equivalent states. 0 
Example. Consider the FSM A shown in Figure 4.5a. The necessary and sufficient conditions 
of Theorem 4.9 are satisfied, since the machine has no converging or equivalent states, so 
Algorithm 1 should augment it in such a way that the resulting machine has a homogeneous 
distinguishing sequence of length not exceeding the number of states. 

®J0~~ 
(a) (b) 

Figure 4.5 The FSM and its augmented FSM. 

States 2 and 3 have "don't care" transitions, so the set S,. = {2, 3}. No state of A accepts all 

input sequences, the set S d = 0. We choose state 2 and find the set S 2 = {I, 2}. A submachine 

contains the transition 1->2. It is the case 1 of the technique from Section 4.2. We assign 0(2, 

x) = 1 and A(2, x) = 1. Now Sd = {I, 2}, Su = {3}. S3 = {3, 4}. We have the case 2 of Section 

4.2. 0(3, x) = 1 and A(3, x) = O. The augmented machine is shown in Figure 4.5b. It has a 

homogeneous distinguishing sequence xxx. The identifying sequence for state 1 is xx, for 2 - x, 
and for 3 and 4 - xxx. 

5 ASSIGNING "DON'T CARE" TRANS mONS 

We now present an algorithm for augmenting a partial reduced FSM with several inputs. The 
algorithm uses formulae (3.1) - (3.3) to estimate the expected length of a test suite. If it exceeds 
the lower bound Lmin defined by (3.3), the algorithm repeatedly tries all inputs labeling "don't 
care" transitions and calls Algorithm 1. The Wp-method [FBK91] is used to derive a resulting 
test suite which is complete in the class of machines with an equal or fewer number of states. 

Algorithm 2. 
Input: A partial reduced FSM A. 
Output: An augmented FSM A' and a complete test suite of length not greater than that of A. 
Step 1. Calculate the expected length LA of a test suite for A. 
If LA = £nUn then GO TO STEP 3. 
Step 2. C:= A. 
Step 2. Let X,. = {Xl, •.• , Xq } be the set of inputs labeling "don't care" transitions in C. 

For each XiEX,. 

Call Algorithm 1 to assign "don't care" transitions labeled with the input Xi. 

Add newly defined transitions into the FSM C. 
Let the augmented machine be Ci. 
Calculate the expected length of a test suite for Ci. 

Step 3. Let C* be an FSM Ci or C with the shortest expected test suite. 
If C* = C then GO TO STEP 4. 

C:= C*. X,. = Xu\{xd. If X,. '" 0 then GO TO STEP 2. 

Step 4. A ':= C*. Call the Wp-method to derive a complete test suite for the machine A'. 0 

Remarks on Algorithm 2: 
1) We assume that an FSM is given in its reduced form; however, this assumption is indeed not 
restrictive. The algorithm also accepts FSMs that are not reduced, i.e. that have compatible 
states [Gill62]. However, under the "undefined by default" convention for "don't care" 
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transitions, it is recommended first to reduce such a machine by merging compatible states, and 
then to apply Algorithm 2 to its reduced fonn. This is because a machine with fewer states 
usually requires shorter tests. There may exist several reduced fonns of a nonreducedpartial 
FSM, unlike the case of complete FSMs; and it is desirable to choose the most testable reduced 
fonn in this case. More research is required in this direction. 
2) The resulting FSM is not necessarily a completely specified machine, some "don't care" 
transitions might be left intact. As discussed in Section 3, a shorter state cover usually leads to a 
shorter test suite. Undefmed transitions can be assigned to reduce the total length of a state 
cover of the machine and eventually that of a complete test suite. 
3) The algorithm tries all inputs which label "don't care" transitions. To facilitate its early 
termination we can arrange inputs such that the overall number of converging and equivalent 
states for a corresponding input fonn a non-decreasing sequence. In particular, if there exists an 
input, such that the necessary and sufficient conditions for the existence of a homogeneous 
distinguishing sequence are satisfied, then Algorithm 2 assigns the "don't care" transitions 
labeled with that input. 
4) Comparison of possible augmentations with respect to different inputs is based on the 
expected test suite length. If instead, a test derivation method, such as the Wp-method, is called 
to derive a test suite whenever its length is required to make a decision, the user can stop the 
process once a test suite of an acceptable size is obtained. In the worst-case scenario, the 
method would be called q(q+ 1)/2 times, where q is the number of inputs labeling "don't care" 
transitions in the original machine. 

6 APPLICATION EXAMPLES 

Example 6.1 
Consider the FSM A shown in Figure 6.1a. It is reduced and partially specified. There are five 
"don't care" transitions in this machine. Each of the transitions can lead to one of five states 

with output 0 or 1; alternatively, it can be left intact. Altogether, there exist 115 = 161051 
completely and partially specified machines that are augmentations of the given FSM A. A 
"perebor", i.e. an exhaustive procedure must try all of them, derive a complete test suite for 
each, and choose a machine with the shortest test suite. Instead, we apply our method. 

4/1 

J---~2 

(a) (b) 
Figure 6.1 The FSM and its augmented FSM. 

First we derive a complete test suite for the given machine using the Wp-method. Assuming 

state 1 as an initial state, the state cover is V = {e, 1, 2, 23}. The transition cover is TC = {e, 1, 

2,4,11,12,13,21,23,232,233, 234}. The set W = {I, 2, 3} is a characterization set of A. 
The state identifiers are: WI = (I, 2). W2 = {I, 2, 3}, W3 = {I, 3}, W4 = {I, 3}. The 
resulting test suite complete in the class of FSMs with up to four states is: {111, 112, 113, 121, 
123, 131, 132, 133,211,212,213,2321,2322,2331,2332,2333,2341,2343, 41, 42, 43}. 
There are 21 test cases of total length 67. The fonnula (3.1) gives the expected length of 90. 
(3.3) returns the lower bound Lmin = 30. 

Every input labels at least one "don't care" transition, but only for input 4 are there no 
converging states. We choose this input and construct a submachine of A. It is, in fact, the 
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machine shown in Figure 4.5a. The corresponding augmented submachine is the one shown in 
Figure 4.5b. It has a homogeneous distinguishing sequence 444. According to this submachine, 
two transitions must be added to the original machine, namely 2-4/1->1 and 3-4/0->1. We 
include them into the FSM A and obtain the augmented FSM A' shown in Figure 6.1b. The 
additional transitions are depicted in bold. Notice that three other "don't care" transitions are left 
intact. A' has the following state identifiers (as constructed in Section 3.3): W'1 = {44}, W'2 = 
{4}, W'3 = {444}, W'4 = {444}. Based on the obtained identifiers, we can derive a complete 
test suite of length 39. As a result, the length is reduced by about 40%. The "don't care" 
transitions labeled with inputs 1, 2 and 3 remain, since the length cannot be further reduced. 

Example 6.2. The INRES protocol 
To illustrate the proposed approach to improving the testability of a partially specified protocol 
machine, we consider the INRES protocol [Hogr91]. The behavior of the responder part of this 
protocol can be specified by an FSM given in Figure 6.2 (plain lines only). 

1 

Figure 6.2 The INRES Responder. 
The input alphabet is: 1- CR, 2 - IDISr, 3 - ICONrsp, 4 - DTO, 5 - DT1. The output alphabet 

is 1 - ICONi; 2 - DR; 3 - CC; 4 - ACKO; 5 - ACKO, IDATi; 6 - ACKl; 7 - ACKl, IDATi; 8-
null. The machine is partially specified. The traditional way of augmenting such a machine is 
based on the completeness assumption [SiLe89], [PBD93]. In particular, all "don't care" 
transitions are replaced by looping transitions with the null output (not depicted). Following this 
approach, we first obtain a completely specified FSM and derive a test suite complete for 

implementations with up to four states, as follows. A state cover is V = {e, 1, 13, 135}. W = 

{41}. We apply the Wp-method and obtain a test suite with 19 test cases of total length 76. 
Next, we assume that the behavior of the responder for all service primitives from the 

INRES user can be defined in an arbitrary way, whereas the completeness assumption should 
still be applied for all incoming PDUs. In particular, the transitions (1, 2), (1, 3), (3, 3), (4, 3) 
in states 1 and 3 on inputs 2 (IDISr) and 3 (ICONrsp) are "don't care" transitions. This machine 
requires a complete test suite with 15 test cases of total length 61. 

Now we follow the proposed approach to find an augmented machine with a shorter test 
suite. Applying Algorithm 2 we can obtain the transitions 1-3/c->4, 3-3/a->2, 4-3/b->2 shown 
in Figure 6.2 as bold lines. Here a, b, and c are different ouputs which can be arbitrary chosen 
from the set {I, 2, 4, 5, 6, 7, 8}. The obtained machine has a homogeneous distinguishing 
sequence, that is W' = {3} (ICONrsp). There is only one "don't care" transition left in state 1 
on input 2. We define a transition 1-2/d->3, where d is an arbitrary output in order to reduce a 

state cover. It now has fewer symbols: V' = {E, 1,2, 3}. Given the sets W' and V', we now 
have a complete test suite (produced by the same method): TS = {41, 541, 441, 341, 241, 
1241, 13241, 135241, 141, 1541, 1441, 1141, 1344, 1334, 1314, 13544, 13554, 13534, 
13514}. It comprises 17 test cases of total length 49. Thus, the obtained version of the INRES 
responder is more testable than the original one and the version based the completeness 
assumption. This assumption widely cited in the literature may deteriorate the testability of a 
protocol, as our example shows. 

To assess the effectiveness of the method we have conducted the following experiment. A 

tool was designed to enumerate all (1 +4·8)4 = 1185921 of the possible augmented machines for 
the INRES responder, derive a complete test suite for each of them, and find an FSM with the 
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shortest one. A test derivation tool used to generate test suites implements the method developed 
for partial FSMs in [Petr91]. The experiment shown that all augmented FSMs require no fewer 
than 49 test events for a complete test suite. 

7 CONCLUSION 

In this paper, we have addressed one particular problem of design for testability of protocols on 
the specification level. We have developed an approach to improving testability of the given 
protocol taking advantage of the fact that a protocol is usually specified only partially and certain 
state/input combinations can be set in an arbitrary way. The feasibility of the approach was 
proven on partially specified FSMs with "don't care" transitions. Its effectiveness was 
demonstrated by conducting an experiment on the INRES protocol. 

Though an algorithm given in this paper guarantees that the identifying sequences in the 
resulting FSM are quite short (their lengths do not exceed the number of states), it does not yet 
guarantee to produce the shortest possible ones. Thus, our algorithm can be further refined to 
construct an augmented machine with near-optimal identifying sequences. We continue our 
research in this direction. The work in progress also concerns the adaptation of the basic ideas 
underlying the proposed approach to nondetenninistic and extended finite state machines. 

In this paper, we have also presented some useful estimations of the expected length of 
complete test suites which are used to guide the process of augmenting partially specified 
machines. These estimations can also be used to select parameters of transition covers and 
characterization sets usually left without any guidance by most existing test derivation methods. 

We have considered DFI' in the context of the test derivation methods that rely on a reset 
facility, however the presented algorithms can be used in conjunction with other methods which 
do not use the reset. By augmenting a partial machine, a variety of UIO's or even distinguishing 
sequences are usually created. A nice property of the resulting machine is that lengths of 
identifying sequences never exceed the number of states. Therefore, any UIO-based method 
should yield a short test sequence. The presented approach can also be easily generalized to 
incorporate additional factors influencing the testability, such as length of transfer sequences 
(test preambles and postambles), the cost assigned to protocol messages, and others. 
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