

On the design of an architecture framework and quality
evaluation for automotive software systems
Citation for published version (APA):
Dajsuren, Y. (2015). On the design of an architecture framework and quality evaluation for automotive software
systems. [Phd Thesis 1 (Research TU/e / Graduation TU/e), Mathematics and Computer Science]. Technische
Universiteit Eindhoven.

Document status and date:
Published: 26/05/2015

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 26. Aug. 2022

https://research.tue.nl/en/publications/51a73714-0c73-48e1-973b-9aefb507f012

On the Design of an Architecture Framework and
Quality Evaluation for Automotive Software Systems

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de Technische Universiteit
Eindhoven, op gezag van de rector magnificus, prof.dr.ir. F.P.T. Baaijens,
voor een commissie aangewezen door het College voor Promoties, in het

openbaar te verdedigen op dinsdag 26 mei 2015 om 14.00 uur

door

Yanjindulam Dajsuren

geboren te Taishir soum, Mongolië

Dit proefschrift is goedgekeurd door de promotoren en de samenstelling van de
promotiecommissie is als volgt:

voorzitter: prof.dr. E.H.L. Aarts
promotor: prof.dr. M.G.J. van den Brand
copromotor: dr. A. Serebrenik
leden: dr.ir. R.J. Bril

prof.dr.ir. M. Steinbuch
prof.dr.dr.h.c. M. Broy (Technische Universität München,
Germany)
prof.dr. R.H. Reussner (Karlsruhe Institute of Technology,
Germany)
prof.dr. M.R.V. Chaudron (Chalmers and Gothenburg
University, Sweden)

On the Design of an Architecture Framework and

Quality Evaluation for Automotive Software Systems

Yanja Dajsuren

Promotor: Prof. Dr. M.G.J. van den Brand
(Eindhoven University of Technology)

Copromotor: Dr. A. Serebrenik
(Eindhoven University of Technology)

Additional members of the reading committee:

Dr. ir. R.J. Bril (Eindhoven University of Technology)
Prof. Dr. ir. M. Steinbuch (Eindhoven University of Technology)
Prof. Dr. Dr. h.c. M. Broy (Technische Universität München, Germany)
Prof. Dr. R.H. Reussner (Karlsruhe Institute of Technology, Germany)
Prof. Dr. M.R.V. Chaudron (Chalmers and Gothenburg University, Sweden)

The work in this thesis has been carried out under the auspices of the research school IPA
(Institute for Programming research and Algorithmics).
IPA dissertation series 2015-12.

The work in this thesis has been carried out as part of the Hybrid Innovations for
Trucks (HIT) project with DAF Trucks NV as the industrial partner. The HIT project
(HTASI10002) is supported by the Netherlands Ministry of Economic Affairs under the
High Tech Automotive Systems (HTAS) programme.

A catalogue record is available from the Eindhoven University of Technology Library
ISBN: 978-90-386-3831-7

Cover design: Telmen Dzjind, Delft, the Netherlands.
Printed by: Print service, Eindhoven University of Technology.

c© Y. Dajsuren, 2015.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronically, mechanically, photo-
copying, recording or otherwise, without prior permission of the author.

Acknowledgments

Pursuing my PhD studies has been a great journey. I would like to express my gratitude
to the following people, each of whom has contributed in a valuable way to the completion
of this thesis.

Firstly, I would like to express my sincere gratitude to my promotor Mark van den
Brand for offering me an opportunity to do a PhD in his Software Engineering and
Technology (SET) group and believing in me. His honest, a priori advice that “You would
be the first PhD student in the area of automotive software engineering at TU/e and it
may not be that easy” prepared me to take on the challenges that lay ahead. I am forever
grateful for his guidance and support over the years.

I would also like to convey my sincere gratitude to my co-promotor Alexander Sere-
brenik, who spent every week, together with Mark, discussing my research and collabo-
rating on papers. I learned so much from his devotion and commitment to the success of
his students. I am very grateful for his continuous support during my PhD years.

I would like to use this opportunity to thank the HTAS programme for funding this
research. I would also like to thank everybody at DAF Trucks N.V., whom I had the
pleasure of working with, for their cooperation and assistance. In particular, I would like
to thank Rudolf Huisman for being my company supervisor and supporting me in all
areas including finding contacts, collaborating on papers, technical reports, evaluating
my research results and providing me with fruitful feedback. I want to thank Loek van
Seeters for welcoming me to his department and for always being full of enthusiasm and
support, Coco Jongerius for making me feel part of his group Vehicle Control, Guus Arts
for being a driven and kind project leader. Also, Michiel Pesgens, Rene Vugts, Christiaan
Kruiskamp, Rutger-Jan Kolvoort, Giel van de Wijdeven, John Kessels, Frank Soeterboek
and Rob Janssen for their precious time and collaboration on my research. Thanks also
goes to Vital van Reeven, Emilia Silvas, and Thinh Pham, the HIT PhD students with
whom I had many interesting discussions, exchange of ideas, and peer support.

During my PhD research I had the privilege of collaborating and coauthoring papers
with a number of people. The collaboration with them contributed greatly to my research
and this thesis eventually. Besides Mark and Alexander, I would also like to thank Serguei
Roubtsov, Christine Gerpheide, Hamid Abdul Basit, Marta Olszewska (Pla֒ska), Anton
Wijs, Marina Waldén, Rudolf Huisman, and Bogdan Vasilescu. Thanks also goes to
Marina and Marta for welcoming me to their group at the Åbo Akademi University in

ii

Finland. It was a fruitful collaboration in a short period of time. I also would like to thank
Ralf Reussner for inviting me to give a talk at his group, Karlsruhe Institute of Technology
(KIT). Following my visit, I started a stimulating collaboration with the PhD researchers
from Ralf’s group with Max Kramer, Erik Burger, and Michael Langhammer. Thank you
to Max, Erik, and Michael again for their shared research interests and collaboration.
I have also had fruitful collaborations with Harald Altinger from Audi AG and Eric
Bouwers from SIG B.V. I thank them for their great team work.

Besides doing research, I had a privilege to (guest) lecture and tutor Bachelor and
Master students at the TU/e. I would like to convey my gratitude to Wil Post, Johan
Paulides, Ion Barosan, Sjoerd Cranen, and Ramon Schiffelers for (co-) supervising and
tutoring very interesting projects and to my students from “Cars in Context” projects for
their enthusiasm. Thank you Christine Gerpheide, Alexandru Dinu, Frank Razenberg,
and Samir Hadji for carrying out their internship/graduate projects with me.

I would also like to express my deep gratitude to the members of my reading committee
for reviewing this thesis and their valuable comments: Manfred Broy from Technische
Universität München, Ralf Reussner from Karlsruhe Institute of Technology, Michel
Chaudron from Chalmers and Gothenburg University, Maarten Steinbuch and Reinder
Bril from Eindhoven University of Technology.

I immensely enjoyed the time spent with my colleagues from TU/e. I would like to
thank my former office mates Luc Engelen, Marcel van Amstel, Zvezdan Protić, and Arjan
van der Meer and current office mates Ulyana Tikhonova, Ana-Maria Şut̂ıi, Dan Zhang,
Neda Noroozi for creating a very pleasant working environment. Thank you to all the
other past and current colleagues, especially (in no particular order) Bogdan Vasilescu,
Luna Luo, Maarten Manders, Maciej Gazda, Sarmen Keshishzadeh, Sander de Putter,
Raquel Alvarez Ramirez, Jaewon Oh, Harold Weffers, Maggy de Wert, Önder Babur,
Sacha Claessens, Margje Mommers-Lenders, Tineke van den Bosch, and Dragan Bosnacki.

The cover of this thesis was designed by Telmen Dzjind and it is an abstract represen-
tation of my work. Thank you very much Telmen for his time and effort.

I want to thank my paranymphs and dear friends, Nadia Grossiord and Raluca Frunza,
and all the other friends who are not explicitly mentioned here. My deep thanks go to
my family, especially my brothers Lkhagvadorj, Budkhuu, Baasandorj, my beloved niece
Lkhamsuren, and my family-in-law for their unconditional love and continuous support
through the years.

Finally, I would like to thank my dear husband Răzvan for his love and patience.
You have brought another dimension of happiness and a beautiful meaning in my life.
Muļtumesc, dragostea mea! Te iubesc.

Yanja Dajsuren
Eindhoven, March 2015

Table of Contents

Acknowledgments i

Table of Contents iii

List of Acronyms v

1 Introduction 1
1.1 Background . 1
1.2 Project Objectives . 4
1.3 Research Questions . 4
1.4 Research Methodology . 5
1.5 Thesis Outline . 6

2 Architecture Framework for Automotive Systems 9
2.1 Introduction . 9
2.2 Automotive AFs and Viewpoints . 11
2.3 Automotive ADLs and Viewpoints . 17
2.4 Architecture Framework For Automotive Systems 26
2.5 Conclusion . 30

3 Automotive Architecture Modeling 31
3.1 Introduction . 31
3.2 Architecture modeling requirements . 32
3.3 Evaluation of Automotive ADLs . 34
3.4 Modeling Automotive Systems in SysML 38
3.5 Conclusion . 52

4 Formalizing A Correspondence Rule for Automotive Architecture Views 55
4.1 Introduction . 55
4.2 Architectural Notations . 59
4.3 Architecture Correspondence . 61
4.4 Tool Development . 67

iv Table of Contents

4.5 Evaluation . 71
4.6 Related Work . 73
4.7 Conclusion and Future Work . 74

5 Modularity Analysis of Automotive Control Software 75
5.1 Introduction . 75
5.2 Related work . 80
5.3 Modularity Metrics in Simulink . 81
5.4 Metrics tool and evaluation . 89
5.5 Visualization tool . 94
5.6 Conclusion and future work . 97

6 Complexity Metrics Suite for Simulink Models 99
6.1 Introduction . 99
6.2 Background . 100
6.3 Motivation . 102
6.4 Simulink Complexity Metrics Suite . 102
6.5 Evaluation . 107
6.6 Discussion and Threats to Validity . 110
6.7 Related Work . 110
6.8 Conclusions and Future Work . 111

7 Managing Clone Mutations in Simulink Models 113
7.1 Introduction . 113
7.2 Background . 115
7.3 Approach . 118
7.4 Validation . 120
7.5 Related work . 122
7.6 Conclusion and Future Work . 123

8 Conclusions 125
8.1 Contributions . 125
8.2 Directions for Further Research . 128

Bibliography 131

Summary 149

Curriculum Vitae 151

List of Acronyms

ADL Architecture Description Language
AF Architecture Framework
AFAS Architecture Framework for Automotive Systems
AUTOSAR AUTomotive Open System ARchitecture

ECU Electronic Control Unit
E/E Electrical/Electronic

FN Functional Model

GQM Goal Question Metric

HMI Human Machine Interface

LOC Lines Of Code

OEM Original Equipment Manufacturer

SQuaRE Software product Quality Requirements and
Evaluation

SW Software Model

VCL Variant Configuration Language

Chapter 1

Introduction

1.1 Background

Automotive software engineering applies software engineering approaches to the develop-
ment of automotive software and electronics systems [37,166,185,208]. This has attracted
the attention of automotive software researchers and practitioners worldwide [38]. It is
now more than a decade, since the term “automotive software engineering”was officially
introduced in the software community and the challenging research and technical issues
were highlighted [37]. Among the technical issues was the complexity issue, which called
for solutions to manage the increasing size and dependency of software systems. Software
architecture was almost non-existent at the time, which meant that a solution other
than structuring the system mainly by hardware architecture was needed. The quality of
automotive software also required more attention [37].

Automotive systems are traditionally developed by mechanical engineering methods.
However, increasing use of electronics and software systems in automobiles require
interaction between a variety of engineering disciplines including mechanical, electrical,
and software engineering [208]. Therefore, a viable solution is needed to manage this multi-
disciplinary engineering information in an effective way and manage its ever-increasing
complexity [208]. An example of such a solution is an Architecture Description Language
(ADL) [38,166,208] and an architecture framework [40,92]. An ADL is used to describe
and represent system and software architectures. An architecture framework provides
conventions, principles and practices to describe architectures within a specific domain
and/or community of stakeholders [116]. Thus, an architecture framework is usually
implemented in terms of one or more viewpoints or ADLs.

Automotive ADLs represent the entire vehicle architecture. This contrasts with AU-
Tomotive Open System ARchitecture (AUTOSAR), which provides a common software
infrastructure based on standardized interfaces for the different layers on an Electronic Con-
trol Unit (ECU) [206]. AUTOSAR is developed as an open and standardized automotive
software architecture by automobile manufacturers (Original Equipment Manufacturers, or
OEMs), suppliers, and tool developers [5]. Since 2008, when the first cars with AUTOSAR

2 Introduction

technology were launched, all major OEMs and ECU suppliers have AUTOSAR on their
roadmap [8]. For example, BMW and Volvo have claimed to use AUTOSAR 4.0 [177].
However, some criticisms of AUTOSAR may be relevant for the definition of automotive
ADLs. These include the lack of initial support for the timing issue (only introduced later
in AUTOSAR version 4.0), unnecessary or redundant functions and elements lobbied into
the standard by many OEMs participants as well as tier-one suppliers [97]. In addition to
these issues, we identified that the automotive architecture description mechanisms lacks
the capability to ensure architectural quality [60].

Ensuring automotive software quality is now fundamental to the automotive indus-
try [28]. Due to software glitches and electronics defects, OEMs not only spend millions
on warranty and recall costs, but these glitches can even endanger lives [11,141]. It has
even been claimed that 50% of recalls are attributed to software glitches and electronics
defects [1]. In 2014, for the first time in the history of automotive system development,
Honda Motor Co. recognized that a software glitch in ECUs caused cars behave unexpect-
edly by accelerating suddenly [244]. While there are a number of cases in which electronic
defects have caused car accidents (even deaths), the underlying problems could continue
without being acknowledged by the OEMs. For example, in 2004, Toyota Motor Corp.
reached a confidential settlement with the victims of serious accidents in the US to avoid
punitive damages [244]. This highlights that although automotive software systems enable
technological innovation, it brings increased vulnerability to “hard failures” resulting from
software glitches [222], which are the result of increased software complexity [182].

It is impractical to test everything at the vehicle level due to the vast number of
control parameters, operating conditions, and timing sequences of events [166]. Therefore,
besides using software testing to ensure quality and avoid the risk of costly recalls and
delays in automotive software development, OEMs and suppliers use quality assurance
methods such as coding standards and static analysis tools [28]. These included MISRA
(Motor Industry Software Reliability Association) C coding standard [2] and ISO 26262
functional safety standard [114] to ensure safe automotive software.

The amount of software associated with each new generation of cars is growing by a
factor of ten or more [38]. In 2009, there were 10 million lines of code (LOC) in premium
cars [38] and this was expected to reach 100 million LOC in 2015 [161]. In fact, today
it has already reached 100 million LOC in premium cars [194]. Added to this, there
is no sign of a slowing down of the amount and complexity of software in automotive
systems. In fact, innovation in the global automotive industry has been intensifying,
taking over consumer companies in the top 50 most innovative companies. In addition to
this more OEMs than technology companies appear in the top 20 [226]. Since 90% of
the innovation in the automotive industry is driven by electronics and software [37,217],
ensuring software quality has become a necessity. Although there are a plethora of source
code quality analysis tools available, methods for assessing the quality of automotive
software models are still limited. In addition, quality assurance techniques at code level
would require more time and effort to ensure quality. Therefore, automotive quality
assurance issues require additional solutions earlier in the software development cycle i.e.,
at the architectural and design phase for all the automotive functional domains.

Automotive embedded systems are categorized into vehicle-centric functional domains
(including powertrain control, chassis control, and active/passive safety systems) and
passenger-centric functional domains (covering multimedia/telematics, body/comfort, and
Human Machine Interface (HMI)) [166]. From these domains, powertrain, connectivity,
active safety and assisted driving are considered major areas of potential innovation
and may define OEMs’ success in the years ahead [226]. Ever increasing software to

1.1. Background 3

Coding Unit Function System After

Test Test Test Release

% Defects introduced

in this phase

% Defects found

in this phase

Cost to repair defect

in this phase

$25

85%

$100
$250

$1000

%
 o

f
B

u
g

s
$16,000

Figure 1.1: Defect detection vs. cost of repair [44]

enable innovation in vehicle-centric functional domains requires even more attention to
assessment and improvement of the quality of embedded automotive software. This
is because software-driven innovation can come with software defects, failures, and
vulnerability for hackers’ attacks [122]. Furthermore, as illustrated in Figure 1.1 it can be
very costly to fix software defects in the field [44].

Moreover, automotive companies face strict fuel consumption demands from the
market and emission limits from legislation. Particularly, CO2 emission reduction is
considered the biggest challenge for the automotive industry in the years ahead [78]. This
requirement necessitates major innovations, particularly in powertrain efficiency. The
powertrain of an automotive vehicle is a set of components (e.g., the engine, transmission,
drive shafts, differentials, and the drive wheels) that generates power and delivers it
to the road surface. Increasing efficiency of the powertrain calls for the development
of new and more efficient energy managers and software components to determine the
optimal use of the available power resources [233]. The fact that energy management
and functionality, which are so crucial for modern vehicles, is delegated to software is yet
another imminent dependence on software in the automotive world. Indeed, since the
introduction of software in vehicles thirty years ago, the amount of software has grown
exponentially and nowadays is responsible for 50-70% of the total development costs of
the electronics and software systems in vehicles [38]. Furthermore, given that the lifetime
of a vehicle is more than two or three decades [38], having maintainable software is hugely
important as this will be needed to add any new functionality or repair defects.

This thesis is the result of research that is a part of the Hybrid Innovations for Trucks
(HIT) project. The HIT project is carried out in a consortium of an OEM, suppliers, and
research institutes with the project duration from September 1, 2010 to June 30, 2014.
The HIT is financed by the Dutch High-Tech Automotive Systems (HTAS) automotive
innovation programme of the Ministry of Economic Affairs, Agriculture and Innovation,
the Netherlands. The ultimate goal of the project is the reduction of CO2 emissions and
fuel saving for long-haul trucks. To enable the innovation in hybrid vehicles, more complex
control software will be developed e.g., for engine, after-treatment, battery management
and energy management systems. Therefore, in the scope of the software research work
package of the HIT project, it was required to define “proper” architecture modeling and
software quality techniques.

In the remainder of this introduction the project objectives and research questions
addressed in this thesis together with research methodology will be discussed, and it will
conclude with an outline of this thesis.

4 Introduction

1.2 Project Objectives

In the scope of the software research work package of the HIT project, a definition of
“proper” architecture modeling and software quality techniques was required. One of the
main software research related challenges is that the industrial partners use proprietary
ADLs with limited tool support. Multiple success stories of architecture modeling
approaches in the automotive industry are reported in the literature [32, 137, 187, 215].
Many automotive companies recognize ADLs as a viable solution in order to reduce
development costs and increase the quality of increasingly complex software [166]. However,
the proprietary ADLs have a number of serious shortcomings identifying the main
requirements for automotive architecture modeling. For example, they did not support
traceability requirements, did not provide a means of multi-level modeling and modeling
hierarchical elements. They also did not support the evolution of models or provide
a means for determining their architectural quality. In addition, the tool support was
limited. Therefore, the first project objective has been stated as follows:

1. Identify an existing or design a new automotive architecture description mechanism,
supporting the main requirements for automotive architecture modeling.

Another objective is dedicated to the study of the quality of automotive architectural
models. Because of the increasing size and complexity of software systems a new technique,
besides software testing, is needed to evaluate quality.

2. Identify quality attributes relevant for automotive architectural models, and propose
a means of evaluating these quality attributes.

This thesis presents the results obtained in achieving these objectives.

1.3 Research Questions

We formulated the following research questions to achieve the project objectives described
in the Section 1.2.

To complete the first research objective, we evaluated the existing architecture descrip-
tion mechanisms namely automotive ADLs and Architecture Frameworks (AFs). Since
early 2000, a number of automotive ADLs have been defined for the automotive software
and electronics systems e.g., BMW in the definition of AML [32,189], Volvo, Fiat, and
VW/Carmeq in the EAST-ADL [50] and TADL [228]. Besides the automotive ADLs,
general-purpose (domain-agnostic) modeling languages as SysML [176] and MARTE [169]
have also attracted considerable attention from automotive companies [16,20,187]. Al-
though the foundation for the automotive AF was established within the scope of the
Automotive Architecture Framework (AAF) in 2009 [40], it only in 2013 automotive
companies started to take initiative in defining an architecture framework for automotive
systems i.e., Architecture Design Framework (ADF) by Renault [92]. We have observed
that the architecture description elements (i.e., stakeholders, concerns, architecture
viewpoints, architecture views, and model kinds) of automotive AFs and automotive
ADLs are not in alignment. According to the ISO 42010 standard [116], an architecture
view consists of one or more architecture models and relations between them to support
certain concerns of a stakeholder. An architecture viewpoint represents conventions for
constructing and using an architecture view [116]. We elicited the automotive architecture
modeling requirements to evaluate existing automotive ADLs and carried out a case study
to define the usability of the selected ADL to model an automotive system. This led to
the following research question addressing both automotive AFs and ADLs:

1.4. Research Methodology 5

RQ1: What architecture description mechanisms can be employed to support
automotive architectural modeling at different architecture viewpoints?

During the literature review, while in the process of defining an Architecture Framework
for Automotive Systems (AFAS), we also identified that the correspondence rules between
architecture views are not formally defined in the scope of the automotive architecture
frameworks. This represents a major gap in the literature on automotive architecture
description mechanisms. Therefore, in search of a practical solution to this problem, we
defined the following research question:

RQ2: How can we formalize the correspondence rules between automotive
architecture viewpoints?

In addition to architectural consistency checking, we identified that the automotive
ADLs lack the capability of to ensure the architectural quality during the evaluation of
automotive ADLs. Although not an explicit requirement of automotive ADLs, the support
of the architectural quality is clearly advantageous to the quality of the architectural
modeling. This is due to the fact that ensuring internal quality of the system (measured
by looking inside the product, e.g., by analyzing the static model or source code [159])
influences the external quality (measured by execution of the product, e.g., by performing
testing [159]). This led to the research question RQ3 on the quality of automotive
architectural models. We consider automotive architectural models as software models
in the early stages of the software development cycle. According to the IEEE standard
1061 [218], software quality is defined as the degree to which software possesses a desired
combination of quality characteristics. Variety of software quality models defines software
characteristics in different formats e.g., McCall’s software quality model [155] is known
as the General Electrics model while Boehm’s quality model [27] defined high-level
quality characteristics. In addition, ISO 25010 international standard [115] refined the
ISO 9126 quality model [113] which is based on McCall and Boehm’s models. The
ISO 25010 standard is also known as the Software product Quality Requirements and
Evaluation (SQuaRE) model. We have defined an automotive quality model based on
the SQuaRE model and a set of metrics related to the quality (sub-)characteristics for
MATLAB/Simulink models [56]. In this thesis, we focus on modularity and complexity
aspects of Simulink models. Modularity and complexity aspects are selected because
they are considered sub-sub-characteristics of several sub-characteristics e.g., reusability,
modifiability, and analysability. These sub-characteristics are part of maintainability
characteristic in the ISO 25010 [115]. In the remainder of the thesis, we refer quality
to either modularity or complexity if not addressed explicitly. MATLAB/Simulink is a
graphical modeling language and the most widespread tool used for embedded automotive
software [15].

RQ3: How can the quality of automotive software models be defined and
evaluated?

1.4 Research Methodology

As mentioned earlier, automotive software engineering applies software engineering ap-
proaches to the development of automotive software and electronic systems. The research
questions are targeted to solve real problems encountering the industrial partner. Be-
cause this research is industry-driven, we adopted the “industry-as-laboratory” approach

6 Introduction

introduced by Potts [184]. The nature of this research project required close involvement
with the industrial projects and results to be applied to solve practical problems.

Software engineering research has failed so far to influence industrial practice and the
software quality [184]. The problem is “research-then-transfer”, which fails to address
significant problems. Therefore, besides literature study, we interacted closely with the
industrial projects to identify the practical problems. The interactions with industry
are accomplished in three ways: a survey/interview, industrial case studies, and close
collaboration with the software practitioners in industry.

To maximize the relevance and usefulness of our contributions to industry, the prag-
matism is adopted in our research as a suitable philosophical stance point of view. In
pragmatism, knowledge is judged by how useful it is for solving practical problems and a
combination of methods can be used to solve a given problem [70]. This stance drives the
research and evaluation approaches as we address our research questions.

The exploratory character of our research and the low level control on the industrial
environment make a case study a suitable research approach [243]. Therefore, we used a
case study to investigate the usability of the SysML diagram types for automotive archi-
tecture modeling (RQ1). Given the pragmatic stance of the research, an interview is used
since it is one of the most powerful qualitative methods to collect (historical) information
or opinions about a topic [106]. A case study is also applied to evaluate the consistency
checking approach proposed to formalize a refinement correspondence between automotive
architecture views (RQ2). We applied the Goal Question Metric (GQM) paradigm of
the software measurement field to define modularity and complexity metrics [22] (RQ3).
The proposed metrics are evaluated based on qualitative and quantitative analyses using
industrial applications.

1.5 Thesis Outline

This section outlines the remainder of this thesis. For every chapter we indicate the
research question it addresses and indicates the previous publications it is based upon.

Chapter 2: Architecture Framework for Automotive Systems
According to the ISO 42010 international standard, Architecture Description Languages
(ADLs) and Architecture Frameworks (AFs) are two mechanisms used in architecture
description. However, ADLs and AFs for automotive systems have been specified with
an incoherent set of architecture description elements. Therefore, this chapter presents
the automotive ADLs and AFs, extracts architecture viewpoints and their respective
architecture description elements, and proposes an Architecture Framework for Automotive
Systems (AFAS). An overview of automotive ADLs and the earlier version of AFAS have
been provided in the following publications respectively.

[60] Y. Dajsuren, M.G.J. van den Brand, A. Serebrenik, and R.G.M.
Huisman. Automotive ADLs: a study on enforcing consistency
through multiple architectural levels. In Proceedings of the 8th
international ACM SIGSOFT conference on Quality of Software
Architectures (QoSA), 2012. doi:10.1145/2304696.2304710.

http://dx.doi.org/10.1145/2304696.2304710

1.5. Thesis Outline 7

[54] Y. Dajsuren, C.M. Gerpheide, A. Serebrenik, A. Wijs, B. Vasilescu,
and M.G.J. van den Brand. Formalizing Correspondence Rules
for Automotive Architecture Views. In Proceedings of the 10th
international ACM SIGSOFT conference on Quality of Software
Architectures (QoSA), 2014. doi:10.1145/2602576.2602588.

Chapter 3: Automotive Architecture Modeling
To continue addressing RQ1, we elicit automotive specific architecture modeling require-
ments based on interviews with automotive domain experts. Then the automotive-related
ADLs, which are presented in Chapter 2, are evaluated based on the automotive spe-
cific modeling requirements. Based on the evaluation, SysML was identified as a viable
modeling language for automotive architecture modeling. Although SysML has been
evaluated previously by an OEM, automotive supplier, and automotive research institute,
the usability of the SysML diagram types is not explicitly addressed. Therefore, we
modeled a real-world automotive system to demonstrate architecture modeling in SysML
and identified the diagram types considered beneficial for an automotive company. The
architecture modeling requirements and the evaluation of the automotive ADLs, and the
modeling of a real-world automotive system are discussed in the following publications
respectively.

[60] Y. Dajsuren, M.G.J. van den Brand, A. Serebrenik, and R.G.M.
Huisman. Automotive ADLs: a study on enforcing consistency
through multiple architectural levels. In Proceedings of the 8th
international ACM SIGSOFT conference on Quality of Software
Architectures (QoSA), 2012. doi:10.1145/2304696.2304710.

[53] Y. Dajsuren. Evaluating benefits of SysML for DAF. DAF technical
report 51050/12-333 (Confidential), 2012.

Chapter 4: Formalizing Correspondence Rules for Automotive Architecture
Views
An architectural consistency between the different architecture views has been identified
as one of the key issues during the definition of the AFAS framework. Therefore, this
chapter addresses RQ2. We formalize the notion of correspondence rule between the
architecture views in the automotive domain. The approach has been implemented as a
Java plugin for IBM Rational Rhapsody, a toolset for SysML. We evaluated it in a case
study based on an Adaptive Cruise Control system. An ACC adjusts the vehicle’s speed
to maintain a safe distance with the vehicle ahead. It is part of the “active/passive safety”
vehicle-centric function domain. The following publications are used for this chapter:

[60] Y. Dajsuren, M.G.J. van den Brand, A. Serebrenik, and R.G.M.
Huisman. Automotive ADLs: a study on enforcing consistency
through multiple architectural levels. In Proceedings of the 8th
international ACM SIGSOFT conference on Quality of Software
Architectures (QoSA), 2012. doi:10.1145/2304696.2304710.

[54] Y. Dajsuren, C.M. Gerpheide, A. Serebrenik, A. Wijs, B. Vasilescu,
and M.G.J. van den Brand. Formalizing Correspondence Rules
for Automotive Architecture Views. In Proceedings of the 10th
international ACM SIGSOFT conference on Quality of Software
Architectures (QoSA), 2014. doi:10.1145/2602576.2602588.

http://dx.doi.org/10.1145/2602576.2602588
http://dx.doi.org/10.1145/2304696.2304710
http://dx.doi.org/10.1145/2304696.2304710
http://dx.doi.org/10.1145/2602576.2602588

8 Introduction

Chapter 5: Modularity Analysis of Automotive Control Software
This is the first of three chapters in which we address RQ3. In this chapter, we evaluate
the modularity of Simulink models based on the modularity metrics. The following
publications are used for this chapter.

[61] Y. Dajsuren, M.G.J. van den Brand, A. Serebrenik, S. Roubtsov.
Simulink models are also software: Modularity assessment.
In Proceedings of the 9th International ACM Sigsoft Confer-
ence on the Quality of Software Architectures (QoSA), 2013.
doi:10.1145/2465478.2465482.

[59] Y. Dajsuren, M.G.J. van den Brand, A. Serebrenik. Modularity
analysis of automotive control software. In ERCIM News, issue 94
(ISSN 0926-4981), 2013.

[56] Y. Dajsuren, R.G.M. Huisman. Definition and evaluation of qual-
ity metrics for automotive software models. DAF technical report
51050/15-041 (Confidential), 2015.

Chapter 6: Complexity Metrics Suite for Simulink Models
In this chapter, we continue addressing RQ3. Due to the increasing complexity and size
of Simulink models of automotive software systems, it has become a necessity to maintain
the Simulink models. We define complexity metrics for Simulink models and evaluate
them on industrial control software. The following publications are used for this chapter:

[57] Y. Dajsuren, A. Serebrenik, R.G.M. Huisman, M.G.J. van den Brand.
A Quality Framework for Evaluating Automotive Architecture. In
Proceedings of the FISITA World Automotive Congress, 2014.

[56] Y. Dajsuren, R.G.M. Huisman. Definition and evaluation of qual-
ity metrics for automotive software models. DAF technical report
51050/15-041 (Confidential), 2015.

Chapter 7: Managing Clone Mutations in Simulink Models
This is the last of three chapters in which we address RQ3. We present a mechanism for
clone management based on Variant Configuration Language (VCL) [7] that provides a
powerful variability handling mechanism. In this mechanism, the clones will be managed
separately from the models in a non-intrusive way and the original models will not be
polluted with extra complexity to manage clone instances. The proposed technique is
validated by creating generic solutions for Simulink clones with a variety of differences
present between them. The preliminary version of this chapter has appeared as:

[23] H.A. Basit, Y. Dajsuren. Handling Clone Mutations in Simulink
Models with VCL. In Proceedings of The 8th International Workshop
on Software Clones, ISSN 1863-2122, 2014.

Chapter 8: Conclusions
This chapter concludes the thesis by summarizing the main contributions of this research
and discussing directions for future research.

http://dx.doi.org/10.1145/2465478.2465482

Chapter 2

Architecture Framework for Automotive Systems

Although architecture frameworks have not been standardized in the automotive industry,
different types of architecture viewpoints and views have been introduced recently as part
of automotive architecture frameworks. In this chapter, we first present a literature review
which has been carried out to discover the existing architecture frameworks and architecture
description languages for the automotive industry, as well as their benefits and gaps. We
propose an Architecture Framework for Automotive Systems (AFAS) based on the extracted
viewpoints from existing automotive architecture description mechanisms.

2.1 Introduction

An Architecture Description Language (ADL) is considered a viable solution to manage
multi-disciplinary engineering information in an effective way [38,166,208]. According to
the ISO 42010 international standard [116], an ADL provides one or more model kinds
(data flow diagrams, class diagrams, state diagrams, etc.) as a means to frame some
concerns for its stakeholders. Model kinds can be organized into architecture views, which
are governed by architecture viewpoints.

Recognizing the importance of ADLs, automotive companies have been actively
involved in their development over the last decade. These include BMW who have been
involved in developing AML [32,189], as well as Volvo, Fiat, and VW/Carmeq who have
been involved in developing the EAST-ADL [50] and TADL [228]. EAST-ADL is being
extended to model the fully electric vehicle in the scope of the ICT MAENAD project,
where many automotive manufacturers and suppliers are participating [147]. Besides
the automotive ADLs, SysML [176] and MARTE [169] are also attracting considerable
attention of automotive companies [16,20,187].

According to the ISO 42010 international standard [116], in addition to an ADL, an
architecture framework is another key mechanism used to describe architectures. An
architecture framework provides conventions, principles and practices for the description
of architectures within a specific domain and/or community of stakeholders [116]. The
benefits of existing architecture frameworks such as Kruchten’s 4+1 view model [133],

10 Architecture Framework for Automotive Systems

 2002 2004 2006 2008 2010 2012 2014

AAF ADF

EAST-ADLAML EAST-ADL2AADL

SysML
MARTE

Figure 2.1: Timeline of the automotive architecture description mechanisms

Ministry of Defense Architecture Framework (MODAF) [170], The Open Group Architec-
ture Framework (TOGAF) [6], and ISO Reference Model for Open Distributed Processing
(RM-ODP) [112], drive the creation of architecture frameworks for other industries.

Having a standardized architectural foundation and specifically automotive-specific
architecture frameworks is very important for the automotive industry. The key elements
of this proposed architecture framework was first introduced in the scope of the Automotive
Architecture Framework (AAF) [40]. The AAF aimed to describe the entire vehicle system
across all functional and engineering domains and drive the thought process within the
automotive industry [40]. Only in recent years, automotive companies have started to
take initiative in defining an architecture framework for automotive systems, for example,
Architecture Design Framework (ADF) by Renault [92].

Automotive embedded systems are categorized into vehicle-centric functional domains
(including powertrain control, chassis control, and active/passive safety systems) and
passenger-centric functional domains (covering multimedia/telematics, body/comfort, and
human machine interface (HMI)) [166]. Each functional domain needs to tackle different
system concerns. For example, the powertrain control enables the longitudinal propulsion
of the vehicle, body domain supports the functioning of the airbag, wiper, and lighting
and other functions for the vehicle users). However, all the integrated functionalities must
not jeopardize the key vehicle requirements of safety and efficiency.

The automotive industry is vertically organized [38], which facilitates independent
development of vehicle parts. An automobile manufacturer (called an “original equipment
manufacturer”, or OEM) creates the functional architecture and distributes the devel-
opment of the functional components to the suppliers, who implement and deliver the
software models and/or hardware [38]. Software models for each functional component or
subsystem can be developed in different ADLs or programming languages, which may
make the integration process at the OEM more cumbersome. This process requires com-
mon architecture frameworks between OEMs and suppliers or at least better formalization
of architecture views and consistency between them.

Therefore, there needs to be a common definition of an ADL and architecture frame-
work and these should be applicable for all functional domains. However, architecture
description elements of an automotive-related ADL and architecture frameworks (i.e.,
architecture viewpoints, views, and correspondences) are not systematically defined.
Figure 2.1 shows the timeline of the automotive architecture description mechanisms.

This chapter extracts architecture elements (viewpoints, views) from automotive ADLs,
compares the extracted elements with the existing automotive architecture frameworks
and proposes an Architecture Framework for Automotive Systems (AFAS) with a coherent
set of architecture views.

2.2. Automotive AFs and Viewpoints 11

Figure 2.2: A conceptual model of an architecture framework [116].

2.1.1 Chapter outline

Section 2.2 presents the automotive architecture frameworks and describes the architecture
viewpoints defined in the automotive frameworks. Section 2.3 introduces automotive-
related ADLs and presents the extracted architecture viewpoints from the ADLs. Sec-
tion 2.4 presents an Architecture Framework for Automotive Systems (AFAS), which
contains architecture viewpoints and views consistent with the automotive AFs and ADLs.
Section 2.5 summarizes the chapter.

2.2 Automotive AFs and Viewpoints

An architecture framework establishes a common practice for creating, interpreting,
analyzing and using architecture descriptions within a particular domain of application
or stakeholder community [116]. While an Architecture Description Language (ADL)
is used to describe or represent an architecture, an architecture framework enables the
efficient use of an ADL for a particular domain. Therefore, a standard architecture
framework in the automotive industry can enable an efficient architecture description for
system stakeholders. In the ISO 42010 international standard, a conceptual model of an
architecture framework as shown in Figure 2.2 is almost identical to the conceptual model
of an ADL as shown in Figure 3.1. The differences are as follows:

• An architecture framework should provide at least a single architecture viewpoint,
which is used to organize the model kinds.

• An ADL should define at least a single model kind without necessarily providing a
architecture viewpoint.

In this section, we present the automotive architecture frameworks, extract common
architecture viewpoints, and summarize other architecture viewpoints that exist only in
one of the architecture frameworks.

12 Architecture Framework for Automotive Systems

Figure 2.3: A conceptual model of an architecture description language [116].

2.2.1 Automotive Architecture Frameworks

Automotive Architecture Framework (AAF) [40] is the first architecture frame-
work for the automotive industry to pave the way for a standardized architecture descrip-
tion. The AAF was defined to describe the entire vehicle system across all functional
and engineering domains. Since the AAF conforms to the ISO 42010 international stan-
dard [40], a set of viewpoints and views are explicitly defined. The AAF proposes two
sets of architecture viewpoints: mandatory or general viewpoints and optional viewpoints.
Mandatory viewpoints and their respective views include Functional viewpoint, Technical
viewpoint, Information viewpoint, Driver/vehicle operations viewpoint, and Value net
viewpoint. Optional viewpoints suggested by the AAF are safety, security, quality and
RAS (reliability, availability, serviceability), energy, cost, NVH (noise, vibration, harsh-
ness), and weight. The general viewpoints are intended to be closer to the already proven
frameworks in other manufacturing industries e.g. RASDS [227] and RM-ODP [112].
Since the introduction of the concepts in the first draft of the AAF, further research is
needed to identify automotive specific architectural elements.

Architectural Design Framework (ADF) [92] is developed by an OEM to support
the construction of an architecture framework for the automotive industry. The ADF
includes operational, functional, constructional, and requirements viewpoints. Although
the AAF and ADF are constructed to provide the basis for the architecture framework for
the automotive industry, architecture viewpoints and views are extracted from architecture
frameworks from other industries. Furthermore, in these frameworks, the definition of
architectural elements including architecture viewpoints, views, and correspondences have
not been addressed consistently with automotive ADLs.

2.2.2 Extracting Viewpoints from Automotive AFs

An architecture framework may include one or more architecture viewpoints, which consist
of a set of model kinds [116]. We discussed above the architecture viewpoints and views
of AAF and ADF frameworks. The viewpoints are described in a similar way to the
viewpoint catalog [204]. Below we extract the common viewpoints of AAF and ADF
according to the following template:

• Definition: Definition of the viewpoint is presented.

2.2. Automotive AFs and Viewpoints 13

• Stakeholders: Although the stakeholders are not explicitly identified for the view-
points in the AAF and ADF, we list the stakeholders.

• Concerns: Stakeholder concerns are defined.

• Views: The views governed by the viewpoints are presented.

• Model kinds: The model kinds used in the viewpoint are presented.

Functional viewpoint Table 2.1 summarizes the functional viewpoint, which is defined
both in the AAF and ADF frameworks. A function realizes a feature in a set of interacting
and interdependent software and/or hardware components.

The functional viewpoint extracted from automotive ADLs as discussed in Section 2.3.2
generally matches the description of the functional viewpoint in AAF and ADF frameworks.

In AAF, the functional viewpoint describes vehicles in terms of vehicle functions
and their logical interactions. The AAF functional viewpoint governs a functional
view, which describes the functional composition of a vehicle, its functional entities,
interfaces, interactions, interdependencies, behavior and constraints [40]. Although AAF
does not specify a particular model kind for the functional viewpoint, it defines the
functional architecture. The functional architecture describes the system from the black-
box-perspective by describing the system’s functionality that is presented to the outside
world [40]. The stakeholders of the AAF are defined as OEMs, suppliers, tool vendors,
and research institutes. Stakeholder concerns are not explicitly defined for the AAF
functional viewpoint. Based on the description of the functional viewpoint, we defined
them as functional composition and interfaces. The functional viewpoint corresponds to
the technical and optional viewpoints.

In ADF, the functional viewpoint supports three main views: functional breakdown
structure, functional architecture, and allocation on functions [92]. ADF defines SysML
model kinds for each functional views. SysML Activity Diagram (AD), Block Definition
Diagram (BDD), and Internal Block Diagram (IBD) are defined for the functional
breakdown structure view. In the activity diagram, the system functions are defined by
regrouping or refining activities (actions) identified in the operational scenario views and
allocating them to SysML blocks. In the BDD and IBD, ports and connectors conform to

Table 2.1: Functional Viewpoint

Functional viewpoint
Definition It describes the vehicle functions and their interactions.
Stakeholders AAF: OEMs, suppliers, tool vendors, and research institutes

ADF: Undefined
Concerns Functional composition and interfaces
Architecture views AAF: Functional view

ADF: Functional breakdown structure view, functional architecture view,
allocation on functions view

Model kinds AAF: Functional architecture (Functional composition of a vehicle, its
functional entities, interfaces, interactions, interdependencies, behavior
and constraints)
ADF: AD, BDD, IBD for the functional breakdown structure view; AD,
BDD, IBD for the functional architecture; allocation concept for the
requirements allocation on functions views

Correspondence rules AAF: Correspondences to technical and optional viewpoints e.g., energy
ADF: Refinement and conformance correspondence to the operational
viewpoint

14 Architecture Framework for Automotive Systems

a flow type (e.g., energy, information) of external interfaces and object flows specified
in ADs [92]. Although it is not explicitly mentioned in the ADF, an allocation concept
is plausibly used for allocating requirements to functions (blocks). Stakeholders, their
concerns, and correspondence rules are not explicitly determined in the ADF. We expect
the same stakeholders and concerns for the AAF are applicable to the ADF. Regarding
correspondence, the functional viewpoint conforms or refines the operational viewpoint.

Technical/Constructional viewpoint Table 2.2 presents the technical/construc-
tional viewpoint, which looks at a vehicle in terms of its physical components, their
relationships and constraints. AAF refers to it as a technical viewpoint and ADF refers
to it as a constructional viewpoint.

In AAF, the technical viewpoint addresses a vehicle from the perspective of its
physical components. This includes Electronic Control Units (ECUs), their geometry
and composition within superordinate geometric structures, as well as their relationships.
It also includes the vehicle’s behavior such as, physical aspects like thermodynamics,
acoustics, vibrations, mechanical deformation, as well as dependencies and constraints [40].

The AAF technical viewpoint governs a technical view, which consists of runtime
model view, hardware topology view, and allocation view. As in the AAF functional view,
the technical view does not specify the model kinds for its constituent views, instead
the definitions of what they should represent are provided. The technical architecture
describes how the system can be realized into a given hardware platform [40]. It consists
of the runtime model, the hardware topology, and the allocation model. The runtime
model describes the behavior of the system from a physical/technical perspective. The
hardware topology model describes the structure of the hardware platform using physical
units, which represent hardware components (ECUs, sensors, mechanical components etc.)
and their connections (buses, wires etc.) [40]. The allocation model maps the elements
of the runtime model to the elements of the hardware topology model [40]. As in the
functional viewpoint, all stakeholders are considered relevant to the technical viewpoint.
AAF determines that the technical viewpoint has strong correspondences to the functional
viewpoint and optional viewpoints e.g., energy viewpoint.

Table 2.2: Technical/Constructional Viewpoint

Technical/Constructional viewpoint
Definition It describes vehicle physical components, their relationships, constraints,

and allocation.
Stakeholders AAF: OEMs, suppliers, tool vendors, and research institutes

ADF: Undefined
Concerns Physical component composition and their relationships
Architecture views AAF: Technical architecture view consisting of runtime model view, hard-

ware topology view, and allocation view
ADF: Product breakdown structure view, organic architecture view, re-
quirements and function allocation on components view

Model kinds AAF: Technical architecture for the technical view consisting of runtime
model (for the runtime view), hardware topology (for the hardware topol-
ogy view), allocation model (for the allocation view)
ADF: BDD, IBD for a product breakdown structure view; BDD, IBD
for an organic architecture view, requirements and function allocation on
components

Correspondence rules AAF: Correspondences to the functional viewpoint and optional viewpoints
e.g., energy viewpoint
ADF: Conformance correspondence to the functional viewpoint

2.2. Automotive AFs and Viewpoints 15

The ADF constructional viewpoint supports the product breakdown structure, organic
architecture, and allocation on components views. ADF also defines SysML the model
kinds for each constructional view. SysML BDD and IBD model kinds are selected for the
product breakdown structure and organic architecture views. The allocation concept is
used for allocating requirements and function to components [92]. The product breakdown
structure identifies and allocates the system functions to physical components. The organic
architecture defines the components of the system, their interfaces and connections, which
satisfy the system’s technical requirements (e.g., cost, weight, size, authorized/forbidden
use of materials) and other criteria (e.g., performance, effectiveness) [92]. Architecture
models for the allocation on components view captures the allocation and structuring
of the system requirements and functions to physical components to achieve an optimal
allocation. The flows between functions are associated with the interfaces/connectors
(e.g., mechanic, electric, network) between components [92].

As in the functional viewpoint, all stakeholders are considered relevant to the con-
structional viewpoint. ADF does not specify the concerns and correspondences explicitly.
However, we identified the same concerns as AAF. The conformance correspondence is de-
tected according to the implicit description of architecture views of the ADF constructional
viewpoints.

Requirements viewpoint Table 2.3 presents the requirements viewpoint, which looks
at the vehicle from the perspective of the vehicle stakeholders including end users (drivers
and passengers) and vehicle environment. We map the AAF driver/vehicle operations
mandatory viewpoint, value net mandatory viewpoint, and all the optional viewpoints i.e.,
safety, security, quality, RAS (reliability, availability, serviceability), energy, cost, NVH
(noise, vibration, harshness), and weight viewpoints to the ADF requirements viewpoint.

In ADF, requirements viewpoint captures elicitation of stakeholder requirements and
elaboration of system technical requirements. ADF requirements viewpoint supports
the stakeholder requirements view, high-level requirements view, and system technical
requirements view. The ADF requirements viewpoint is in alignment with the AAF
mandatory viewpoints driver/vehicle operations and value net viewpoints. The AAF
driver/vehicle operations viewpoint looks at the interactions, interfaces, interdependencies
between vehicle and its end user (driver and passengers) as well as the surrounding
environment (e.g., road, other vehicles, and traffic control systems) [40]. In addition, it
describes the related behavior, constraints, and priorities. The driver/vehicle operations
viewpoint governs driver/vehicle operations view.

Actors and system boundary are also captured as part of the ADF stakeholder
requirements view. The AAF value net viewpoint is used to optimize the efficiency of the
value creation process [40]. It can also be captured by the ADF stakeholder requirements
view. High-level requirements are identified after the stakeholder requirements are
elicited. An example high-level requirement can define measures of effectiveness or Key
Performance Parameters (KPP) [92]. The technical requirements are built after the
operational models are defined e.g., by defining functional requirements from operations
identified in sequence diagrams in the operational view [92]. Technical requirements
capture functional, performance, interface requirements or constraints [92]. What is
captured in the AAF optional viewpoints depends on the vehicle system. However, ADF
requirements viewpoint can support viewpoints such as i.e., safety, security, quality, RAS,
energy, cost, NVH, and weight viewpoints.

In AAF, no specific model kind is defined for requirements related viewpoints. In
ADF, SysML requirements diagram type is selected for the requirements viewpoint [40].

16 Architecture Framework for Automotive Systems

Formalization of stakeholder and high-level requirements and elaboration of system
technical requirements are captured by the SysML requirements diagram for all these
views. All stakeholders, including vehicle end users (drivers and passengers), are defined
for this viewpoint. Interactions, interfaces, and interdependencies between vehicle, end
users, and the surrounding environment are key concerns. This viewpoint corresponds to
other viewpoints to enable the requirements traceability of each viewpoint.

Other viewpoints AAF information viewpoint is mandatory, but does not have a
similar viewpoint in the ADF. The information viewpoint looks at the vehicle from the
perspective of information or data objects used to define and manage a vehicle [40]. It
governs the information view, which describes information or data objects, their metadata,
properties, relationships, configurations, and configuration constraints [40].

ADF operational viewpoint is the most abstract viewpoint of the ADF framework. The
operational viewpoint governs structural and behavioral operational views. The structural
operational view consists of the maximal system scope, system environment, operational
context, external interfaces, and use-cases views [92]. The actors, system scope, system
environment and high-level interactions are identified in these structural views. The
behavioral operational view consists of operational scenarios and system working modes
views. These views are built from the structural operational views [92]. System use
cases are used to identify actors, the system boundary and high-level interactions, which
are refined in SysML sequence diagrams. Operational scenarios view addresses detailed
interactions between the system and external systems/user/environment to realize the use
cases. System working states view uses state machines to describe alternative conditions
for operational scenarios [92]. SysML diagram types are mapped to the operational
viewpoint as following: SysML internal block diagram type is selected for the maximal
system scope, system environment, operational context, and external interfaces views.
SysML use case diagram type is selected for the use-cases view. SysML sequence and
activity diagram types are selected for the operational scenarios view. SysML state
machine diagram type is selected for the system working modes view.

Although these viewpoints exist only in one of the architecture frameworks, we address
these viewpoints in the definition of the Architecture Framework for Automotive Systems

Table 2.3: Requirements Viewpoint

Requirements viewpoint
Definition It captures the vehicle from the perspective of the vehicle driver and the

world around the vehicle.
Stakeholders AAF: All stakeholders (End users, OEMs, suppliers, tool vendors, and

research institutes)
ADF: Undefined

Concerns Interactions between vehicle, end user, environment
Architecture views AAF: Driver/vehicle view, value net view, optional views (safety, security,

quality, RAS, energy, cost, NVH, and weight views)
ADF: Stakeholder requirements view, high-level requirements view, system
technical requirements view

Model kinds AAF: Driver/vehicle operations model, value net model, models for safety,
security, quality, RAS, energy, cost, NVH, and weight views
ADF: Requirements diagram for the stakeholder requirements, high-level
requirements, and system technical requirements views

Correspondence rules AAF: Correspondences to other mandatory viewpoints
ADF: Correspondence to the operational, functional, constructional view-
points

2.3. Automotive ADLs and Viewpoints 17

Figure 2.4: ADL conceptual model [116]

(AFAS) in Section 2.4 e.g., the information viewpoint of the AAF is included in the AFAS
framework.

2.2.3 Discussion

Architecture framework for the automotive systems have not been standardized in the
automotive industry. Automotive Architecture Framework (AAF) and Architecture
Design Framework (ADF) aim to define a complete and integrated architecture framework
for the automotive industry. We have identified common architecture viewpoints of these
frameworks and summarized those that exist only in one of the frameworks. In the
following section, we present the automotive ADLs and extract the viewpoints defined
in the scope of the automotive ADLs. In Section 2.4, we then integrate the common
architecture viewpoints of architecture frameworks and ADLs. Other viewpoints are also
considered in the definition of the architecture framework.

2.3 Automotive ADLs and Viewpoints

According to the ISO42010 international standard for systems and software engineer-
ing [116], an Architecture Description Language (ADL) is any form of expression used to
describe an architecture. As illustrated in Figure 3.1, an ADL provides one or more model
kinds (data flow diagrams, class diagrams, state diagrams etc.) as a means to frame some
concerns for its stakeholders [116]. In the case of several model kinds provided by an ADL
to capture complex architectural representations, architecture viewpoints can be used to
organize them. Correspondence rules can be used to express and enforce architecture
relations e.g., refinement, composition, and traceability.

In this section, we present the automotive architecture ADLs, extract common archi-
tecture viewpoints, and summarize other architecture viewpoints that exist only in one of
the ADLs. We apply the same template followed in Section 2.2.2, when describing the
architecture viewpoints.

2.3.1 Automotive ADLs

EAST-ADL [50] (Embedded Architectures and Software Technologies–Architecture
Description Language) is an architecture description language for automotive domain. It

18 Architecture Framework for Automotive Systems

has been defined in the scope of an European research initiative, ITEA project EAST-
EEA since 2001 [50]. The EAST-EEA project aimed to reduce automotive software’s
dependency on hardware, allowing more flexibility regarding the allocation of software [166].
The EAST-ADL has been refined in the ATESST project to EAST-ADL2 [225], which
was extended further to support modeling of fully electric vehicles in the scope of the
MAENAD project to EAST-ADL2.1.12 [146]. In the remainder of the chapter, EAST-
ADL refers to the EAST-ADL2.1.12. The main purpose of EAST-ADL is to capture
engineering information of automotive Electrical/Electronic (E/E) systems to enable
modeling of the entire system development lifecycle. The language consists of four main
abstraction levels, which can be considered architecture viewpoints of the ISO 42010
standard. The highest level is called a Vehicle level, where the basic vehicle features,
requirements and use cases are captured. The abstract functionalities based on the
requirements and features are further defined in the Analysis level and further refined as
the concrete functionalities in the Design level. The design level also contains functional
definitions of application software, hardware components, and middleware. It also covers
function to hardware (e.g., ECU) allocations. The lowest abstract level, Implementation
level, uses AUTOSAR [5] concepts to realize the higher level models. Requirements,
variability, timing, dependability, and environment models are captured in parallel with
these abstraction levels.

TADL [228] (Timing Augmented Description Language) is originated from EAST-ADL,
AUTOSAR, and MARTE. It was developed by the TIMMO project. TADL addresses
timing issues early in the development cycle by standardizing specification, analysis and
verification of timing constraints in all levels of abstraction of EAST-ADL2.

AADL [82] (Architecture Analysis and Design language) was developed to model
software, hardware, and system architecture of real-time embedded systems such as
aircraft, motorized vehicles, and medical devices. The Society of Automotive Engineers
(SAE) defined the AADL as SAE AS5506 Standard based on the MetaH ADL [237].
Initially AADL was known as the Avionics Architecture Description Language. In AADL,
a system is constructed as a composite component consisting of application software
and execution platform. AADL enables a system designer to perform analyses of the
composed components such as system schedulability, sizing analysis, and safety analysis.
The focus of AADL is on task structure and interaction topology, although generalization
to more abstract entities is possible. It supports the definition of mode handling, error
handling, inter process communication mechanisms. As such, it acts as a specification of
the embedded software, which can be used for automatic generation of an application
framework where the actual code can be integrated smoothly. The language supports
different types of analysis mechanisms e.g., for safety and timing analysis. Further,
a behavioral annex is proposed, to allow a common behavioral semantics for AADL
descriptions.

AML [189] (Automotive Modeling Language) is developed in the scope of the FOR-
SOFT project, which defined an architecture centric language to analyse and synthesize
automotive embedded systems. Similar to other ADLs, it offers commonly accepted
modeling constructs to specify the software and hardware parts of the system architecture.
The architecture is described by using components, in- and out-ports, and connectors.
The abstract syntax of the AML provides a conceptual and methodological framework as

2.3. Automotive ADLs and Viewpoints 19

SysML

diagram

Requirement

diagram
Structure diagram Behavior diagram

Figure 2.5: SysML structure

a prerequisite for well-defined semantics of the offered modeling constructs. The usage
of different kinds of textual, graphical, or tabular notations for a concrete model repre-
sentation is supported. AML models can be represented by various notational elements
offered by wide spread modeling languages and tools such as ASCET-SD1, UML 1.4/2.0
and UML-RT.

SysML [176] (Systems Modeling Language) of OMG is a general purpose graphical
modeling language to support specification, analysis, design and verification of complex
systems. It is sponsored by INCOSE/OMG with broad industry and vendor participation
and adopted by the OMG in 2006 as OMG SysML. The SysML adjusts UML2 [175] to
system engineering by excluding unrelated diagrams and including new modeling concepts
and diagrams for systems engineering. The SysML concepts concern requirements,
structural modeling, and behavioral constructs. New diagrams include a requirement
diagram and a parametric diagram and adjustments of UML activity, class, and composite
structure diagrams. See Section 3.4,where a more detailed discussion of these diagram
types is provided. Tabular representations of requirements or allocations, for example,
are also included as an alternative notation. Multiple vendors support SysML tools
such as Artisan Studio (Atego) [21], MagicDraw (No Magic) [167], Enterprise Architect
(Sparx Systems) [219], Sirius (Eclipse) [72], Rational Rhapsody (IBM) [109], and PolarSys
(Former TOPCASED) (Eclipse) [71]. One of the drawbacks of SysML is that SysML, as
in UML, does not have a well-defined semantics.

Figure 4.3 illustrates the SysML structure, which consists of the following diagram
types:

• The requirement diagram provides cross cutting relationships between require-
ments and system models.

• The structure diagrams are Block Definition Diagrams (BDD), Internal Block
Diagrams (IBD), package diagrams, and parametric diagram. UML class and
composite structure diagrams are the basis of the BDD and IBD. A parametric
diagram is a new diagram type, which can define quantitative constraints like
maximum acceleration, minimum curb weight, and total air conditioning capacity.

• The behavior diagrams are use case, state machine, activity diagrams, and
sequence diagrams. Activity diagram is modified from UML2.0 activity diagram.

Tabular representations of requirements or allocations, for example, are also included
as an alternative notation. SysML can be used to model hardware, software, information,
processes etc.

1ETAS ASCET-S http://www.etas.com/

20 Architecture Framework for Automotive Systems

Table 2.4: Automotive ADLs and viewpoints

Viewpoint EAST-ADL AADL AML SysML MARTE
Feature Technical fea-

ture
Functional Functional

analysis
Layered sys-
tem modeling

Functional
network

Functional
viewpoint
(from ADF)

System con-
figuration,
Generic
component

Logical Functional
design (Func-
tional design
architecture)

Composite
system

Logical archi-
tecture

A subset of
functional
viewpoint
(from ADF)

High level ap-
plication

Implementation AUTOSAR
software rep-
resentation,
Hardware
design archi-
tecture

Application
software,
Execution
platform

Technical ar-
chitecture

Construc-
tional view-
point (from
ADF)

Allocation

MARTE [169] (Modeling and Analysis of Real Time and Embedded) profile is an
OMG standard for modeling real-time and embedded applications in UML2. It pro-
vides fundamental concepts of modeling and analyzing concerns of the real-time and
embedded systems such as performance, schedulability issues. MARTE design model
supports real-time embedded models of computation and communication, software and
hardware resource modeling, while analysis model enables generic quantitative analysis,
schedulability, and performance analysis and refinement [89]. Both hardware and software
aspects are supported.

2.3.2 Extracting Viewpoints from Automotive ADLs

The relationship between the architecture description elements (i.e., stakeholders, con-
cerns, viewpoints, views, and model kinds) is presented in IEEE 1471-2000 standard
and subsequently in ISO 42010 international standard [116]. Correspondences and corre-
spondence rules are used to express and enforce architecture relations (e.g., composition,
refinement, consistency, traceability and dependency) within or between architecture
description elements [116]. However, architecture description elements remain vague in
automotive ADLs. Therefore, in this section, we identify the viewpoints together with
other architecture elements, namely stakeholders, concerns, viewpoints and respective
model kinds from automotive ADLs introduced in Section 2.3.1. The summary of the
viewpoints extracted from the automotive ADLs is presented in Table 2.4.

Feature viewpoint Product line engineering is one of the software engineering ap-
proaches to reduce software development costs. It is used by some automotive suppliers,
but it is not used by the OEMs [38]. A feature is an end-user visible characteristic of a
system [121] and it is captured in the feature viewpoint. The feature viewpoint is absent
in the extracted viewpoints from automotive architecture frameworks as discussed in
Section 2.2.2. However, EAST-ADL is the only automotive ADL to support product lines
in the architecture description. Table 2.5 summarizes the feature viewpoint, which is
extracted from the EAST-ADL. As discussed in Section 2.3.1, the highest abstraction
level of EAST-ADL is called a vehicle level, where the basic vehicle features, requirements
and use cases are captured [225]. The vehicle level can be interpreted as a vehicle view,

2.3. Automotive ADLs and Viewpoints 21

which contains a vehicle feature model. The vehicle feature model is used to describe a
product line in terms of available features and their dependencies. The feature model can
be used as a starting point to related requirements, use cases, and other constructs [50].
It can be used by all the stakeholders. Feature viewpoints have a correspondence with
the environment, requirements, and functional viewpoints.

From other automotive-related ADLs, MARTE has mechanisms that can be used for
the product line engineering. For example CombinedFragments, abstract class, inheritance,
interface implementation, variables can be used for analyzing software product line
models [26]. However it is not considered a feature viewpoint, given that the MARTE is
not a profile for software product line engineering.

Functional viewpoint The functional viewpoint describes the vehicle from the abstract
functions and their interactions point of view. Table 2.6 presents the functional viewpoint,
which is defined in all automotive ADLs. The definition and purpose of the functional
viewpoint of automotive ADLs is the same as the functional viewpoint of the automotive
architecture frameworks as discussed in Section 2.2.2. However, the architecture views
and model kinds differ among automotive ADLs.

In EAST-ADL, the vehicle features are realized by abstract functions in the Functional
Analysis Architecture (FAA) at the functional analysis view. The FAA specifies what
the system will do by specifying the main structure, interfaces, and behavior to realize
the features and requirements from the vehicle view [50]. The FAA does not provide
detailed design or implementation decisions. There is an n-to-m mapping between vehicle
feature entities and FAA entities i.e., one or several functions may realize one or several
features [225]. EAST-ADL provides the concepts for function component modeling to
define the logical functionality and decomposition in the FAA [225]. Functions interact
with each other via ports that are linked by connectors. The system boundary, environment
model, and abstract safety analysis can be carried out in the analysis view [225].

AADL introduced the layered architecture modeling to support hierarchical contain-
ment of components, layered use of threads for processing and services, and layered
virtual-machine abstraction of the execution platform [205]. In AADL, a system is con-
structed as a composite system consisting of application software, execution platform, or
system components, which are all considered specific type of components. AADL defines
components by type and implementation declarations [82]. A component’s interface and
external attributes (e.g., interaction points, flow specifications, and internal property
values) are defined in a component type declaration [82]. A component’s internal struc-
ture (e.g., its subcomponents, subcomponent connections, flow implementations, and

Table 2.5: Feature Viewpoint

Feature viewpoint
Definition It captures the vehicle from the perspective of the vehicle features and the

world around the vehicle.
Stakeholders End user, system architect, tier-x designer, safety engineer, tester or

maintenance engineer
Concerns Vehicle features, interactions between vehicle features, end user, environ-

ment
Architecture views Vehicle view
Model kinds Vehicle feature diagram
Correspondence rules Correspondences to Environment, Requirements, and Functional view-

points

22 Architecture Framework for Automotive Systems

properties) are defined in a component implementation declaration [82]. The AADL
core modeling language for the component-based representation enables modeling of
components, interactions, and properties [82]. It has graphical and textual representations.
The layered architecture and composite system models are further refined in the composite
system. Because the functional viewpoint describes the system’s functionality in black-box
perspective, we map the layered system modeling to the functional viewpoint.

We map the functional network abstraction level to the functional viewpoint, because
a network of functions, that is, generic and reusable building blocks, are defined at this
level. A function has an interface, which specifies the required and provided signals [189].
Local signals of a function are not accessible to enable reusability [189]. Regarding
correspondence to other viewpoints/views, functions can be refined and deployed on
different control units of the lower level logical architecture view.

For SysML, we reuse the architectural elements of the functional viewpoint in the ADF
framework in Section 2.2.2. In the ADF breakdown structure view, functional architecture
view, and allocation on functions view are defined for the functional viewpoint. SysML
activity diagram, block definition diagram, and internal block diagrams are selected for
the breakdown structure view and functional architecture view.

Logical viewpoint We generalized a more concrete viewpoint that refines the functional
viewpoint as a logical viewpoint. Table 2.7 presents the logical viewpoint, which is
(implicitly) defined in all automotive ADLs except AML. Note that the AAF defines

Table 2.6: Functional Viewpoint

Functional viewpoint
Definition It describes the vehicle functions and their interactions.
Stakeholders End user, system or functional architect, tier-x designer, safety engineer,

tester or maintenance engineer
Concerns Functional composition and interfaces
Architecture views EAST-ADL: Analysis view

AADL: Layered architecture modeling view
AML: Functional network view
SysML: Functional breakdown structure view, functional architecture view,
allocation on functions view
MARTE: Breakdown structure view, functional architecture view, alloca-
tion on functions view

Model kinds EAST-ADL: Functional analysis architecture (Function component model-
ing conepts)
AADL: Core AADL language
AML: AML metamodel and semantics for the functions and functional
network
SysML: AD, BDD, IBD for the functional breakdown structure view;
AD, BDD, IBD for the functional architecture; allocation concept for the
requirements allocation on functions views
MARTE: AD, BDD, IBD for the functional breakdown structure view;
AD, BDD, IBD for the functional architecture; allocation concept for the
requirements allocation on functions views

Correspondence rules EAST-ADL: Correspondences to feature, environment, and requirements
viewpoints (an n-to-m mapping between vehicle feature entities and FAA
entities (i.e., one or several functions may realize one or several features)
AADL: Refinement correspondence to the composite system view
AML: Refinement and allocation correspondence to logical architecture
SysML, MARTE: Refinement and conformance correspondence to the
logical viewpoint

2.3. Automotive ADLs and Viewpoints 23

Table 2.7: Logical Viewpoint

Logical viewpoint
Definition It refines the functional architecture into logical components, which are

independent from implementation details and underlying hardware.
Stakeholders End user, system architect, tier-x designer, safety engineer, tester or

maintenance engineer
Concerns Internal structure of the vehicle functions, detailed interactions between

and inside vehicle functions
Architecture views EAST-ADL: Functional design view

AADL: Composite system view
AML: Logical architecture view
SysML: Functional breakdown structure view

Model kinds EAST-ADL: Functional Design Architecture
AADL: Core AADL language
AML: AML metamodel and semantics for the logical architecture
SysML: AD, BDD, IBD for the functional breakdown structure view

Correspondence rules EAST-ADL: Refinement correspondence to functional viewpoint (n-to-m
mappings by realization relationships between entities in the FDA and
entities in the FAA)
AADL: Refinement correspondence to the application software, physical
platform
AML: Refinement correspondence to the functional network view
SysML: Refinement and conformance correspondence to the functional
viewpoint

logical viewpoint as a white-box representation of a system, but it does not define it
as an architecture viewpoint [40]. Thus the logical viewpoint is not listed as one of
the architecture viewpoints of the automotive architecture frameworks in Section 2.2.2.
However, it is a viewpoint that is common among automotive ADLs.

In EAST-ADL, the Functional Analysis Architecture (FAA) of the analysis view
(governed by the functional viewpoint) is refined by the Functional Design Architecture
(FDA) and Hardware Design Architecture (HDA) at the design level/view [146]. We
exclude the HDA from the design viewpoint, because the logical architecture needs to be
independent from the underlying hardware. The FDA decomposes the functions defined
in the FAA by adding a behavioral description and a detailed interface definition to meet
constraints regarding non-functional requirements such as efficiency, reuse, or supplier
concerns [146]. There are n-to-m mappings by realization relationships between entities
in the FDA and entities in the FAA [146].

In AADL, the internal structure of a system is constructed as a composite system
consisting of application software, execution platform, or system components [82], which
are all considered specific type of components as described in the functional viewpoint
section. Therefore, we map the composite system to the logical viewpoint. The AADL
core modeling language for the component-based representation is also applied for the
composite system representation. The composite system models are further refined in the
application software view.

In AML, logical architecture model refines the functional network models [189]. The
logical architecture model describes the logical control units, actors, and sensors of the
environment [189]. The functions defined in the functional network are deployed on
different logical control units. However, implementation details like the system is clocked
(not event driven), communication between/within logical control units are synchronous
are specified at this stage.

For SysML, we reuse the part of the architectural elements of the functional viewpoint

24 Architecture Framework for Automotive Systems

Table 2.8: Implementation Viewpoint

Implementation viewpoint
Definition It realizes the logical architecture into software and hardware components.
Stakeholders End user, system architect, tier-x designer, safety engineer, tester or

maintenance engineer
Concerns Implementation of logical components into software and hardware com-

ponents, optimal resource utilization, allocation, performance estimation
etc.

Architecture views EAST-ADL: Implementation view, Design view (hardware design)
AADL: application software view, execution platform view
AML: technical architecture view
SysML: Product breakdown structure view, organic architecture view,
requirements and function allocation on components view

Model kinds EAST-ADL: AUTOSAR application software, AUTOSAR basic software
(using AUTOSAR software component template, ECU resource template,
and system template), Hardware Design Architecture from the design level
AADL: Core AADL language
AML: AML metamodel and semantics for the technical architecture
SysML: BDD, IBD for a product breakdown structure view; BDD, IBD
for an organic architecture view, requirements and function allocation on
components

Correspondence rules EAST-ADL: Realization correspondence to Logical viewpoint (n-to-m map-
pings by realization relationships between entities in the implementation
view and entities in the design view)
AADL, AML, SysML: Realization correspondence to the logical viewpoint

in the ADF framework in Section 2.2.2. The ADF breakdown structure view is defined
to capture function identification and decomposition. SysML activity diagram, block
definition diagram, and internal block diagrams are selected for the breakdown structure
view.

Implementation viewpoint The implementation viewpoint describes the software
architecture of the Electrical/Electronic (E/E) system in the vehicle [146]. Table 2.8
summarizes the implementation viewpoint elements extracted from the automotive ADLs.

In EAST-ADL, the implementation viewpoint is supported by the system architecture
and software architecture of AUTOSAR [146]. AUTOSAR serves as a basic infrastructure
for the management of functions within both future applications and standard software
modules [5]. In EAST-ADL, AUTOSAR software components realize the Functional
Design Architecture and AUTOSAR basic software components realize the Hardware
Design Architecture using the AUTOSAR software component, ECU resource, and system
templates. Regarding the correspondence, traceability is supported from implementation
level elements (AUTOSAR) to upper level elements by realization relationships [146].

In addition to the AUTOSAR system and software architectures, the EAST-ADL
Hardware Design Architecture (HDA) is also mapped in this viewpoint. HDA is then
refined further by ECU specifications and topology.

In AADL, a system instance consists of application software components and execution
platform components [82].

In AML, the technical architecture enriches the logical architecture with concrete tech-
nical information e.g., concrete bus, control unit, and operating system specifications [189].
The performance estimation can be carried out in this architecture modeling [189]. AML
language is used for this viewpoint.

We consider the constructional viewpoint discussed in the ADF in Section 2.2.2 as

2.3. Automotive ADLs and Viewpoints 25

part of the implementation viewpoint, because it decomposes a vehicle into physical
components and defines their relationships and constraints. Then the implementation
viewpoint for SysML supports product breakdown structure, organic architecture, and
allocation on components views. As discussed in Section 2.2.2, ADF identifies SysML
BDD and IBD model kinds for the product breakdown structure and organic architecture
views. The allocation concept is used for allocating requirements and functions to
components [92]. The product breakdown structure identifies and allocates the system
functions to physical components. The organic architecture defines the components of the
system, their interfaces and connections, which satisfy the system’s technical requirements
(e.g., cost, weight, size, authorized/forbidden use of materials) and other criteria (e.g.,
performance, effectiveness) [92]. Architecture models for the allocation on components
view captures the allocation and structuring of the system requirements and functions
to physical components to achieve an optimal allocation. The flows between functions
are associated with the interfaces/connectors (e.g., mechanic, electric, network) between
components [92].

Other viewpoints EAST-ADL extensions are considered as other viewpoints, which
are orthogonal to the main architecture viewpoints:

• Requirements are captured in EAST-ADL following the principles of SysML [146].

• Variability is realized in EAST-ADL at all levels besides as the feature models on
vehicle level [146].

• Timing is supported by the TIMMO project. It defined a methodology and
representation of timing aspects in automotive embedded systems [146]. TADL
defines timing constraints in all levels of abstraction of EAST-ADL2 [228].

• Dependability extension covers several aspects i.e., availability, reliability, safety,
integrity and maintainability [146].

2.3.3 Discussion

Architecture Description Languages (ADLs) have been developed to define automotive
architectures effectively to tackle the increasing complexity and development costs [166,
208]. Although the ISO 42010 international standard [116] has defined what constitutes
an ADL, the automotive ADLs have been developed without specifying the architectural
elements of an ADL as defined in the ISO 42010 international standard. Therefore, we
have mapped the architecture viewpoints of the automotive ADLs to the viewpoints of
the automotive architecture frameworks. The mapping provides an input for further
aligning the architecture elements of the automotive ADLs and automotive architecture
frameworks.

We have identified common architecture viewpoints and views of these frameworks.
In the following section, we integrate the viewpoints and views defined in the scope of
the automotive ADLs and automotive architecture frameworks and propose a conceptual
model of an architecture framework for automotive systems. Other viewpoints that are
briefly presented here are also discussed in the definition of the framework in the following
section.

26 Architecture Framework for Automotive Systems

Architect

Software

engineer

Manager

System

engineer

Tester

End-user
Requirements

engineer

Designer

Stakeholders

Dependability

Safety

Cost

Maintainability

Testability

Functionality Traceability

Performance

Concerns

Functional

Deployment

Information

Requirements

Feature Implementation

Viewpoints

Structural Dynamic

Requirements Behavioral

Model kinds

IMP_FNVP INFO_ALLVP

REQ_ALLVP IMP_DEP

Correspondence Rules

Figure 2.6: AFAS overview.

2.4 Architecture Framework For Automotive Systems

This section presents the Architecture Framework for Automotive Systems (AFAS), which
contains architecture viewpoints consistent with the existing automotive architecture
frameworks (AFs) and the automotive Architecture Description Languages (ADLs) as
discussed in Sections 2.2 and 2.3 respectively. The architectural elements of the AFAS
are shown in Figure 2.6. The AFAS viewpoints are defined based on the preceding
analysis of the automotive AFs and ADLs. In addition, we studied proprietary automotive
architectural models and practices, and aligned the AFAS with the results based on the
interviews carried out with the domain experts from an OEM. The AFAS framework
thus contains architectural viewpoints complementary to automotive ADLs, automotive
AFs, and proprietary approaches. The simplified architectural elements are illustrated in
Figure 2.6. The representation of the AFAS overview is in alignment with the graphical
representation in the MEGAF infrastructure [102]. In the following section, we elaborate
the architecture viewpoints and related elements of AFAS.

Feature viewpoint Since AAF was specified as an automotive industry reference for
the Vehicle Line Architectures [40], the feature viewpoint is not specified in the AAF.
However, we considered the feature viewpoint necessary, because even a single feature can
be configured further, such as cruise control or bluetooth telephone connection, which
can be configured for a product or a specific vehicle. Therefore, we revise the feature
viewpoint of the EAST-ADL, which is presented in Section 2.3. The feature viewpoint

2.4. Architecture Framework For Automotive Systems 27

contains feature view, which specifies a vehicle feature model. The feature model can be
used as a starting point to related requirements, use cases, and other constructs [50].

Automotive architecture frameworks and ADLs do not explicitly define the system
stakeholders for the frameworks and ADLs. General stakeholders as end-users, OEMs,
suppliers, tool vendors, and research institutes are identified for automotive architecture
frameworks. End-users, system architects, tier-x designers, safety engineers, and testers
or maintenance engineers are identified from the automotive ADLs. Therefore, we have
interviewed a number of domain experts from an OEM and identified stakeholders as
driver, fleet owner (fleet information center), manager, product line manager, requirements
manager, system/software architect, designer, system integrator, developer, analyst, tester,
and (external/internal) supplier. OEMs, suppliers, tool vendors, and research institutes
are stakeholders more from the organizational perspective. Therefore, we clarified more
specific roles as key stakeholders for an automotive architecture framework. We combined
the stakeholders defined for the automotive AFs and ADLs with the stakeholders identified
by the automotive domain experts. The selected stakeholders are listed in Figure 2.6.

The feature viewpoint can be used by architects, designers, requirements engineers,
system engineers, managers, and testers. Feature viewpoints have a correspondence with
the requirements and functional viewpoints. Table 2.9 summarizes the revised feature
viewpoint.

Requirements viewpoint The requirements viewpoint is defined in the automotive
AFs as presented in Section 2.2 and defined as an extension in the EAST-ADL language
as discussed in Section 2.3. In the AFAS, the requirements viewpoint is included as one
of the main viewpoints. We summarize below the description based on the requirements
viewpoint of the automotive AFs and EAST-ADL. Table 2.10 presents the requirements
viewpoint, which looks at the vehicle from the perspective of the vehicle stakeholders
including end users (drivers and passengers) and vehicle environment.

As in ADF, the requirements viewpoint captures elicitation of stakeholder requirements
and elaboration of system technical requirements. The requirements viewpoint supports
the stakeholder requirements view, high-level requirements view, and system technical
requirements view as in ADF. Since the AAF driver/vehicle operations view looks at the
interactions, interfaces, and interdependencies between the vehicle and its end user and
environment, it is considered part of the stakeholder requirements view. The value net
view is included, as it is used to optimize the efficiency of the value creation process for
an OEM, suppliers, and engineering partners [40]. We map the SysML requirements and
use case diagram types for the model kinds, which can be used to model the requirements
views. The use case diagram shows the interaction between users and the system. The
stakeholder requirements view can also identify actors and system boundary as in ADF.

Table 2.9: Feature Viewpoint

Feature viewpoint
Definition It captures the vehicle from the perspective of the vehicle features and the

world around the vehicle.
Stakeholders Architect, Designer, Requirements engineer, System engineer, Manager,

and Tester
Concerns Functionality, cost, maintainability
Architecture views Vehicle feature view
Model kinds Vehicle feature diagram
Correspondence rules Correspondences to Requirements and Functional viewpoints

28 Architecture Framework for Automotive Systems

Table 2.10: Requirements Viewpoint

Requirements viewpoint
Definition It captures the vehicle from the perspective of the vehicle driver and the

world around the vehicle.
Stakeholders All stakeholders (End users, Architect, Designer, Software engineer, Re-

quirements engineer, System engineer, Manager, and Tester)
Concerns Functionality, Traceability, Cost
Architecture views Stakeholder requirements view, high-level requirements view, system tech-

nical requirements view, value net view
Model kinds Requirements and use case diagram type for the stakeholder requirements,

high-level requirements, and system technical requirements views
Correspondence rules Traceability correspondences to other viewpoints

Table 2.11: Functional Viewpoint

Functional viewpoint
Definition It describes the vehicle functions and their interactions.
Stakeholders Architect, Designer, Requirements engineer, System engineer, Manager,

and Tester
Concerns Functionality, Dependability, Cost, Maintainability
Architecture views Functional view, detailed functional view, allocation on functions view
Model kinds BDD for the functional view, IBD for the detailed functional view, alloca-

tion concept for the requirements allocation on functions views
Correspondence rules Realization and traceability correspondences to the Requirements view-

point

The requirements viewpoint corresponds to other viewpoints to enable the requirements
traceability of each viewpoint.

Functional viewpoint The functional viewpoint was defined in both automotive AFs
and ADLs. The functional viewpoint is considered the cornerstone of most architecture
descriptions [204]. We revise the functional viewpoints of the AFs and ADLs into the
Table 2.11.

As in AAF, the functional viewpoint describes vehicles in terms of vehicle functions
and their logical interactions. We revise the AAF architecture views of the functional
viewpoint i.e., a functional view, which specifies a structural model that contains a number
of functions or subsystems realizing features. The functional view is the first view that
stakeholders try to read due to simplicity [204]. The functional architecture is described
in this view, which contains a structural model kind that contains a number of functions
or subsystems realizing features.

We define a detailed functional view, which refines the functions and their interfaces
by specifying more details (similar to logical view). The ADF allocation on functions
view is reused in this viewpoint. We revised the SysML diagram types that are defined for
the functional viewpoint in ADF. In ADF, SysML activity diagram was selected for the
functional breakdown structure and functional architecture views. However, it was stated
that the functional requirements need SysML use case, activity, and sequence diagrams to
specify the behavior of a function. It was concluded after successful application of SysML
in deriving functional architectures from requirements and use cases [134].

The functional architecture represents the static view of the system, therefore be-
havioral diagrams are not necessary. This concurs with our view that the functional
architecture needs to specify abstract functions in a static structural model independent

2.4. Architecture Framework For Automotive Systems 29

Table 2.12: Implementation Viewpoint

Implementation viewpoint
Definition It realizes the functional architecture into software and hardware compo-

nents.
Stakeholders Architect, Designer, Software engineer, Requirements engineer, System

engineer, Manager, and Tester
Concerns Dependability, Safety, Performance, Maintainability, Cost
Architecture views Software view, hardware view, topology view
Model kinds BDD, IBD, AD, SD, SM for a software view, BDD and IBD for the

hardware and topology views
Correspondence rules Realization correspondence to functional viewpoint (n-to-m mappings by

realization relationships between entities in the implementation view and
entities in the functional view)

of implementation and technological details. Therefore, we exclude the SysML activity
diagram, which was part of the ADF functional viewpoint. From the ADF architecture
views of the functional viewpoint, namely breakdown structure view, functional architecture
view, and allocation on functions view, the breakdown structure view is not selected
for the functional viewpoint. The main reason is that the breakdown structure can be
represented in the functional architecture without behavioral models. The allocation
of requirements and features to functions is necessary for enabling traceability of the
requirements and features.

Implementation viewpoint The implementation viewpoint consists of software, hard-
ware, and topology views. Therefore, the technical/constructional viewpoint of the AAF
and ADF can be a part of the implementation viewpoint, specifically addressing the
hardware view. Table 2.12 revises the implementation viewpoint elements discussed in
Section 2.3.2.

The implementation viewpoint governs software view, hardware view, and topology
view. Software view represents the software architecture, where detailed descriptions
and implementation of a function is realized in software components or blocks. The
software components realize the functional components. Regarding the correspondence,
implementation viewpoint realizes the functional view. In the hardware view, the E/E
hardware architecture is represented. The hardware architecture typically consists of
ECUs, sensors, actuators and Controller Area Network (CAN) buses. The topology view
specifies the connections (buses e.g., CAN, Local Interconnect Network (LIN) and wires
etc.,) between ECUs, sensors, and actuators.

We consider the constructional viewpoint discussed in the ADF in Section 2.2.2 as
part of the hardware view, which is governed by the implementation viewpoint, because
it decomposes a vehicle into physical components and defines their relationships and
constraints. As in the functional viewpoint, all stakeholders are considered relevant to
the implementation viewpoint. ADF does not specify the concerns and correspondences
explicitly. However, we identified the same concerns as AAF. The correspondence is
conformance according to the implicit description of architecture views of the ADF
constructional viewpoints.

Deployment viewpoint The deployment viewpoint describes the environment into
which the system will be deployed, including capturing the dependencies of the system on
its runtime environment [204]. Table 2.13 summarizes the deployment viewpoint elements

30 Architecture Framework for Automotive Systems

Table 2.13: Deployment Viewpoint

Deployment viewpoint
Definition It defines the environment into which the system will be deployed.
Stakeholders Architect, safety engineer, system engineer, tester
Concerns Functionality, dependability, performance, safety, cost
Architecture views Execution platform view, concurrency view, allocation view
Model kinds Process model
Correspondence rules Realization correspondence to implementation viewpoint

extracted from the automotive ADLs. The allocation view describes the mapping between
software components to ECUs. It can be in a table format.

Information viewpoint The information viewpoint of the AAF is included in the
AFAS framework, because it describes how the architecture manages and distributes
information [204]. The information view is also reused for the information viewpoint.
The information view describes information or data objects, their metadata, properties,
relationships, configurations, and configuration constraints [40].

2.5 Conclusion

We integrated the architecture viewpoints extracted from automotive AFs and ADLs
into Architecture Framework for Automotive Systems (AFAS). The main objective of the
framework is to have consistent architecture description elements.

The functional viewpoint exists in both AFs and ADLs as it is a cornerstone of architec-
ture description. However, some of the viewpoints are not directly mappable. Therefore,
we analyzed the semantics of the architecture description elements and integrated feature,
requirements, functional, implementation, and information viewpoints from existing AFs
and ADLs. A deployment viewpoint was added to the AFAS, because an OEM plays
mostly a role of an integrator or assembler by integrating software/(E/E)/hardware
systems into a vehicle.

Chapter 3

Automotive Architecture Modeling

We elicited automotive specific architecture modeling requirements based on the inter-
views with automotive domain experts. The automotive-related Architecture Description
Languages, which are presented in Chapter 2, were evaluated based on the automotive
specific modeling requirements. Based on the evaluation, SysML was identified as a
viable modeling language for automotive architecture modeling. Although SysML has been
evaluated previously by an OEM, automotive supplier and an automotive research institute,
the usability of the SysML diagram types has not been explicitly addressed. Therefore, we
modeled a real-world automotive system to demonstrate architecture modeling in SysML
and identified the diagram types considered beneficial for an automotive company.

3.1 Introduction

An Architecture Description Language (ADL) enables a formal representation of archi-
tectures, which helps the creation of a semantically precise architecture documentation
and promotes mutual communication [166]. Syntactically and semantically consistent
descriptions of architectures further enable exchange descriptions between different tools.
In Section 2.2.1, automotive-related ADLs were presented, including EAST-ADL [50],
AADL [82], TADL [228], AML [32], SysML [176], and MARTE [169] and architecture
views were extracted from these ADLs. As there is no standard ADL for automotive
systems, an evaluation of these ADLs was carried out (see Section 3.3.1) using compar-
isons based on the automotive specific modeling requirements. The Object Management
Group’s OMG SysML was selected as a viable candidate [60].

SysML is a general-purpose graphical modeling language for representing systems.
SysML was developed to support the transition from a document-based approach to a
model-based approach in systems engineering [85]. In a model-based approach, a coherent
model of a system needs to be managed instead of documents that represent the system.
Many disciplines apply a model-based approach. For example, mechanical engineering
has used advanced computer-aided design tools instead of the drawing board since the
beginning of the 1980s [90, 191, 239]. Electrical engineering has also used automated

32 Automotive Architecture Modeling

circuit design and analysis instead of the manual circuit design since the 1980s [33,156],
while computer-aided software engineering developed in the 1980s has used UML since
the 1990s [85]. A mathematical formalism for model-based approach was developed at
the beginning of the 1990s for systems engineering. The main benefits of the model-based
systems engineering is to facilitate system engineering activities by providing shared
understanding of system requirements and design, by assisting in managing complex
system development, and by improving the design quality [85].

As mentioned above, SysML is intended to facilitate the application of a model-
based systems engineering approach by creating a cohesive and consistent model of the
system [85]. Although SysML has not become a standard model-based systems engineering
approach in the automotive domain, a number of case studies have been carried out
to define the applicability and suitability of the SysML language in the automotive
domain [16,20,187,215]. In Section 3.4.4 the representative case studies are discussed from
an OEM, an automotive supplier, a tool vendor, and an automotive research institute.
The selection or identification of the usability of SysML diagram types is, however, not
discussed explicitly in these case studies. Furthermore, the approaches are evaluated
against document-centric approaches rather than against each other. Document-centric
approaches are used more broadly than the model-based approaches in the OEM and
suppliers. Therefore, in this chapter, a real-world automotive system was modeled to
demonstrate the usability of SysML to model an automotive system. Furthermore the
system was evaluated against the proprietary architecture modeling approach of an OEM.
The result of the case study is discussed in Section 3.4.

The remainder of this chapter is organized as follows. Section 3.2 highlights elicits
the automotive specific modeling requirements. Section 3.3 presents the evaluation of the
automotive modeling languages based on the automotive specific requirements. Section 3.4
describes the case study and discusses an appropriate set of diagram types. Section 3.5
summarizes the results of this chapter.

3.2 Architecture modeling requirements

Before selecting an appropriate modeling language, automotive companies need to identify
the modeling requirements. To elicit the requirements that the modeling approach should
satisfy, a series of interviews were conducted with architects responsible for modeling
automotive software within one OEM at different architectural levels, ranging from
functional architecture to Electrical/Electronic (E/E) architecture. Interviews are one
of the most powerful qualitative methods to collect (historical) information or opinions
about a topic [106].

A semi-structured interviews format was used, which included a mixture of specific and
open-ended questions. This allows the interviewer to collect both specific and unforeseen
information [70]. Five senior architects were selected for semi-structured interviews. The
interview was carried out by an automotive domain expert and the author. In the field of
software engineering, it is recommended to have an interviewer with extensive knowledge
of the interview topic in order to confer legitimacy within the interview [106]. Therefore,
interviewer used is an expert in architecture modeling for the automotive domain.

The expert interviewer gathered domain specific and rich information without filtering
the importance or relevance. The collected information is analyzed for its relevance by
integrating and modifying the information gathered. The interviews were transcribed in
text format by taking notes. Each interview had one hour duration. The information

3.2. Architecture modeling requirements 33

gathered during the interviews was then analyzed and translated into generic modeling
requirements.

The following modeling requirements (MR) have been determined:

MR-1: Requirements traceability at multiple views. Requirements for different
architectures should be traceable. Architectures in different views have related
sets of requirements. Therefore, requirements traceability for an architecture view
and their interdependencies need to be supported.

MR-2: Integrated multi-level modeling. It should be possible to model consistent ar-
chitectures for different architectural levels. Multi-level modeling means modeling
by different architects working with diverse abstraction levels addressing different
concerns. For example, the highest level of abstraction shows the dependency
between different vehicle features. This includes a vehicle feature model containing
items such as a DoorLock, a BrakeSystem, and a TransmissionSystem. The lower
level abstractions illustrate how the features are realized in a set of modules (e.g.,
a functional model realizing the features).

MR-3: Modeling hierarchical elements. It should be possible to model hierarchical
elements in different architectures. This requirement can be interpreted as a
hierarchical composition, which enables different levels of detail i.e. a system is
decomposed into subsystems, which are decomposed into components (reusable
software modules).

MR-4: Mapping between architectural entities. This is required to enable mapping
between different architectural entities. For example, mapping or allocating a
control function (e.g., a cruise control function) to an Electronic Control Unit
(ECU). The mapping concept is crucial in order to map vehicle features to
components which realize the functional features and mapping software components
to hardware components.

MR-5: Support of evolution. Explicit techniques for component evolution should be
supported. Component evolution is informally defined as a change to the properties
of a component such as its interface, implementation, and behavior [157]. Although
the average lifespan of a car is eight years, the car requires ongoing software updates,
which include upgrades to satisfy new requirements like environmental regulations
or bug fixes.

MR-6: Determining architectural quality. The modeling approach should support
determining the internal architectural quality in order to assess and evaluate
architectural models. Internal architectural quality can be supported by enabling
external quality mechanisms (e.g., metrics, analysis tool, visualizations) to evaluate
the quality. Improving the architectural quality clearly brings an advantage to
the quality of architectural modeling, since ensuring internal quality of the system
influences the external quality as discussed in Chapter 2.

MR-7: Adaptability in the automotive domain. The ability to be adapted and
applied into modeling real automotive systems is crucial, because most ADLs
are developed in an academic environment and not put to practical use. The
main difference between this requirement and the usability requirement is that it
requires the ease of adaptation in the automotive domain in general, while the
latter requires the ease of use by the automotive domain experts.

34 Automotive Architecture Modeling

MR-8: Usability. Ease of use and understandability by domain experts is required to be
able to use the ADL in automotive system modeling. In many cases automotive
companies apply proprietary software technologies [38], thus it is critical to make
the solution similar to the proprietary approaches.

MR-9: Language maturity. Language specification should be stable, as a stable lan-
guage design reduces the chance for language and architecture co-evolution prob-
lems. Language maturity is assessed by evaluating the frequency of new language
releases as well as the extent of the changes introduced per release.

MR-10: Mature and accessible tool support. The language should be supported by
a mature and accessible tool. An ADL needs to have a reliable tool to allow
architectural modeling, analysis, code generation etc.

3.3 Evaluation of Automotive ADLs

According to the ISO42010 international standard for systems and software engineer-
ing [116], an ADL is any form of expression used to describe an architecture. To aid
readability, the ADL conceptual model is also included in Figure 3.1, although it was
presented in Chapter 2. An ADL provides one or more model kinds (e.g., data flow
diagrams, class diagrams, state machine diagrams) as a means to frame some concerns
for its stakeholders [116]. An ADL can provide a single model kind or several model kinds
to capture complex architectural representations. In situations where several model kinds
are used, architecture viewpoints can be used to organize them. Correspondence rules
can be applied to check completeness (of views) or consistency (between views) [116]. In
Chapter 2, the architecture viewpoints from the automotive ADLs was extracted. These
are evaluated below. As discussed below, the correspondence rules between architecture
viewpoints e.g., multiple architectural levels of EAST-ADLs are not explicitly defined.
Therefore, in Chapter 4, we propose a method to formalize the refinement correspondence
between structural viewpoints.

Automotive ADLs facilitate the integration of hardware, software and systems engi-
neering concepts in a unified representation. Based on the literature study, we selected the
ADLs designed specifically for the automotive domain and the general-purpose languages
as SysML and MARTE, which are explored in automotive case studies. In this section,
we revisit the automotive-related ADLs i.e., EAST-ADL [50], AADL [82], AML [189],
TADL [228], SysML [176], and MARTE [169], which are presented in Section 2.2.1.

Figure 3.1: ADL conceptual model [116]

3.3. Evaluation of Automotive ADLs 35

3.3.1 Language evaluation

The automotive ADLs were evaluated based on the architecture modeling requirements
discussed in Section 3.2. AADL, SysML, and MARTE have been recently evaluated based
on different evaluation criteria including code generation, formal verification and variability
modeling by the researchers at the Toyota Info Technology Center [215]. Their different
choice of evaluation criteria renders our results below incomparable with those findings.
EAST-ADL, TADL, AADL, AML, SysML, MARTE are described as relevant approaches
for modeling of automotive electronic systems [166]. We cover only automotive-related
ADLs, thus AUTOSAR is excluded from this evaluation. AUTOSAR is not an ADL. It
is a standard for a component-based software design model for an automotive system,
explicitly addressing the E/E architectural level. We provide a summary of comparisons
in the Table 3.1.

EAST-ADL and TADL adapted the SysML requirement modeling capability, which
enables requirements traceability. SysML requirement diagram and relationship types
as as: ‘satisfy’, ‘verify’, ‘trace’, enable requirements traceability. A model element can be
connected to a requirement via the trace relationship to enable a traceability, which is
considered weak as its semantics do not include any constraints [85]. AADL, AML, and
MARTE do not explicitly support the requirements traceability.

All ADLs except AADL enable integrated multi-level modeling by explicitly
defining different architectural levels and the relationships between them. SysML provides
explicit language features which support a flexible way of grouping design entities (e.g.,
viewpoints, views, packages, blocks, parts) and relationship concepts (e.g., conform, refine,
and extend relationships). A generic component model is a part of MARTE design
model. It is based on the UML component modeling and inspired by some features of
SysML, AADL, and EAST-ADL2. Although AADL provides different types of component
categories such as Application software, Execution platform, and Composite category,
these categories are only specific to the implementation level.

Regarding the modeling hierarchical elements, all surveyed ADLs support com-
posite design entities. In SysML, the hierarchal nature of the package, block, part, activity,
and state enables the respective SysML diagram types to satisfy this requirement. In
MARTE, hierarchal relationships can be represented in package, component, and class
diagram types.

Mapping between architectural entities at different architectural (abstraction)
levels is supported by all ADLs. For example, EAST-ADL enables an n-to-m mapping
between feature entities and function entities at the analysis level [50, p. 22]. AADL
supports mapping of software onto computational hardware entities [82, p. 4]. AML maps
functional-network to a network of threads and ECUs [32, p. 16]. Finally, TADL enables
the distribution of time budgets over different design entities at EAST-ADL architecture
levels such as the functional design architecture [228, p. 20]. In SysML, this cross-cutting
relationship is enabled by an allocation relationship, which is used to map between model
entities supporting structural, behavioral, and other forms of allocation [85, p. 343].
MARTE has more extended allocation modeling consisting of an allocation model, a
refinement model, and a UML representation of allocation [169, p. 121]. Unlike SysML,
MARTE specifies the allocation as an association between a MARTE application and a
MARTE execution platform.

Most ADLs except AML have support of evolution (to a certain extent) by providing
mechanisms to enable component and system evolution. However, connectors are not
modeled as first-class objects in EAST-ADL and AADL, therefore no explicit evolution

36 Automotive Architecture Modeling

T
ab

le
3.1:

A
u
tom

otive
A
D
L
com

p
arison

R
e
q
u
ir
e
m

e
n
t
s

E
A
S
T
-A

D
L

T
A
D
L

A
A
D
L

A
M

L
S
y
s
M

L
M

A
R
T
E

M
R
-1

.

R
e
q
u
ir
e
m

e
n
t
s

t
r
a
c
e
a
b
ilit

y
a
t

m
u
lt
ip

le
le
v
e
ls

T
h
e
tra

c
e
a
b
ility

b
e
tw

e
e
n

re
q
u
ire

m
e
n
t
e
n
titie

s
a
n
d

o
th

e
r
d
e
sig

n
e
n
titie

s
a
re

su
p
p
o
rte

d
.

T
h
e
tra

c
e
a
b
ility

b
e
tw

e
e
n

re
q
u
ire

m
e
n
t
e
n
titie

s
a
n
d

o
th

e
r
d
e
sig

n
e
n
titie

s
a
re

su
p
p
o
rte

d
.

N
o
t
su

p
p
o
rte

d
N
o
t
su

p
p
o
rte

d
T
h
e
tra

c
e
a
b
ility

b
e
tw

e
e
n

re
q
u
ire

m
e
n
t
e
n
titie

s
a
n
d

o
th

e
r
d
e
sig

n
e
n
titie

s
a
re

su
p
p
o
rte

d
.

N
o
t
su

p
p
o
rte

d

M
R
-2

.
I
n
t
e
-

g
r
a
t
e
d

m
u
lt
i-

le
v
e
l
m

o
d
e
lin

g

V
e
h
ic
le
,

A
n
a
ly
sis,

D
e
-

sig
n
,

a
n
d

Im
p
le
m
e
n
ta

-
tio

n
le
v
e
ls

In
te
g
ra

tio
n

o
f

T
im

in
g

c
o
n
stru

c
ts

a
t

d
iff
e
re
n
t

le
v
e
ls

(E
A
S
T
-A

D
L

a
n
d

A
U
T
O
S
A
R
)

Im
p
le
m
e
n
ta

tio
n

le
v
e
l

L
o
g
ic
a
l

a
rch

ite
c
-

tu
re
,

T
e
ch

n
ic
a
l

a
rch

ite
c
tu

re
,

a
n
d

Im
p
le
m
e
n
ta

tio
n

le
v
e
ls

M
u
lti-le

v
e
l
m
o
d
e
lin

g
e
le
-

m
e
n
ts

G
e
n
e
ric

c
o
m
p
o
n
e
n
t

m
o
d
e
l

M
R
-3

.
M

o
d
-

e
lin

g
h
ie
r
a
r
c
h
i-

c
a
l
e
le
m

e
n
t
s

H
ie
ra

rch
a
l
e
le
m
e
n
t

c
o
n
-

c
e
p
t

In
te
g
ra

tio
n

o
f

tim
in
g

c
o
n
c
e
p
ts

in
to

h
ie
ra

rch
a
l

e
le
m
e
n
ts

H
ie
ra

rch
a
l

sy
ste

m
a
b
stra

c
tio

n
s

(sy
s-

te
m
s

o
f

sy
ste

m
s,

in
te
g
ra

te
d

so
ft-

w
a
re

a
n
d

h
a
rd

w
a
re

c
o
m
p
o
n
e
n
ts)

H
ie
ra

rch
ic
a
l

stru
c
-

tu
re

o
f

e
le
m
e
n
ts

a
n
d

v
a
ria

n
ts

(su
b
se
t

o
f

th
e

e
le
m
e
n
ts’

su
b
e
le
m
e
n
ts)

D
iff
e
re
n
t
ty

p
e

o
f
h
ie
ra

r-
ch

ic
a
l
e
le
m
e
n
ts

(p
a
ck

a
g
e
,

b
lo
ck

,
p
a
rt,

a
c
tiv

ity
,
a
n
d

sta
te
)

D
iff
e
re
n
t
ty

p
e

o
f
h
ie
ra

r-
ch

ic
a
l
e
le
m
e
n
ts

(p
a
ck

a
g
e
,

c
o
m
p
o
n
e
n
t,

c
la
ss)

M
R
-4

.
M

a
p
-

p
in

g
b
e
t
w
e
e
n

a
r
c
h
it
e
c
t
u
r
a
l

e
n
t
it
ie
s

n
-to

-m
m
a
p
p
in
g
b
e
tw

e
e
n

d
e
sig

n
e
n
titie

s
a
t

d
iff
e
r-

e
n
t
a
rch

ite
c
tu

ra
l
le
v
e
ls

T
im

e
b
u
d
g
e
ts

a
re

a
llo

-
c
a
te
d

to
d
e
sig

n
e
n
titie

s
a
t
d
iff
e
re
n
t
le
v
e
ls

M
a
p
p
in
g
o
f
so

ftw
a
re

o
n
to

c
o
m
p
u
ta

tio
n
a
l

h
a
rd

w
a
re

e
n
titie

s

M
a
p
p
in
g

fu
n
c
tio

n
s

a
n
d

fu
n
c
tio

n
a
l
c
lu
s-

te
rs

to
th

e
te
ch

n
ic
a
l

in
fra

stru
c
tu

re

M
a
p
p
in
g

b
e
tw

e
e
n

d
iff
e
r-

e
n
t
e
n
titie

s
u
sin

g
a
n

a
l-

lo
c
a
te

re
la
tio

n
sh

ip

A
llo

c
a
tio

n
m
o
d
e
lin

g

M
R
-5

.
S
u
p
-

p
o
r
t

o
f

e
v
o
lu

-

t
io

n

C
o
m
p
o
n
e
n
t

re
fi
n
e
m
e
n
t

a
n
d

re
a
liz

a
tio

n
C
o
m
p
o
n
e
n
t

re
fi
n
e
m
e
n
t

a
n
d

re
a
liz

a
tio

n
C
o
m
p
o
n
e
n
t

e
x
te
n
-

sio
n

N
o
e
x
p
lic

it
e
v
o
lu
tio

n
m
e
ch

a
n
ism

s
S
u
b
ty

p
in
g
,

g
e
n
e
ra

liz
a
-

tio
n
,
re
fi
n
e
m
e
n
t

S
u
b
ty

p
in
g
,

g
e
n
e
ra

liz
a
-

tio
n
,
re
fi
n
e
m
e
n
t

M
R
-6

.
D
e
-

t
e
r
m

in
in

g

a
r
c
h
it
e
c
t
u
r
a
l

q
u
a
lit

y

Q
u
a
lity

re
q
u
ire

m
e
n
t
e
le
-

m
e
n
t
a
s
p
a
rt

o
f
re
q
u
ire

-
m
e
n
ts

m
o
d
e
lin

g

S
u
p
p
o
rt

o
f
a
rch

ite
c
tu

ra
l

q
u
a
lity

fro
m

tim
in
g

p
e
r-

sp
e
c
tiv

e
.

N
o

sp
e
c
ifi
c

m
e
ch

a
-

n
ism

s
o
f
d
e
fi
n
in
g

a
r-

ch
ite

c
tu

ra
l
q
u
a
lity

N
o

sp
e
c
ifi
c

m
e
ch

a
-

n
ism

s
o
f
d
e
fi
n
in
g

a
r-

ch
ite

c
tu

ra
l
q
u
a
lity

N
o

sp
e
c
ifi
c

m
e
ch

a
n
ism

s
o
f
d
e
fi
n
in
g

a
rch

ite
c
tu

ra
l

q
u
a
lity

M
o
d
e
lin

g
o
f

q
u
a
lity

in

u
s
e
ch

a
ra

c
te
ristic

s

M
R
-7

.
A
d
a
p
t
-

a
b
ilit

y
in

t
h
e

a
u
t
o
m

o
t
iv

e
d
o
-

m
a
in

U
se
d
in

a
c
a
d
e
m
ic

se
ttin

g
U
se
d
in

a
c
a
d
e
m
ic

se
ttin

g
U
se
d

in
a
c
a
d
e
m
ic

se
ttin

g
C
o
n
c
e
p
ts

a
v
a
ila

b
le

A
u
to

m
o
tiv

e
c
a
se

stu
d
ie
s

R
e
a
l-tim

e
e
m
b
e
d
d
e
d
sy

s-
te
m
s

M
R
-8

.
U
s
a
b
il-

it
y

G
ra

p
h
ic
a
l

n
o
ta

tio
n

b
a
se
d

o
n

th
e

U
M

L
p
ro

fi
le
,

w
h
ich

is
n
o
t

fa
v
o
re
d

b
y

a
u
to

m
o
tiv

e
e
n
g
in
e
e
rs

[9
4
]

D
e
fi
n
e
d

fo
r
th

e
a
u
to

m
o
-

tiv
e
d
o
m
a
in

D
e
fi
n
e
d
fo
r
th

e
a
u
to

-
m
o
tiv

e
d
o
m
a
in

D
e
fi
n
e
d

u
sin

g
a
u
to

-
m
o
tiv

e
c
o
n
c
e
p
ts

U
M

L
in
sp

ire
d

g
ra

p
h
ic
a
l

n
o
ta

tio
n
s

U
M

L
n
o
ta

tio
n
s

M
R
-9

.
L
a
n
-

g
u
a
g
e
m

a
t
u
r
it
y

L
a
n
g
u
a
g
e

sp
e
c
ifi
c
a
tio

n
v
1
.0

in
2
0
0
4
,

v
2
.0

in
2
0
0
8
,
v
2
.1
R
C

in
2
0
1
0

S
p
e
c
ifi
c
a
tio

n
v
1
.0

in
2
0
0
7
,
v
2
.0

in
2
0
0
9

S
ta

n
d
a
rd

A
S
5
5
0
6

in
2
0
0
4
,

A
S
5
5
0
6
A

in
2
0
0
9
,

A
S
5
5
0
6
/
2

in
2
0
1
1

N
o

o
p
e
n

sp
e
c
ifi
c
a
-

tio
n

S
p
e
c
ifi
c
a
tio

n
v
1
.0

in
2
0
0
6
,
v
1
.1

in
2
0
0
8
,
v
1
.2

in
2
0
1
0

S
p
e
c
ifi
c
a
tio

n
v
1
.0

in
2
0
0
9
,
v
1
.1

in
2
0
1
1

M
R
-1

0
.

M
a
-

t
u
r
e

a
n
d

a
c
c
e
s
-

s
ib

le
t
o
o
l

s
u
p
-

p
o
r
t

U
M

L
to

o
lin

g
su

p
p
o
rtin

g
E
A
S
T
-A

D
L

p
ro

fi
le

(P
a
-

p
y
ru

s
U
M

L
,
M

a
g
ic
D
ra
w

U
M

L
,

a
n
d

th
e

E
A
S
T
-

A
D
L

p
ro

to
ty

p
e

o
f
M

e
n
-

to
rG

ra
p
h
ic
s
V
S
A
)

N
o
sp

e
c
ifi
c
to

o
l
su

p
p
o
rt

O
S
A
T
E
,

T
O
P
-

C
A
S
E
D
,

a
n
d

S
T
O
O
D

to
o
lse

ts

N
o

sp
e
c
ifi
c
to

o
l
su

p
-

p
o
rt

C
o
m
m
e
rc
ia
l

a
n
d

o
p
e
n

so
u
rc
e
to

o
l
su

p
p
o
rt

(e
.g
.,

IB
M

R
a
tio

n
a
l
R
h
a
p
so

d
y
,

A
te
g
o

A
rtisa

n
S
tu

d
io
,

T
O
P
C
A
S
E
D
)

C
o
m
m
e
rc
ia
l

a
n
d

o
p
e
n

so
u
rc
e
to

o
l
su

p
p
o
rt

(e
.g
.,

M
A
R
T
E

p
ro

fi
le

fo
r
M

a
g
-

ic
D
ra
w

1
5
.5
,

P
a
p
y
ru

s
M

A
R
T
E

p
ro

fi
le
)

3.3. Evaluation of Automotive ADLs 37

mechanisms are provided for the connectors [58]. In SysML and MARTE, generalization
and refinement relationships are used to evolve a component or a system.

To define architectural quality, TADL integrates the modeling of timing aspects
in the architecture definition. EAST-ADL provides a QualityRequirement element as part
of the requirements modeling and defines a set of quality attributes such as availability,
confidentiality, performance, reliability, safety, and timing. However, there are no explicit
associated constraints and semantics. QualityRequirement element is used to represent
a non-functional or quality requirement. In SysML, quality models are not part of the
language, but supported by the tool vendors. MARTE enables modeling of quality in use
characteristics which are related to outcomes of interactions with a system [115]. This
is supported by the non-functional properties (NFPs) modeling and analysis modeling
like quantitative analysis modeling, schedulability analysis modeling, and performance
analysis modeling.

Adaptability in automotive domain of these languages takes place mostly in
academic settings, with the exception of SysML and MARTE, which have the support
of commercial tool vendors tackling automotive modeling cases. Definition of the UML
profile of the EAST-ADL enables UML tool vendors to support it, however, the support
is limited. OSATE, TOPCASED, and STOOD toolsets are available to model in AADL.
There are no specific tools available for AML and TADL. Regarding usability, the ease
of use and understandability by automotive domain experts was examined. For languages
such as EAST-ADL, TADL, SysML, and MARTE UML-inspired graphical notations are
available. It was observed that automotive engineers, in particular mechanical engineers,
hardware developers, and process experts prefer proprietary modeling approaches [94].

Regarding the language maturity, language specifications of automotive modeling
languages except AML have been adapted and revised in the past several years. The
EAST-ADL language specification v1.0 was issued in 2004 and subsequently revised
in 2008, 2010, and 2013. The latest EAST-ADL version is v2.1.2. The SAE AADL
Standard AS5506 was issued in 2004, AS5506A revised in 2009, SAE AADL Annexes
AS5506/2 issued in 2011. TADL specification version 1.0 was issued in 2007 and version
2.0 in 2009. SysML specification 1.0 was adapted in 2006, v1.1 in 2008, v1.2 was issued
in 2010. The differences between the subsequent versions of the SysML specification
significantly more limited compared to other languages, i.e. the SysML specification
remains more stable. MARTE specification version 1.0 was adapted in 2009 and version
1.1 was developed in 2011. AADL, SysML, and MARTE have mature and accessible
tool support. Specifically, SysML tool vendors provide mature tools for architecture
modeling of automotive systems.

3.3.2 Discussion

In Section 2.2.1, a number of ADLs, namely EAST-ADL, AADL, TADL, AML, SysML,
and MARTE, were discussed. In Section 3.3.1, these ADLs were evaluated based on
the automotive specific modeling requirements. The modeling requirements discussed
in Section 3.2 were defined based on a series of interviews with automotive architects.
Tracing requirements at the OEM and supplier sites is considered one of the most
important modeling features. Therefore, regarding the requirements traceability
between multiple architecture views and the requirements modeling capability of EAST-
ADL, TADL, and SysML are considered valuable by automotive architects and engineers.

Regarding the architecture modeling needs, namely integrated multi-level model-
ing, modeling hierarchical elements, mapping between architectural entities,

38 Automotive Architecture Modeling

all surveyed ADLs provide mechanisms to a certain extent. All ADLs except AML
have a support of evolution mechanism. Defining architectural quality is the only
requirement, which has limited support of the ADLs. Although EAST-ADL, AADL,
TADL, and AML may seem favorable with respect to adaptability in the automotive
domain and usability modeling requirements, their lack of application in real-world
automotive systems and tooling make it less usable. However, regarding graphical notation
of architecture modeling, proprietary modeling approaches are preferred compared to
UML-inspired languages. Regarding language maturity, all the ADLs except AML
have been revised in the past several years. However, AADL, SysML, and MARTE have
a mature and accessible tool support.

Based on the evaluation, SysML was selected as the language that best fit the modeling
requirements. Accessibility, applicable language specification and tool support also played
a significant role in this selection. In the next section, a case study is carried out on the
usability of SysML diagram types. In addition, the benefits and disadvantages of the
features from the perspective of automotive domain are discussed.

3.4 Modeling Automotive Systems in SysML

SysML was selected as a suitable language to model automotive systems based on the
initial evaluation of automotive ADLs in Section 3.3. In this section, a case study was
carried out to evaluate the usability of SysML diagram types for automotive architecture
modeling by analyzing the similarity to the proprietary approaches.

Although it is well-known in the software engineering world that the graphical nota-
tion of SysML is similar to UML, it is not necessarily known in the automotive world.
Furthermore, over the past few years, the usability of nine SysML diagram types has
been evaluated for the automotive architecture modeling by practitioners. Although the
number of diagram types are fewer than 15 diagram types of UML, there are still advan-
tages and disadvantages of the remaining diagram types. Therefore, in this case study,
the applicability of SysML diagram types will be shown and compared to a proprietary
architecture modeling approach. Note that every automotive company may have specific
modeling needs and approaches that have been considered valuable by one company are
not necessarily so for another company.

Figure 3.2: Example cruise control switches
(the right two switches).

For this purpose, an example automo-
tive system in SysML was modeled and
the automotive domain experts, who had
been interviewed to elicit modeling require-
ments, were asked to evaluate it [53]. The
automotive system is modeled based on
the existing architectural models and docu-
ments using all nine SysML diagram types
and IBM Rational Rhapsody, a commer-
cial modeling tool. Due to confidentiality
reasons we present part of the automotive
system models. The SysML diagrams have
been reviewed by the automotive domain
experts and the suitable diagram types for
architecture modeling were selected. The
evaluation process involved five senior ar-

3.4. Modeling Automotive Systems in SysML 39

chitects, who are responsible for modeling
automotive software within one OEM at different architectural levels, ranging from
functional architecture to Electrical/Electronic (E/E) architecture. All of the architects
had a Master of Science (MSc) degree in mechanical or electrical engineering and had
more than 10 years experience in the automotive domain. One architect had a PhD in
mechanical engineering. The architects evaluated the usability of the SysML diagram
types by indicating it as useful or not. The experts also provided the reasons for the scores
they gave to the modeled system. In the first phase of the evaluation, the SysML models
were selected with respect to their usability scores and rationale of the architects. The
architects also met at the end of the evaluation to discuss the purpose and applicability
of the model kinds at different architectural levels. The second iteration of the evaluation
took place using the detailed SysML models and finalized the selection of the SysML
diagram types. The result of the evaluation contributed to the pilot project, where the
architecture modeling tool was selected by the industry partner. Therefore, experts
commitment was ensured.

Note the following discussion contains the summary of both evaluation phases. In the
following subsections, the modeling is described, this is then compared to the respective
modeling requirement defined in Section 3.2. The similarity to the proprietary technique
is then discussed and finally the evaluation and decision by the experts is presented.

3.4.1 Requirement Diagram

Modeling description The SysML requirement diagram provides a modeling construct
for text based requirements, and the relationship between requirements and other key
modeling artifacts [176]. A requirement is related to other modeling artifacts via a
set of stereotyped dependency relationships (e.g., «contain», «derive», «satisfy», and
«trace»). For example, the «verify» dependency shows the link from a test case to the
requirement(s) it verifies and the «refine» dependency is used to indicate that a SysML
model element is a refinement of a textual requirement. A particular problem and a
design decision can be, respectively, captured in the «problem» and «rationale» model
elements. The requirements hierarchy and the relations between a requirement and any
model element can be modeled by graphical and tabular representations. Note that the
requirement diagram is not intended to replace external requirements management tools
such as IBM Rational DOORS1. Its main purpose is to increase traceability within SysML
models.

Relation to the modeling requirement One of the key requirements related to
modeling issues is the MR-1: requirements traceability at multiple levels. A cruise
control requirement diagram was constructed to illustrate requirements hierarchies using
containment and derivation relationships and their relationships with other model elements
at different levels using satisfaction, refinement, and trace relationships. The requirement
diagram is intended to keep the requirements synchronized with the models. This enables
traceability between requirements and system model elements, given that the requirements
and their relationships are typically stored in the requirements specification documents
or managed by the requirements management tools [85]. As discussed in the following
section, its similarity to the proprietary technique, the proprietary trace mechanisms
and requirements modeling make the requirements diagram adaptable and easy to use.

1http://www-03.ibm.com/software/products/en/ratidoor

40 Automotive Architecture Modeling

Structure

diagram

Block definition

diagram

Internal block

diagram

Parametric

diagram

Package diagram

Same as UML 2

Modified from UML 2

New diagram type

Figure 3.3: SysML Structure Diagrams.

Thus, it satisfies the MR-7: adaptability in the automotive domain and MR-8: Usability
requirements.

Similarity to the proprietary technique Although there is no equivalent modeling
of requirements in the proprietary modeling, the requirement traceability is enabled in
the proprietary setting by indicating requirements’ identifiers at the function blocks. This
is similar to the application of «trace» dependency between a requirement and the model
element.

Evaluation by the experts The graphical and tabular representations of the require-
ments hierarchy and the relationship between a requirement and any model element are
considered very beneficial by automotive experts. The graphical representation makes it
easy to trace which element satisfies and verifies the requirement and how the requirement
influences other requirements. Also ambiguity of requirement diagrams is tackled by
other models (e.g., activity and sequence diagrams) by refining it. A requirement or a
relationship between requirements can have these elements associated with them. These
were also considered valuable by the automotive architects, because important problems
and decisions tend not to be documented explicitly.

Discussion The requirement diagram was selected as an appropriate diagram. The
tool features related to the requirement diagram vary between the different SysML tools.
Hence, it is considered useful for the automotive domain experts to have the list of tool
features which bring additional values for requirement modeling.

3.4.2 Structure Diagrams

The SysML structure diagrams address the structure of systems in terms of their hierarchy
and interconnections [85]. Figure 3.3 shows the overview of the SysML structure diagrams:
Block Definition Diagram (BDD), Internal Block Diagram (IBD), package diagram, and
parametric diagram. The BDD and IDD are two different diagram types to represent
the structure by formalizing the traditional systems engineering block diagrams [85].
A package diagram is same as a UML package diagram, which addresses the model
organization. A parametric diagram is a new diagram type, which is used to create

3.4. Modeling Automotive Systems in SysML 41

systems of equations. Below the modeling of cruise control in these structural diagrams is
discussed.

3.4.2.1 Block Definition Diagram

Modeling description The static structure of a system is shown in a SysML Block
Definition Diagram (BDD). The SysML BDD is derived from UML2 class diagram. BDD’s
are used to define “black-box” components called blocks with external interfaces, where the
external interfaces can support both information flows (via standard ports and interfaces)
and physical flows (via flow ports and flow specifications) [85]. The block is a basic
structural element, which represents a modular unit of structure. A block may define
a system, control function, hardware or software component, and any other conceptual
entity. A block can have a structural relationship with another block using composition,
association, and specialization relationships.

Relation to the modeling requirement For the MR-2: integrated multi-level mod-
eling requirement, different levels of proprietary architectural concepts of the system were
mapped to the BDD elements and created the respective architectures in a BDD. Since

Figure 3.4: A Part of the Proprietary Functional Model for the Cruise Control System.

42 Automotive Architecture Modeling

bdd Cruise Control System

«block»

CC_Control_Logic

«block»

Function Input

«block»

Driver Input

AccelPedValue

CC_SetCommand

EngRunning

CC_ResCommand

CC_OffCommand

CC_IncrementCommand

CC_AccelerateCommand

CC_DecelerateCommand

ManualBrk

«block»

Output

ActVehSpd

CC_Fuel

ParkBrkSwApplied

PrimRetActivatedByStalk

CC_DecrementCommand

CC_Enabled

CC_Active

CC_SetSpd

Figure 3.5: A Part of the SysML Functional Model for the Cruise Control System.

the block concept is generic, the architectural representation in the BDD is sufficient. The
graphical notation of a block is adjusted to be similar to the domain-specific graphical
notation of an architectural entity. Figure 3.5 illustrates the BDD of a cruise control in a
graphical notation familiar to the architects. The nature of the block concept enables
the MR-3: modeling hierarchical elements requirement. Because of its flexibility to
adjust following the proprietary graphical representations, the BDD satisfies the MR-7:
adaptability in the automotive domain and MR-8: usability requirements.

Similarity to the proprietary technique Architectural models at different architec-
tural levels are created in BDD. Figure 3.4 shows a part of the proprietary high-level
structural diagram. For readability and confidentiality reasons, the model is simplified and
only a part of the model is shown. The comparable SysML BDD model is illustrated in
Figure 3.5. MATLAB, Simulink, and Stateflow seem to have become common approaches
to develop embedded software system in the automotive industry. Hence, translating
BDD concepts originated from object-oriented programming into concepts closer to the
current software development methods, facilitates the evaluation process.

Evaluation by the experts The BDD was considered to be an appropriate structural
modeling approach by the automotive experts. However, BDD concepts such as association,
composition, and specialization, which are borrowed from the object-oriented programming
needed further elaboration during the evaluation. In addition, a major shortcoming was
the default graphical notation of a block, which shows the compartments separated by
horizontal lines containing different members of the classifier as in the UML class notation.
For example, a UML class is shown with three compartments; the first compartment
holds the name of the class, the middle compartment holds a list of attributes and the
bottom compartment holds a list of operations.

3.4. Modeling Automotive Systems in SysML 43

Discussion The Block Definition Diagram is considered useful by the architects, given
that the graphical representation of the structural models can be adjusted to the automo-
tive domain in addition to modeling a structure of model entities and their interrelation-
ships.

3.4.2.2 Internal Block Diagram

Modeling Description A SysML Internal Block Diagram (IBD) describes the internal
structure of a block in terms of its constituent parts and their connections. IBD’s are used
to show the “white-box” perspective of block components, where connectors show how
internal parts are “wired” to external interfaces and each other. SysML IBD is derived
from UML2 Composite Structure diagram. The part or part property defines a set of
instances that belong to an instance of the composite block [85]. A block’s interaction
point is called a port.

Relation to the modeling requirement The composite architectural concepts of
the system were mapped to the IBD elements and the respective architecture was created
in the internal block diagram. The instantiation of the blocks in the BDD as parts of the
IBD enabled the MR-2: integrated multi-level modeling and MR-3: modeling hierarchical
elements requirements. Also, because of its flexibility to adjust the graphical representa-
tions and integrated multi-level modeling, the IBD satisfies the MR-7: adaptability in the
automotive domain and MR-8: Usability requirements.

Similarity to the proprietary technique Figure 3.6 shows a part of the proprietary
internal structural diagram. There are several representations of the internal structure.
Again for readability and confidentiality reasons, the model is simplified and only a part
of is shown. The counterpart of the proprietary model in SysML IBD is illustrated in
Figure 3.7.

Evaluation by the experts A different graphical notation for the reference part by
setting a dashed boundary in the IBD is considered valuable as it cuts across the tree

Input

Arbitration CC Control

Logic

CC Speed

Controller

Fuel

Arbitration

CC_Commands

Vehicle Data

CC_Active

CC_SetSpd CC_Fuel

Vehicle Data

Figure 3.6: A Part of the Proprietary Internal Structural Model for the Cruise Control
System.

44 Automotive Architecture Modeling

������

��	
������������

��������
��

������

�������
����������

������������

������

����������������

������

�������������
�������

������������

���������

���������

�������

Figure 3.7: The Internal block diagram of the Cruise Control System

structure of a composition hierarchy and helps to emphasize the blocks from different
architectural levels. Any change to the block type in a BDD can be propagated to the
parts and referenced parts in the IBD. Therefore, it adds an additional value to the
consistency between different architectural levels/views.

Discussion Given that the integrated multi-level modeling and the modeling hierarchical
elements are key to enabling consistent architectures at different levels, the IBD is also
considered appropriate.

3.4.2.3 Package Diagram

Modeling Description The package is a fundamental unit of model organization [85].
A SysML package diagram is used to group modeling elements in a hierarchal structure.
Packages are both containers and namespaces [85]. A namespace enables its elements to
be uniquely identified within it. Figure 3.8 shows an example package diagram, which
organizes a cruise control model with the SysML model structure. The cruise control
model contains requirement, structural and behavioral models.

Relation to the modeling requirement The hierarchal nature of the package concept
enables the MR-3: modeling hierarchical elements requirement. Due to its similarity to
the proprietary hierarchal concepts, the package diagram satisfies the MR-7: adaptability
in the automotive domain and MR-8: usability requirements.

CruiseControl Model

Requirements Models Structure Models Behavior Models

Figure 3.8: A Cruise Control Package Diagram.

3.4. Modeling Automotive Systems in SysML 45

Similarity to the proprietary technique In proprietary modeling, there is a similar
concept for a package concept. However, all the package diagram elements except
dependency relationship and rationale element do not exist in the proprietary architecture
modeling.

Evaluation by the experts This grouping of elements in a hierarchical structure can
be used for task allocation and system decomposition, therefore the package diagram was
considered useful. The similar package concept already exists in the proprietary modeling
approach, which made it easy to adapt by the domain experts.

Discussion The package diagram was selected as a beneficial diagram type.

3.4.2.4 Parametric Diagram

Modeling Description A SysML parametric diagram represents constraints or equa-
tions on property values [85]. It supports engineering analysis such as performance,
reliability, and safety analysis and enables integration of engineering analysis with design
models. IBM Rational Rhapsody [109](version 7.5.2 or later) can perform constraint-
related calculations with the Parametric Constraint Evaluator, which interfaces with
computer algebra systems such as Maxima2 and MATLAB.

2http://sourceforge.net/projects/maxima/

bdd PowerFlow Analysis

«block»

PowerFlow Analysis

parameters

Pm : W{unit = watt}

Pem : W{unit = watt}

Pd : W{unit = watt}

constraints

{ Pem = Pm - Pd; }

«constraint»

ICEPowerEquation

parameters

Pb : W{unit = watt}

Pe : W{unit = watt}

PL : W{unit = watt}

constraints

{ Pb = Pe - PL; }

«constraint»

BatteryPowerRequestEquation

parameters

Ps : W{unit = watt}

Pb : W{unit = watt}

constraints

{ Ps = Pb × ηsign(Pb); }

0< η <1;

Pb > 0: Charge

Pb < 0: Discharge

«constraint»

BatteryEfficiencyEquation

parameters

Es : W{unit = watt}

Ps : W{unit = watt}

t : {unit = second[s]}

constraints

{ Es = ∫ Ps × dt; }

«constraint»

StoreEnergyEquation

parameters

Pe : W{unit = watt}

Pem : W{unit = watt}

constraints

{ Pe = Pem × ηsign(Pem); }

0< η <1;

Pem > 0: Generator mode

Pem < 0: Motor mode

«constraint»

ISGEquation

Figure 3.9: Defining Reusable Equations in BDD

46 Automotive Architecture Modeling

Relation to the modeling requirement An analysis model was built with reusable
equations in the BDD and parametric diagrams were created. See Figure 3.9 and 3.10
respectively. The parametric diagram does not however support the MR-2: integrated
multi-level modeling requirement, because it requires an independent computational engine
to carry out the analysis.

Similarity to the proprietary technique There is no counterpart proprietary mod-
eling for parametric models.

Evaluation by the experts Having a parametric model separate from the computa-
tional engine, which is provided by different analysis tool was considered not beneficial by
the automotive experts. The syntax and semantics of parametric diagrams are ambiguous,
thus it needs to be integrated with other simulation and analysis modeling tools such as
Modelica to support the execution of the parametric models [179].

Discussion The parametric diagram type was not selected by the automotive experts
because the use of the diagram was not considered beneficial. Furthermore, to execute
the parametric diagram, another tool needs to be integrated. Thus it is costly to apply
and integrate extra tools.

3.4.3 Behavior Diagrams

In this section, the behavioral diagrams of the cruise control system are discussed.
Figure 3.11 shows the behavior diagrams.

par PowerFlow Analysis

Pm ICEPowerEquation

{ Pem = Pm - Pd; }

Pm

ISGEquation

{Pe = Pem × ηsign(Pem); }

Pd

Pd

Pe BatteryPowerRequestEquation

{ Pb = Pe - PL; }

Pe
PL

BatteryEfficiencyEquation

{ Ps = Pb × ηsign(Pb); }

Pb

PL

Pb

StoreEnergyEquation

{ Es = ∫ Ps × dt; }

Ps

Ps

Pem

Es

Es

Power Demand

«block»

BatterStoreEnergy

«block»

Requested ICE
Power

«block»

Auxiliary component
(e.g. electric pump,
fan, steering pump,

air conditioner)

Figure 3.10: PowerFlow Parametric Diagram

3.4. Modeling Automotive Systems in SysML 47

Behavior

diagram

Use Case

diagram
Sequence diagram

State machine

diagram
Activity diagram

Same as UML 2

Modified from UML 2

Figure 3.11: SysML Behavior Diagrams

3.4.3.1 Use Case Diagram

Modeling Description Use case diagram is a type of behavioral diagram, which
describes the functionality of a system in terms of how its users use that system to achieve
their goal. The users are described by actors, which represent either external systems
or humans who use the system. A use case represents externally visible behavior of a
system and can be elaborated in other behavioral diagrams such as activity and sequence
diagrams to describe detailed scenarios [85].

The Rational Unified Process (RUP) is a popular methodology to develop a system in
use case-driven way [132]. It enables the development activities to be traceable back to
the use cases as defined in agreement with the user or customer.

Relation to the modeling requirement Driver’s use cases of the automotive system
were modeled. Use cases have a textual and graphical description that may be elaborated
further with detailed descriptions of their behavior using activity, interaction or state
machine diagrams. Main use cases are detailed in an activity and sequence diagrams. Note
that use cases focus on functional requirements exclusively. Use cases can be elaborated
in other behavioral diagrams, which supports MR-2: integrated multi-level modeling
requirement. Use case diagram satisfies the MR-7: adaptability in the automotive domain
requirement, because it can be adapted to elicit the functional requirements based on the
use case analysis approach.

Similarity to the proprietary technique There is no comparable use case diagram
in the proprietary architecture modeling, since functional requirements are not explicitly
captured using use case analysis. However, there are signs of a need for modeling user
interaction with the system as shown in a requirements document. It illustrates a driver
interaction with the vehicle and dependency with other functions. Use cases are captured
in textual format in the requirements document.

Evaluation by the experts Use case diagrams were created based on the driver’s use
cases and these were then detailed in activity or sequence diagrams. However, the use case
analysis approach differs from the proprietary way of functional requirements elicitation.

48 Automotive Architecture Modeling

Discussion The use case diagram type was not selected, although it could be useful
for traceability. The main reason was that the functional requirements are currently not
explicitly captured using use-case analysis approach.

3.4.3.2 Activity Diagram

Modeling Description Activity diagram uses an activity concept, which is a formalism
for describing behavior that specifies the transformation of inputs to outputs through
a controlled sequence of actions [85]. Actions are the building blocks of activities and
describe how activities are executed. Each action can accept inputs and produce outputs,
which are called tokens. Tokens can be information or a physical item e.g., fuel. Activity
diagrams are graphical representations of the flow of inputs/outputs and control, including
sequence and conditions for coordinating activities. The SysML activity diagram extended
the UML activity diagram with support for continuous flow i.e., the SysML activity
diagram has been extended to indicate flows among steps that convey physical matter
(e.g., gasoline) or energy (e.g., torque, pressure). SysML is aligned with an enhanced
functional flow block diagram. Additional changes allow the diagram to better support
continuous behaviors and continuous data flows.

Relation to the modeling requirement As mentioned previously, a number of
activity diagrams were built elaborating driver’s use cases. In the activity diagrams,
a set of activity nodes and actions are grouped into an activity partition to indicate
responsibility for execution of those nodes. An allocate activity partition is a special type
of partition that can be used to perform behavioral allocation.

Activity diagrams enable MR-1: requirements traceability at multiple levels, namely
requirements traceability to behavioral models. The hierarchal nature of the composite
activity concept enables the MR-3: modeling hierarchical elements requirement. Further-
more, activity partitions (i.e., swimlanes) of the activity diagram fulfill the modeling
requirement MR-4: mapping between architectural entities. When allocating functions to
ECUs, explicit allocation of behavior to structure using swimlanes can enable the modeling
requirement of the mapping between architectural entities. However, adaptability in the
automotive domain requirement is not fulfilled because its UML-based graphical notation
is considered not favorable.

Similarity to the proprietary technique There is no comparable diagram in the
proprietary modeling. Informal conceptual diagrams and textual descriptions are used for
describing control behavior.

Evaluation by the experts Activity diagrams are adapted from UML and there is
no counterpart in automotive architecture modeling. SysML activity diagram is enhanced
from UML activity diagram and lack of UML usage in automotive companies hinders the
preference of this diagram type. Furthermore, in automotive architecture analysis, the
lack of tool support to carry out simulation using activity diagram was considered not
favorable.

Discussion The activity diagram was not chosen, because the UML-based diagram was
not easy to adapt for automotive architecture modeling.

3.4. Modeling Automotive Systems in SysML 49

3.4.3.3 Sequence Diagram

Modeling Description In SysML, behavior can also be represented in a sequence
diagram. A sequence diagram represents the interaction between the structural elements
of a block as a sequence of message exchanges [85]. The interaction can be between
the system and its environment or between the components of a system at any level of
a system hierarchy. A message can represent the invocation of a service on a system
component or the sending of a signal. There are different types of messages such as
synchronous messages where the sender waits for a response, and asynchronous messages
where the sender continues without waiting for a response. Structural elements of a block
are represented by lifelines (dashed vertical lines) on a sequence diagram.

Relation to the modeling requirement An a set of sequence diagrams were cre-
ated to show the interaction between the cruise control blocks. The sequence diagram
supports the requirement MR-2: integrated multi-level modeling. However, adaptability
in the automotive domain requirement is not fulfilled because its UML-based graphical
notation is considered not favorable when representing complex scenarios. Although the
sequence diagram is not used in the proprietary modeling approach, it satisfies the MR-7:
adaptability in the automotive domain and MR-8: usability requirements especially due
to its ability to model interactions.

Similarity to the proprietary technique There is no comparable diagram in the
proprietary modeling. Textual descriptions are used for describing complex scenarios.

Evaluation by the experts Modeling complex scenarios and interactions in sequence
diagrams is considered useful especially by the E/E architect, because it could be used to
model the synchronous and asynchronous communication between items such as ECUs.

Discussion The sequence diagram was selected as a useful diagram type for modeling
interactions.

3.4.3.4 State Machine Diagram

Modeling Description State machine diagram was also used to model the behavior
of a system. SysML state machine is same as UML statechart, which is an object-based
variant of Harel statechart adapted and extended by UML.

Relation to the modeling requirement A high level state machine diagram was
created for the cruise control system, which is same as the MATLAB Stateflow diagram.
MR-2: integrated multi-level modeling requirement is supported by the stateflow diagram
as other SysML diagram types. A composite state concept enables the MR-3: modeling
hierarchical elements requirement. In addition, MR-7: adaptability in the automotive
domain and MR-8: usability requirements are fulfilled because behavioral modeling in
stateflow is broadly applied in automotive industry.

Similarity to the proprietary technique State diagrams are used broadly to imple-
ment behavior in proprietary architecture modeling. Mostly MATLAB Stateflow diagrams
are used.

50 Automotive Architecture Modeling

Table 3.2: Modeling requirements and SysML diagram types

Modeling requirements Req.D BDD IBD PD Par.D UC AD SD SM
[3.4.1] [3.4.2.1] [3.4.2.2] [3.4.2.3] [3.4.2.4] [3.4.3.1] [3.4.3.2] [3.4.3.3] [3.4.3.4]

MR-1. Requirements trace-
ability at multiple levels

X X

MR-2. Integrated multi-level
modeling

X X X X X X

MR-3. Modeling hierarchical
elements

X X X X X

MR-4. Mapping between ar-
chitectural entities

X

MR-5. Support of evolution X

MR-6. Determining architec-
tural quality
MR-7. Adaptability in the au-
tomotive domain

X X X X X X X

MR-8. Usability X X X X X X

MR-9. Language maturity X

MR-10. Mature and accessi-
ble tool support

X

Evaluation by the experts Due to the popular usage of the MATLAB Stateflow,
SysML state machine diagram is considered easy to apply. However, there was a discussion
about choosing between SysML state machine diagram and MATLAB Stateflow diagram
types.

Discussion State machine diagram type was selected, because the MATLAB Stateflow
is widely used to implement behavior and is considered beneficial to enable behavioral
modeling in the architecture modeling phase. However, as the MATLAB Simulink and
Stateflow charts are broadly used in automotive industry, the selection between SysML
state machine diagram and MATLAB Stateflow charts needs further analysis.

3.4.4 Summary

Based on the evaluation of SysML modeling of the cruise control system, the following
SysML diagrams were identified as beneficial by the stakeholders: requirement diagram,
block definition diagram, internal block diagram, package diagram, sequence diagram
and state machine diagram. The main reasons for selecting these diagrams are explicit
architecture modeling needs and similarity to proprietary modeling approach. Other
reasons included usability, applicability and understandability by domain experts.

As summarized in Section 3.2, SysML diagrams satisfy the modeling requirements
(except the MR-6. Determining architectural quality requirement as other automotive
ADLs). However, the behavioral diagrams, except the state machine diagram type, need
further adjustment to make them usable in automotive domain. For MR-5. Support of
evolution requirement, SysML generalization and refinement relationships are used to
evolve a component or system. With respect to MR-9. Language maturity and MR-10.
Mature and accessible tool support modeling requirements, the SysML diagram types and
tool support for the diagram types mature as discussed in Section 3.3.1.

The selection of these diagram types are in alignment with other modeling case studies
of SysML of automotive systems e.g., driver information system [187] and [16] as discussed
in the previous section.

3.4. Modeling Automotive Systems in SysML 51

3.4.5 Related Work

In an automotive industrial case study on the systems modeling for premium vehicle [187], a
driver information system was modeled in SysML version 0.9 using the OEM’s requirements
specification document. Use case diagrams, assembly diagrams (an internal block diagram
in SysML version 1.2) and sequence diagrams are selected as appropriate diagrams [187].
The developed models are evaluated based on the regular discussions with OEM system
engineers and other stakeholders. Relevant elements of SysML language for the OEM
are identified by the representatives of OEM, suppliers and the international automotive
research center, UK [187]. In addition to system modeling, the integrated usage of SysML
requirements diagram, use case diagram, and sequence diagram was considered valuable.
Specifically, requirements diagrams can specify the textual requirements, use case diagram
can depict the use cases satisfying those requirements, and the requirements and use
cases can be linked to other diagrams such as sequence diagrams which can be used to
verify those requirements. The time the tooling for requirements modeling was limited,
therefore the requirements diagram was not used. To facilitate the increasing supplier-
OEM collaboration to develop systems, SysML was considered beneficial to capture and
communicate system requirements in a systematic way [187]. However, stability and
maturity of the SysML language was required. In this case study, the main focus was
to capture and communicate effectively system requirements. The choice of diagrams
appears to be more related to system and requirements modeling.

SysML was used on pilot projects to meet the needs of an automotive supplier’s
product lines [16]. For confidentiality and understandability reasons, the selected SysML
diagrams were extracted from tutorial examples on modeling a hybrid vehicle. SysML
block definition diagrams, internal block diagrams, use case diagram, sequence diagrams,
state machine diagrams, activity diagrams, and requirements diagrams are selected based
on the pilot projects. The selected SysML diagram types were mapped to the phases of
the system engineering process [16]:

• Definition of stakeholder phase needs a Requirements Diagram (RD), a Block
Definition Diagram (BDD), a Use Case Diagram (UCD), a State Machine Diagram
(SMD), and a Sequence Diagram (SD). The RD is needed to illustrate identified
stakeholder needs and trace the requirements. The BDD is selected to model
operational context diagram. The SMD is used to model user modes identification.
The UCD and SD are used to represent use cases.

• Requirements analysis phase needs an Internal Block Diagram (IBD), SMD, and
SD. The IBD is used to describe the system interface. The SMD is used to describe
the identified system states. The SD is used to refine user level scenarios in order
to identify system services.

• Logical architecture design phase needs a BDD, Activity Diagram (AD), and
IBD. A BDD is used to describe a functional architecture. An IBD is used to
describe the interaction flows between the internal logical blocks. An AD illustrates
the internal behavior of system block operations.

• Physical architecture design phase needs a BDD, IBD, and SD. The BDD is
used to describe a physical architecture. The IBD is used capture the interaction
flows between the internal physical blocks.

It was concluded that using SysML in a system engineering process improved the
weak practices e.g., a use case driven approach helped understand the problem instead of

52 Automotive Architecture Modeling

focusing on solutions first. Since automotive software engineering is multi-disciplinary e.g.,
covering system, software, hardware, and mechanics disciplines, customizing an SysML
tool for the automotive domain is considered crucial. Interfacing with safety analysis
tools to comply with safety standards such as ISO26262, behavior simulation tools e.g.,
MATLAB Simulink and Stateflow, and AUTOSAR authoring tools are also expected from
a SysML tool. The result of the automotive supplier’s pilot projects concluded that SysML
provides a promising solution for automotive ontology, however further improvements are
needed [16].

SysML was used as one of the Architecture Description Languages (ADL) for au-
tomotive system development [215]. For detailed modeling steps, an Adaptive Cruise
Control system was modeled. The SysML Internal Block Diagram (IBD) was used to
model a system architecture. However, the other SysML diagram types are not discussed
in this case study. The objective of the study was to compare different ADLs to model
architectural aspects of automotive systems.

For prototyping an embedded automotive system, SysML was used to represent high-
level models and to integrate with other languages [20]. SysML requirements diagrams
are used to capture system requirements. SysML Block Definition Diagrams are used to
model the general structure of the system. Internal Block Diagrams are used to represent
the internal structure of the blocks in detail. The system behavior is described using
state machine, sequence, and activity diagrams. Although SysML parametric diagrams
are not directly used, it was the base of the TEPE, a property language. TEPE is used
to express properties in terms of logical and temporal relations between system events
and attributes [20]. SysML was considered useful to model system architecture and its
behavior. Different SysML profiles are developed to support the conceptual stages of the
prototyping method.

The selection of the SysML diagram types of these case studies is in alignment with
the result of our research. SysML is considered a promising solution for the automotive
domain, the support of (tool) integration with other tools (e.g., safety and security analysis
tools, AUTOSAR authoring tool, MATLAB Simulink and Stateflow, and formal analysis
tool).

3.5 Conclusion

As 50-70% of the development costs of the electronics and software systems is attributed
to software development, automotive companies recognize ADLs as one of the most
appropriate solutions to reduce development costs and increase the quality of software.
Architecture description technologies were evaluated, including EAST-ADL, TADL, AML
(automotive specific), AADL (adapted from avionics), SysML and MARTE (general-
purpose). Furthermore, the advantages and drawbacks of applying SysML for a modeling
automotive system were shared.

IBM Rational Rhapsody was used for the case study to evaluate the usability of SysML
diagram types for automotive architecture modeling by analyzing the similarity to the
proprietary approaches. Although it is well-known in the software engineering world that
the graphical notation of SysML is similar to UML, it is not necessarily known in the
automotive world. In this case study, the automotive specific modeling requirements were
checked against SysML language and tool features. The SysML diagram types which
satisfy the modeling requirements were selected as suitable for modeling automotive
architectural models, which were aligned with the selection of prior case studies on

3.5. Conclusion 53

different automotive systems [16,20,187,215]. Although the reasons for selecting the same
diagram types were not explicitly discussed in these case studies, the diagram types used
to illustrate different automotive systems are the same except a sequence diagram type
was used in the driver information system [187].

Chapter 4

Formalizing A Correspondence Rule for Automotive

Architecture Views

Architecture views have long been defined in the software architecture field with an intention
to systematically model complex systems by representing them from the perspective of
corresponding stakeholder concerns. Different architecture views have been defined in
the scope of automotive Architecture Frameworks (AFs) and Architecture Description
Languages (ADLs). Therefore, we defined an Architecture Framework for Automotive
Systems (AFAS) aligning the architecture viewpoints and views from existing automotive
AFs and ADLs. Currently, a correspondence rule between architecture views has not
been studied in the automotive domain. Therefore, in this chapter, we formalized a
correspondence rule between the architecture views in the automotive domain. The
formalized correspondence rule has been implemented as a Java plugin for IBM Rational
Rhapsody and evaluated in a case study based on an Adaptive Cruise Control system.

4.1 Introduction

In the automotive industry, gradually more attention is being paid to architectural
modeling to tackle the increasing complexity of automotive software systems and to
maintain the system’s quality [166]. Typically, numerous architects create multiple
models representing several views [76]. We have defined a set of architecture viewpoints
and views as part of the Architecture Framework for Automotive Systems (AFAS) in
Chapter 2. The scope of the current chapter is to formalize the refinement correspondence
between AFAS structural views, in particular between functional and software views, to
ensure consistency between the functional architecture and software architecture models.
Throughout this chapter, we refer to a functional architecture and software architecture
model as a Functional (FN) and Software (SW) model, respectively.

Functional decomposition is carried out by an Original Equipment Manufacturer
(OEM) and the functional models are delivered to a supplier, who refines the model in the
software view and returns the functionality in the Electronic Control Unit (ECU). The

56 Formalizing A Correspondence Rule for Automotive Architecture Views

System

ft1 ft2 ft3

fn1

fn2

fn3

fn6

fn7

fn4

fn5

fn8

<<realizes>>

sw1

sw2

sw4

sw3

sw5

Feature view

Functional view

ecu1

ecu2

ecu3

hw1

ecu4

<<realizes>>

<<allocates>>

Software view Hardware view

Figure 4.1: An example illustration of AFAS view correspondences

refinement is a transformation that takes a model from an abstract level to a more detailed
level [76]. The refinement of the functionality in the software view may take several
iterations e.g., the feedback to the functional model of the OEM or changes in the functional
model may need to be propagated into the supplier’s software models. This process is
currently document-centric, prone to errors, and cumbersome [92]. Documentation-centric
collaboration may, however, result in software models that do not comply with the
intention of the OEM as informally described in the functional model. A method is
required to facilitate automated consistency checking between the functional and software
models. Therefore, formalizing a correspondence rule between these views is a step
towards a consistent multi-viewpoint architecture modeling [66].

According to the ISO 42010 international standard [116], a correspondence defines a re-
lation between architecture description elements, which in the context of this thesis is called
the architecture view. An architecture relation can include e.g., refinement, composition,
consistency, and traceability [116]. Therefore, formalizing refinement correspondence rules
between functional and software views checks whether or not the restrictions expressed
by the rule are satisfied. This is also described as ensuring consistency.

In Figure 4.1, an example correspondence between structural views of the AFAS is
illustrated. A functional view consists of a functional architecture model that contains a
number of functions or subsystems realizing vehicle features. A software view consists

4.1. Introduction 57

of a software architecture model, which refines the functions into software components
or blocks. The relationship between software components and functions is illustrated in
Figure 4.1. The functional view is governed by the functional viewpoint and both software
and hardware views are governed by the implementation viewpoint as discussed in the
AFAS framework, Section 2.4.

Checking architectural consistency is used to ensure the information in several views
is not conflicting [165]. For the software architecture community, consistency checking
for architecture views and architectural models has been investigated vigorously [34, 129,
165,196,197]. Existing techniques for architecture consistency checking can be divided
into two main categories. The first category concerns consistency checking techniques
between the static architecture and the architecture extracted from the source code
such as the software reflexion technique [164], the Bauhaus tool suite [19], and the
clustering technique [18]. The second category relates to ensuring consistency between
UML structural and behavioral diagrams (e.g., consistency between class, sequence, and
statechart models) [42,75,76,143,165,216].

Because UML is not broadly used in automotive architecture modeling and the
relation between automotive architecture views is not explicitly addressed, we formalize
the relation between structural models, namely functional and software models of the
AFAS. Regarding the relation between views, we position our work using the classification
framework in the following Section 4.1.1. Our objective is to formalize the relation by
defining the correspondence and correspondence rules between automotive architecture
views. The research question RQ2 is addressed in this chapter.

RQ2: How can we formalize the correspondence rules between automotive
architecture viewpoints?

Because OEMs and suppliers may use different Architecture Description Languages
(ADLs) to represent architectural models, we apply a language-neutral consistency checking
mechanism inspired by the Relation Partition Algebra (RPA) [80,81,131]. The language-
neutral consistency checking mechanism will be discussed in more detail in Section 4.1.1.

4.1.1 Relations between views

This section positions our work using the classification framework presented in [30].
Relations between different views are crucial to ensure consistency and maintain the
consistency over time [30]. However, research on relations between views in the software
architecture field has been fragmented due to the lack of common concepts and terminol-
ogy [30]. To avoid further fragmentation, we followed the criteria of relations between
views and positioned our research as illustrated in Figure 4.2 by underlining the respective
selection.

According to Boucké et al. [30], the relations between views can be characterized
into three main dimensions, namely Usage, Scope, and Mechanism. These dimensions
further structure approaches as listed in Figure 4.2. We discuss below the mapping of our
approach to these categories:

• Usage: Relations between views can be used for four main purposes [30]: 1)
Consistency checking determines if the information in several views is consistent;
2) Composition of views enables the integration of information from several views;
3) Tracing or trace relations spans a number of different architectural elements to
enable consistency; and 4) Model transformation creates a model conforming to a

58 Formalizing A Correspondence Rule for Automotive Architecture Views

Usage

Consistency

 checking

Composition

Tracing

Model transformation

General-purpose consistency checking

Design constraint checking

Service composition consistency checking

Scope

Intra vs. Inter model type

Level of detail

Horizontal vs. Vertical

Metamodel vs. Model

Mechanism

Direct references
Tuples

Expression language

Figure 4.2: Categories of relations between views, derived from the relation categories [30]
and extended with the mechanisms for Consistency Checking Usage.

target metamodel from a model conforming to a source metamodel. Consistency
checking is the usage that we focus on in this chapter. There can be different
types of consistency checking namely general-purpose consistency checking, design
constraint checking, and service composition consistency checking [30]. General-
purpose consistency checking approaches check inconsistencies in requirements
specifications, different views, and UML diagrams. The design constraint checking
approaches use a language to express and control design constraints to restrict the
architectural and design evolution. The service composition consistency checking
approach provides static verification of a web service composition. Our approach
falls into the category of the general-purpose consistency checking type for checking
consistency between different views.

• Scope: The scope criterion defines the range of view relations: 1) Intra vs. Inter
model type. A model type or a model kind defines the conventions for one type
of architecture model [116] e.g., UML structural and behavioral diagram types.
Intra model type relations refer to relations between the same type of models. Inter
model type relations refer to relations between different types of models. 2) Level
of detail covers relations between complete views, models, and between elements
inside the same views; 3) Horizontal vs. Vertical relations. Horizontal relations refer
to relations between views at the same level of abstraction. Vertical relations are
either relations between views at different levels of abstraction (such as refinements)
or relations with other representations such as requirements, detailed design or even
implementation; 4) Metamodel vs. Model. A metamodel is an explicit model of the
constructs and rules used to build specific models within a domain of interest [30].
This scope addresses if a model in a domain of interest conforms to the metamodel.
From the four view relations, our scope falls into the combination of the first and
fourth category. Specifically, we focus on the vertical relations between the same
type of models at different abstraction levels i.e., consistency checking between

4.2. Architectural Notations 59

higher-level functional model and the lower-level software model (e.g., refinement
relation).

• Mechanism: The third dimension of the framework in Figure 4.2 categorizes
mechanisms that describe relations between views: 1) Direct references mean
elements from one view can refer directly to elements of another view; 2) Tuples
are used to model relations in a form of mapping; 3) Expression language defines
which expressions are well-formed, and therefore can be used and meaningfully
interpreted [30]. As mentioned before, we apply a language-neutral consistency
checking mechanism inspired by the RPA.

Our approach is an application of the generalized consistency checking between
software views in [34, 165]. The consistency rules are defined to take on the informal
semantics of architectural consistency and to match most closely what automotive software
architects expect. This is achieved primarily through considering examples and building a
definition of refinement correspondence based upon these rules. Then, formal definitions
for consistency and a consistency-checking algorithm is formulated which is implemented
in an automated tool. The second contribution of this research is a prototype consistency-
checking tool in the form of an IBM Rational Rhapsody plugin.

We evaluated our consistency checking method and tool by emulating an OEM and a
supplier. The “OEM” created a functional architecture model for a truck and submitted a
functional model of the Adaptive Cruise Control (ACC) to the “supplier”. The “supplier”
refined the functional model to a software model and created a running ACC prototype.
Although the ACC subsystem works correctly according to the OEM functional model,
by using our tool we identified that the ACC software model created by the “supplier”
was inconsistent with the functional model provided by the “OEM”.

4.1.2 Chapter outline

The remainder of the chapter is structured as follows. Section 4.2 introduces basic
notations. Section 4.3 presents the approach by describing the correspondence rule
between the functional and software views, the consistency semantics and definitions.
Section 4.4 covers the tool development. We evaluate the approach in Section 4.5 and
discuss related work in Section 4.6. Finally, Section 4.7 summarizes our contributions
and discusses directions for future work.

4.2 Architectural Notations

This section serves as the introduction to the main notations that are used throughout
this chapter. We use SysML as graphical notation and a textual notation inspired by
RPA to describe the architecture in textual format.

4.2.1 Graphical Notation

For the graphical notation of functional and software models, we use a block definition
diagram (BDD) of the Systems Modeling Language (SysML). SysML is a general purpose
graphical modeling language used to represent systems in system engineering [176].
Although SysML is discussed in the scope of the automotive ADL evaluation in Chapter 3,
we elaborate below on the main concepts of the BDD.

60 Formalizing A Correspondence Rule for Automotive Architecture Views

S

A1

A B

B1A2 B2

Composition

Dependency

Legend:

Figure 4.3: SysML BDD example.

SysML uses the concept of blocks to specify hierarchies and interconnections within a
system design. The block is a general purpose hierarchical structuring mechanism and
can represent any level of the system hierarchy (e.g., top-level system, a subsystem, or
logical or physical component of a system or environment, and function block).

A BDD describes relationships between blocks such as composition and dependency.
A composition describes a whole-part hierarchy, where the composite is existentially
responsible for its parts [240] e.g., a system is composed of subsystems or components.
The composition relationship is illustrated by a solid diamond. In Figure 4.3, an example
BDD diagram illustrates a system S, which is composed of A and B blocks. A is
composed of A1 and A2 blocks and B is composed of B1 and B2 blocks. A dependency is
a relationship between two elements e.g., blocks, which indicates that a change on one
end of the dependency may result in a change in the element on the other end of the
dependency [85]. A dependency is denoted as a dashed line with an open arrow pointing
from the dependent (called also a client) to the dependee (called also a supplier). For
example, in Figure 4.3, a block A1 depends on B1 and B2, which indicates that a change
in B1 and B2 may result in a change in the A1. Early in the modeling phase, dependencies
are often used to specify a relationship that can be replaced or refined [85]. In the context
of this chapter, the dependency relation between functions in a functional model is the
same as a dependency relation between software blocks in a software model.

4.2.2 Textual Notation

The textual notation of functional and software models and the notation used to express
rules between architecture views is inspired by approaches based on Relation Partition Al-
gebra (RPA) [34,131,165]. RPA formalized descriptions of (parts of) software architectures
and it is based on sets and binary relations [131].

A set is a collection of objects (elements or members) and a relation is a special sort
of set i.e., represents a set of pairs. For example, system S in Figure 4.3 can be expressed
as S = {A,B}, A = {A1, A2}, and B = {B1, B2}.

A binary relation or a relation, from X to Y is a subset of the Cartesian product

4.3. Architecture Correspondence 61

Correspondence
Correspondence

Rule

AD Element

0..*1..*

2..*

governs

relates

Figure 4.4: AD elements and correspondences [116].

X × Y , a set of tuples 〈x, y〉 where x ∈ X and y ∈ Y . Binary relations can be used
to express the relationships between model entities. In addition to a tuple notation,
〈x, y〉, we apply a prefix notation denoted by R(x, y) to refer to an element of a binary
relation. In the following example, we illustrate the SysML composition and dependency
relations as representatives of a binary relation. For example, compositions in Figure 4.3
can be denoted as comp(S,A), comp(S,B), comp(A,A1), comp(A,A2), comp(B,B1), and
comp(B,B2) and dependency relations can be denoted as dep(A1, B1), dep(A1, B2),
dep(B2, A2), and dep(B1, B2) respectively. The composition relation is the reverse of the
part-of relation and the dependency relation is the same as the uses relation of RPA [131].

In the next section, we discuss the architecture consistency process and a correspon-
dence rule between architecture views.

4.3 Architecture Correspondence

In this section we define the notion of correspondence and correspondence rules between
functional and software views with the purpose of expressing and checking consistency
among these views. We illustrate and formalize the consistency checking approach. In
the ISO-42010 standard [116], a correspondence defines a relation between architecture
description (AD) elements, which in the context of this thesis is called the architecture
view. Correspondences can be governed by correspondence rules as depicted in Figure 4.4.
Although the ISO-42010 standard does not specify a format for correspondences, they
can be defined as relations and tables [77].

We revised the architecture consistency checking approach, which separates architect
and developer roles [198]. As illustrated in Figure 4.5, the role of consistency checking is
clarified among the automotive architects to ensure architectural consistency at different
architecture views. In this approach, systematic checks of architectural consistency in the
system architecture are made explicit. In Figure 4.5, functional and software architectural
models are created and modified by the respective architects. If a violation is detected after
checking consistency rules for respective views, an action is required from the architects
to mitigate the conflicts.

4.3.1 Correspondence Rule

Consider the following example. Let S be a system and let FN(S) and SW(S) be the
functional view of S and the software view of S, respectively. Given that FN(S) includes
functional components, fn1, . . . , fnn and SW(S) has software components, sw1, . . . , swr,

62 Formalizing A Correspondence Rule for Automotive Architecture Views

a correspondence expressing which functional components are refined by which software
components is specified by a software architect.

Refinement is a transformation that takes a model from an abstract level to a more
detailed level [76]. Thus, the correspondence rule for the refinement correspondence
between functional and software views is:

Rule: Every functional component, fn, defined by the functional view FN(S), needs
to be refined in one or more software components, sw, as defined by the software view
SW(S) of a system S.

The correspondence rule for an example model in Figure 4.6 implies that A, B, and C

in SW view refine A, B, and C in FN view respectively. To perform the consistency check
between these views, it suffices to lift the SW model into a model with the same level
of abstraction as the FN model (cf. the lifted model (LM) in Figure 4.6). For example,
dep(A,B) is present in LM since dep(A1, B1) is present in the SW, comp(A,A1) and
comp(B,B1).

Lifting abstracts from the details inserted by the refinement, leaving only information
relevant for comparison with the FN. Although the lifting notion is inspired by the lifting
of the Relation Partition Algebra (RPA) [81], the lifting notion that we define has different
semantics. To distinguish from the well-known lifting notion of the part-of relation in the
RPA, we use the term R-Lifting (Relation-Lifting) in this chapter.

In terms of static models, this requires that for every entity present in the high-level
FN model, the relationship present in the low-level SW model must be derived. The FN
model can then be directly compared with the lifted model. Possible inconsistencies are
relations which exist in the FN model but not in the lifted model, or relations which exist
in the lifted model but not in the FN model. These inconsistencies are referred to as
absences and divergences. In Figure 4.6, an example absence relation is a relation between
B and C in FN, which is absent in the lifted model and example divergence relations are
a dependency relation from B to A and A to C, which do not exist in FN.

Create

Architecture

Alter

Architecture

FN Architect

Consistency check

Create

Architecture

Alter

Architecture

SW Architect

[violations

detected]

Notify FN

Architect

Notify SW

Architect

[action required] [action required]

Consistency Checker

Figure 4.5: Architecture consistency checking approach.

4.3. Architecture Correspondence 63

SW

FN

A

B C

A

B

C

LM

A1

A

B

B1

A2

B2

C

C1

«refines» «lifts»absence relation
divergence relations

Figure 4.6: Illustration of refinement correspondence (SW refines FN) and example
inconsistent relations (absence and divergence relations). LM denotes the Lifted Model.

4.3.2 Consistency by Example

Since both the FN and SW views are representing the same system, inconsistencies
can arise. For instance, a dependency between two components in the FN model may
be inadvertently omitted in a refined SW model. Because automotive ADLs do not
have formal semantics defined, there is ambiguity around what is actually considered
consistent [93]. Therefore, in this section we illustrate refinement examples derived from
the automotive architecture modeling practice.

Figure 4.7 depicts two similar functional models in SysML, each with two possible
software refinements. Figure 4.7a shows a functional model with a dependency relation.
In the left-hand refinement of Figure 4.7a, a wrapper entity (LightingSystem) was

64 Formalizing A Correspondence Rule for Automotive Architecture Views

SW

FN

«refines»

Driveline BrakeLights

LightingSystemDriveline

BrakeLights

LightingSystemDriveline

BrakeLights

SW

«refines»

(a) Consistent dependency refinements

SW

FN

«refines»

LightingSystemDriveline

BrakeLights

SW

«refines»

LightingSystemDriveline

BrakeLights

Driveline BrakeLights

(b) Inconsistent composition refinements

Figure 4.7: Semantic differences between dependency and composition refinements

inserted. Semantically this still indicates that Driveline makes an (indirect) call to
BrakeLights.

Therefore the derived relationship between Driveline and BrakeLights is a
dependency relationship, and should be considered consistent with the functional model.
In the right-hand refinement, the entity DriveLine was refined to specify that in
fact a child entity LightingSystem makes a call to BrakeLights. In this case
clearly the derived relationship is again a dependency. Therefore, regardless of whether

4.3. Architecture Correspondence 65

the dependency relationship preceded the derived relationship, when combined with
composition it was still semantically a dependency.

In Figure 4.7b, the same refinements are now refining a composition relation in the
functional model. However, an automotive architect would not consider the proposed
refinement to be consistent, because splitting up a composite entity into two entities which
communicate via function calls was not intended by the architect. Therefore, applying
the relation ordering (which again derives only implicit dependencies in the refinements),
correctly yields an inconsistency. It is essential to note however that the high-level model
must be taken into account when performing the R-Lifting operation on the low-level
model.

In the next sub-section, we formalize this consistency checking approach.

4.3.3 Consistency Definition

Let S be an automotive system, FN and SW be the functional model and the software
model of S, respectively. Since every functional component needs to be refined in one
or more software components (cf. Section 4.3), we assume FN ⊆ SW. Furthermore, we
assume that there are families of relations, namely composition (comp) and dependency

(dep), comp, dep ⊆ FN×FN and c̃omp, d̃ep ⊆ SW×SW such that comp or dep on the FN

view has its corresponding relation c̃omp or d̃ep on the SW view. The following property
should hold for the composition relation: The composition relation does not allow multiple
parent entities i.e., for any A,B,C ∈ SW, c̃omp(A,C) ∧ c̃omp(B,C) ⇒ A = B.

In Equation 4.1, we define a R-Lifting operation on the composition relation between

two model entities from FN view, denoted c̃omp
↑
(A,B). When R-Lifting a composition

relation, the intermediate entities in the SW view should be connected only via composition
relations.

c̃omp
↑
(A,B) ⇔ c̃omp

+
(A,B) (4.1)

where c̃omp
+
(A,B) is the transitive closure of c̃omp(A,B). The transitive closure of a

relation rel, denoted by rel+, is defined as rel+ =
⋃∞

i=1 rel
i, i.e., the union of all reli. reli

is defined as reli−1 × rel for i > 1 and rel1 = rel.

Example 1 We demonstrate the R-Lifting operation as defined by Equa-
tion 4.1, by considering the left- and right-hand refinement models of the FN

in Figure 4.7b. For both refinement models, c̃omp
↑
(Driveline, BrakeLights)

does not hold, because of d̃ep(Driveline, LightingSystem) and d̃ep(LightingSys-
tem, BrakeLights) in the left- and right-hand models respectively. �

In the Equation 4.2, we define a R-Lifting operation on the dependency relation between

two model entities from FN view, denoted d̃ep
↑
(A,B). When R-Lifting a dependency

relation, the intermediary entities in the SW view should be connected via at least one
dependency relation. This definition states that A and B are related, if there is an entity
C in the SW, which is contained in A or contains A, and there is an entity D in the SW,

which is contained in B or contains B such that C and D are related with d̃ep.

d̃ep
↑
(A,B) ⇔ ∃C,D ∈ SW ·

(
c̃omp

∗
(A,C) ∨ c̃omp

∗
(C,A)

)
∧

(
c̃omp

∗
(B,D) ∨ c̃omp

∗
(D,B)

)
∧ d̃ep(C,D) (4.2)

66 Formalizing A Correspondence Rule for Automotive Architecture Views

SW

FN

«refines» «refines»

Driveline EnergySystem LightinSystem

Driveline EnergySystem LightinSystem Driveline EnergySystem LightinSystem

SW

Figure 4.8: Inadequacy of using full transitive closure to extract relations in refinements

where c̃omp
∗
(A,C) is the reflexive transitive closure of c̃omp(A,C). The reflexive transitive

closure of a relation rel, denoted by rel∗, is defined as rel∗ = Id ∪ rel+, where Id is the
identity relation.

Example 2 To demonstrate the R-Lifting operation as defined by Equa-
tion 4.2, we consider the left- and right-hand refinement models of the FN in

Figure 4.7a. For the left-hand model, we have d̃ep
↑
(Driveline, BrakeLights),

since we can select C = Driveline and D = LightingSystem, because
c̃omp

∗
(DriveLine, DriveLine), c̃omp

∗
(LightingSystem, BrakeLights), and

d̃ep(Driveline, LightingSystem). For the right-hand model, we have

d̃ep
↑
(Driveline, BrakeLights) as well, since we can select C = LightingSys-

tem and D = BrakeLights, because c̃omp
∗
(DriveLine, LightingSystem),

c̃omp
∗
(BrakeLights, BrakeLights), and d̃ep (LightingSystem, BrakeLights)

relations. �

Observe that the dependency relation could not have been lifted in the same way as
the composition, i.e., Equation 4.2 could not have been simplified in the same way as
Equation 4.1. Indeed, the transitive closure in composition simply extracts all implicit
relationships between all elements in the software model, and then performs a comparison
with the functional model. For dependencies, however, this approach would yield erroneous
results as illustrated in Figure 4.8. The two software models cannot be distinguished by
the transitive closure. While it is clear that the left-hand refinement should be consistent
with the functional model, the right-hand refinement should not, because the refinement
is violating the strict layering specified by the high-level model.

In general, the R-Lifting operation should be performed on SW using all entity pairs
A,B that appear in FN, resulting in a lifted low-level model. The lifted model can then
be directly compared to the high-level model to check for absent and divergent relations,
presented in Equations 4.3 and 4.4. R-Lifting entities present only in the SW model is
not necessary, because no comparison can be done with non-corresponding entity in the
FN model. For A,B ∈ FN:

absencerel(A,B) ⇔ rel(A,B) ∧ ¬(r̃el
↑
(A,B)) (4.3)

4.4. Tool Development 67

divergencerel(A,B) ⇔ ¬(rel(A,B)) ∧ r̃el
↑
(A,B) (4.4)

where rel refers to comp or dep and r̃el refers to c̃omp or d̃ep relations.

Example 3 Continuing the running examples from Figure 4.7, we compare
the lifted model to the high-level model using Equations 4.3 and 4.4. The
lifted models for both left- and right-hand refinement models of the FN in
Figure 4.7a have no absence relation with respect to dep. This is because the
first conjunct of the Equation 4.3, dep(Driveline, BrakeLights) holds since
there is a dependency relation between Driveline and BrakeLights in the
FN view. The second conjunct, ¬(dep↑(Driveline, BrakeLights)) does not
hold because there is a dependency relation in the lifted model as illustrated
above. Therefore, the absencedep(Driveline, BrakeLights) evaluates to false

for both left- and right-hand models in Figure 4.7a.

The lifted models for both left- and right-hand refinement models of the FN in
Figure 4.7a have no divergence relation with respect to dep as well. The first
conjunct of the Equation 4.4, ¬(dep(Driveline, BrakeLights)) does not hold
since there is a dependency relation between Driveline and BrakeLights in
the FN view. Thus, the divergencedep(Driveline, BrakeLights) evaluates

to false for both left- and right-hand models in Figure 4.7a. �

Example 4 Next, we check if the lifted models for both left- and right-
hand refinement models of the FN in Figure 4.7b have absence and diver-
gence relations with respect to comp. The first conjunct of the Equation 4.3,
comp(Driveline, BrakeLights) holds since there is a composition relation
between Driveline and BrakeLights in the FN view. The second conjunct,

¬(c̃omp
↑
(Driveline, BrakeLights)) holds because there is no composition

relation between Driveline and BrakeLights in the lifted model as discussed
above. Therefore, the absencecomp(Driveline, BrakeLights) evaluates to
true for both left- and right-hand models in Figure 4.7b.

The divergence relation divergencecomp(Driveline, BrakeLights) does not
hold for both left- and right-hand models in Figure 4.7b, because ¬(comp(Drive-
line, BrakeLights)) does not hold since there is a composition relation be-
tween Driveline and BrakeLights in the FN view. �

In the next section, we introduce the tool for automatically detecting absent and
divergent relations and demonstrate the usage of the developed tool.

4.4 Tool Development

In the following sub-sections, the algorithm to check inconsistencies based on the definitions
in the previous section, the details for the tool implementation, and a description of using
the tool are presented.

4.4.1 Checking Algorithm

The lifted model that is calculated by applying the Equations 4.1 and 4.2 on a low-level
SW software model, results in a lifted model, LM. The LM has been abstracted from

68 Formalizing A Correspondence Rule for Automotive Architecture Views

all details not already present in the high-level model, e.g., functional model, FN. A
consistency-checking algorithm is summarized below in the algorithm CheckConsistency .

Comparing this lifted model to the high-level model then fulfills the intuition of
consistency described initially by Dijkman et al. [66]. Furthermore, calculating a lifted
model then applying consistency checks for absence and divergence, rather than working
directly on the low-level model, significantly improves the scalability and maintainability
of consistency checking algorithms in practice [74].

Algorithm CheckConsistency(FN,SW)
Input: FN is the functional model, and SW is the software model
Output: A(possibly empty) set of consistency errors
1. Encode FN and SW as directed graphs, where edges are annotated with the relation

(dependency or composition)
2. Let LM be a new, empty graph to contain the lifted model of SW
(∗ Populate the SW ∗)
3. for all elements A,B ∈ FN
4. do

5. if d̃ep
↑
(A,B)

6. then Add an edge from A to B to LM annotated with dependency

7. if c̃omp
↑
(A,B)

8. then Add an edge from A to B to LM annotated with composition

(∗ Check for absence ∗)
9. for each edge e = (A,B) ∈ FN
10. do
11. if A 6∈ LM (or B 6∈ LM)
12. then Report error absentBlock(A) (or
13. absentBlock(B), respectively)
14. if e ∈ dependency ∧
15. absencedep(A,B)
16. then Report error absentDependency(A,B)
17. if e ∈ composition ∧
18. absencecomp(A,B)
19. then Report error absentComposition(A,B)
(∗ Check for divergence ∗)
20. for each edge e = (A,B) ∈ LM
21. do
22. if e ∈ dependency ∧
23. divergencedep(A,B)
24. then Report error
25. divergentDependency(A,B)
26. if e ∈ composition ∧
27. divergencecomp(A,B)
28. then Report error
29. divergentComposition(A,B)

The implementation of the consistency checking algorithm is described in Section 4.4.2.
The tool extends the algorithm by adding a dependency relation between high-level and
low-level models in an overview diagram. Presence of the overview diagram alleviates
the need for high-level entities to be present in low-level model. Note that in addition to

4.4. Tool Development 69

the absence and divergence checks, an additional check is run to ensure all blocks from
the high-level model exist in the low-level model; if not, an absentBlock error is reported.
While there are many parts of the algorithm which could be optimized for a faster running
time, they are omitted here to improve readability.

4.4.2 Tool Implementation

A prototype tool was implemented as a Java plugin integrated into the IBM Rational
Rhapsody for SysML Block Definition Diagram (BDD). The reason for this choice is
three-fold: Firstly, IBM Rational Rhapsody is a well-established, enterprise modeling tool
used to design complex software products including automotive software systems [109].
In addition to support for SysML, Rational Rhapsody also supports UML and some
domain-specific languages (DSLs). Therefore, a plugin developed for use with SysML is
easily convertible to a tool for other supported languages. Secondly, it is important for
the tool to be integrated directly into the development environment [73]. This not only
increases usability by allowing architects to work with a tool they already understand,
but also increases the likelihood that consistency checks are run often. This integration
is possible in Rational Rhapsody because it offers a comprehensive Java API for plugin
development. Finally, IBM Rational Rhapsody is well-documented and has an active
developer community, making it a low-risk choice for development.

In addition to the Rational Rhapsody API functions, the JUNG1 (Java Universal
Network/Graph) library was used to encode the graphs required to represent the high-level,
low-level, and lifted low-level models. Using a third-party, comprehensive graph library
greatly reduced the complexity required to implement the checking algorithm. As output,
the tool notifies the user of all absences and divergences encountered inside the error pane.
Screenshots of the consistency-checking prototype developed for IBM Rational Rhapsody
during this research are presented in Figure 4.9 and 4.10. The plugin consists of five files
with total 500 lines of code. The source code of the tool is currently not publicly available,
but it is planned to be integrated with the IBM Rhapsody tool.

4.4.3 Using the Tool

The consistency checking plugin expects a project to have at least two SysML package
elements: a high-level package and a low-level package. A top-level element of package
was chosen to separate the high-level from the lower-level models because an industrial
partner of our project already organizes their models this way.

Each package should contain exactly one SysML BDD, which describes the blocks
relevant for that package together with their dependency and composition relationships.
Then there should be another diagram, which we name overview, which specifies which
packages refine which other packages. A refinement is specified by adding a dependency
relation between the packages in the overview diagram with the «refine» stereotype. The
presence of the overview diagram alleviates the need for high-level package (FN) entities
to be present in a low-level package (SW).

The consistency check tool can run on the overview diagram by selecting the
Tools > Check Model command. The plugin will then find all refinements described in the
overview diagram. For each refinement relation, it will retrieve the high-level and low-level

1http://jung.sourceforge.net/

70 Formalizing A Correspondence Rule for Automotive Architecture Views

Figure 4.9: A refinement stereotype is defined between two SysML packages, each
containing a block definition diagram. The consistency check plugin is integrated into
the check model feature of the Rational Rhapsody, which runs from Tools > Check

Model menu.

Figure 4.10: After running the consistency check, a new pane is displayed to the user
containing all absence and divergence errors encountered together with the offending
diagram elements.

4.5. Evaluation 71

Figure 4.11: Adaptive cruise control [52].

models (in this case Block Definition Diagrams) and run the plugin’s CheckConsistency
algorithm. When errors are found, a new bottom frame opens with a list of all the
errors, noting exactly which diagram, relation, and specific offending elements caused
the consistency error, according to the list of failed elements generated during plugin
execution. After performing this check, the architect can resolve the errors or alert another
architect that there are errors, and then rerun the check.

4.5 Evaluation

In this section we evaluate the tool implemented for the consistency checking as presented
in Section 4.4. We applied the tool to an Adaptive Cruise Control (ACC) system. ACC,
Figure 4.11, is a cruise control system with enhanced functionality assisting the driver to
keep a safe distance from other traffic ahead and alerting her if manual intervention is
required [52].

In our evaluation of the prototype consistency checking tool, two teams emulated an
OEM and a supplier. The “OEM” team created a functional architecture for a truck and
submitted a functional model of the ACC (Figure 4.12a) to the “supplier” team. The
“supplier” team elaborated the ACC software model (Figure 4.12b) and created a running
ACC prototype.

In the real life automotive modeling case, at this phase the supplier software would be
integrated to the ACC by the OEM and tested thoroughly.

Although ACC subsystem works correctly according to the OEM specification, the ACC
software model created by the “supplier” team is inconsistent with the functional model
provided by the “OEM” team. Indeed, using the prototype consistency checking tool with
Tools > Check Model, the absence relation between Driveline and AdaptiveCCSystem and
the divergence relations between ACC Controller and ACC UI, and Driveline and Radar
are detected. These relations are missing in the functional view shown in Figure 4.12a.
The evaluation was carried out using our Java plugin integrated into the IBM Rational
Rhapsody on an Intel Core i5 CPU @2.40GHz with 4GB (3.24GB available for the IBM
Rational Rhapsody) and 32-bit Windows 7 Enterprise. Running the consistency check by
selecting the Tools > Check Model command and listing of error notification in a bottom
frame takes approximately 100 milliseconds (measured as an average over 20 runs).

Early consistency detection by the prototype tool was considered useful by both

72 Formalizing A Correspondence Rule for Automotive Architecture Views

(a) ACC functional view

(b) ACC software view

Figure 4.12: Consistency checking between functional and software views of the ACC
system

4.6. Related Work 73

teams. The team members appreciated that the consistency checks are executed only
when specifically invoked by the architect (on demand). This is in sharp contrast with
a recommendation of Rosik, Buckley and Ali Babar [198] who argue that consistency
errors should be reported continuously during development. Consistency detection can be
carried out when trying to store the model in a project repository as well. It may prevent
storing inconsistent models or records the inconsistencies in the repository.

4.6 Related Work

Our approach is inspired by language-neutral mechanisms [34,131,165]. Muskens et.al [165]
describes generic consistency checking between software views compared to the approach
proposed by Romero et.al [196,197]. OCL is used to implement the correspondence rules
in this approach. However, in this approach, views are expressed as UML models which
are not widely used in the automotive architectural modeling. Our approach extends this
method by enabling a technique to specify intentional correspondences for automotive
architecture modeling.

In their overview of UML consistency management, Elaasar and Briand [76] describe
viewpoint unification to transform one UML view to another. Since different UML diagram
types contain different sorts of information, this process often resulted in information
loss in the transformed diagrams. Such transformation-based consistency approaches
are employed by many authors [42, 143, 216]. However, the desire of the researchers to
keep the operation generic for many domains and diagram types results in only basic
consistency rules. For example, a rule may guarantee that classes with a certain name
exists. Because we consider only the refinement correspondence, more powerful rules can
be formulated.

In the UML Analyzer tool [73], Egyed presents a rule-based approach to abstract from
entities and relations which exist in a refinement model, resulting in a scalable consistency
checking tool [74]. Furthermore it was found to be beneficial for both performance and
usability to separate the transformation (abstraction) phase from the consistency checking
phase. However, the rules are limited to UML, making them not directly applicable to
automotive ADLs. Furthermore, the rule format does not lend itself to generalization, in
contrast to a generic mathematical definition for consistency. Some authors choose to
translate architectural diagrams to an intermediate language, for example XMI [130,246],
to take advantage of the existing power to express consistency rules available in those
languages. Such representations are however considerably less intuitive, whereas using a
graph representation can already maintain the structure and information present in most
automotive ADLs while requiring a less radical model transformation.

In the hierarchical reflexion model [129], relations that exist in a parent model are
checked to exist in a lifted model which has been derived from source code. This approach
is useful because it can equally be applied to check two hierarchical models against
each other. It is also highly intuitive and results in few false positives [125]. Previous
work in automotive ADL consistency has adapted the reflexion model to the automotive
domain [60]. There, multiple levels of automotive models are considered. Furthermore,
the research presented here extends the consistency checking approach introduced in [60]
by providing more sound consistency rules for the functional and software views.

74 Formalizing A Correspondence Rule for Automotive Architecture Views

4.7 Conclusion and Future Work

Although consistency issues between architecture views have been tackled before in the
software industry, there is still a need to develop a method to check the consistency
between different architecture views of OEMs and suppliers. Therefore, in this chapter,
we addressed the research question RQ2 by formalizing a correspondence rule between
automotive architecture views and by implementing it in a prototype tool. We focus
on the refinement correspondence between functional and software views, where the
functional models are refined by adding more details in the software view. The revised
definition for consistency proposed here requires only that an ordering be imposed on the
relations available in a given ADL, allowing it to be easily used with many automotive
ADLs. A prototype tool was then developed for IBM Rational Rhapsody which can
perform this consistency checking between functional and software views. The consistency
checking approach and the prototype tool were evaluated in the scope of an Adaptive
Cruise Control modeling among two separate teams emulating an OEM and automotive
supplier. The early consistency detection by the prototype tool was considered useful by
both teams.

Future work may consider improving the prototype tool by extending the correspon-
dence rules and carrying out a comprehensive case study in an industrial setting. Support
for consistency checking between the other automotive views identified in Chapter 2
is also needed. Furthermore, reverse engineering source code to create architectural
models at different architectural views is valuable. The reverse engineered architectural
model can be used to check consistency between other architectural models. For this
purpose, reverse engineering methods like system grokking technology [55] can be used
to extract hierarchical state machines from the source code of an embedded application.
Furthermore, model-based development using automotive ADLs is a young field, where
the language specification or metamodel of architectural models evolve in short period
of time, which causes model co-evolution problem. Syntax-driven model co-evolution
methods [231] can be used to tackle the ADL co-evolution issue.

Chapter 5

Modularity Analysis of Automotive Control Software

In this chapter, we define metrics to assess the modularity of Simulink models. The modu-
larity metrics are validated in two phases. In the first phase, the modularity measurement
is compared to the experts’ evaluation of system modularity. In the second phase, we
studied the relationship between the metric values and the number of defects recorded in
the problem report. We have observed that a high value of hierarchal levels frequently
correlates to a high number of defects. A Java tool developed to measure these metrics
interfaces with a visualization tool to facilitate the maintenance of the Simulink models.

5.1 Introduction

Modularity is a well-known concept since the introduction of the initial definition of
modular product design in 1965 [220]. It was defined as a way to design a product
consisting of reusable parts. It should allow the combinations of modular parts to create
new products [220]. Many different types of usage of modularity exist, which may have
contributed to making modularity an overloaded concept [221]. In the automotive software
engineering field, the definition of module and modularity definitions also vary. Therefore,
we elaborate these definitions below in the context of automotive software engineering.

According to the Oxford Dictionary of English, the origin of module in the senses
“allotted scale” and “plan, model” goes back to the 16th century, and may have originated
from the Latin word modulus. Although the modulus was a measure of length coming
from ancient time [202], it was associated with a building block concept during the
Bauhaus era [160]. The building blocks were functional units in buildings (e.g., kitchen,
bathroom, and living room) and were used to create buildings in more efficient way by
standardization and prefabricated materials [160]. Even though the module was only
related to the geometry of the interface and used even today as a standard measure of
length in architecture and construction, the concepts of modules and building blocks
have merged and are used as both specifications of interface and functionality in other
fields [160]. Although the concept module is more frequently applied in automotive
software engineering than building blocks, different definitions of the module concept

76 Modularity Analysis of Automotive Control Software

V
e

h
ic

le
 S

y
st

e
m

 L
e

v
e

l
V

e
h

ic
le

 S
u

b
sy

st
e

m

Le
v

e
l

H
a

rd
w

a
re

/E
C

U

Le
v

e
l

M
ic

ro
co

n
tr

o
ll

e
r

Le
v

e
l

S
o

ft
w

a
re

Le
v

e
l

Control Module

e.g. Engine Control

Software Module

e.g. Engine Software

Functional Module

e.g. Powertrain

Hardware Module

e.g. Engine ECU

Figure 5.1: Module concepts in automotive electronics system. The illustration of system
levels adapted from [208].

exist. For example, a module is defined as a group of components, physically close to each
other that are both assembled and tested outside the facilities and can be assembled into
the car [178]. A module is also defined as a software component of software functional
architecture [208]. These varying definitions are due to different stakeholders defining the
module for a specific system level illustrated by Figure 5.1: the first example definition is
for the vehicle system level, while the latter is defined for the software level. It is important
to have a common definition of the notion module to fully benefit from the advantages of
modular design, which enable growth and innovation as demonstrated in other industries

5.1. Introduction 77

e.g., computer industry which has embraced the modular-design approach.
We adapt the definition of a module from [160] for the automotive context:

Definition 1. A module is a self-contained functional unit relative to the system level of
which it is part and has interfaces to enable composition.

This definition clarifies the module used at different levels such as functional modules
are assembled to build a vehicle at the Vehicle System Level. A functional module is
composed of hardware modules in the Hardware/Electronic Control Unit (ECU) Level as
illustrated in Figure 5.1.

The activity to structure the system in modules is called modularization. In automotive
industry, the initial notion of modularization is started in 1914 when the standardized
sizes for automobiles were initiated [124]. Since the introduction of the modular product
design approach in 1965, various modularization definitions have been developed. In
automotive industry, there are four different modularization types [124]:

• Modularization-in-design is defined as the activity to decompose a vehicle into
constituent design parts. A goal of an Original Equipment Manufacturer (OEM) is
to minimize communication efforts between stakeholders, e.g., managers, designers,
and developers, and to reduce development time and cost.

• Modularization-in-production is the activity to compose predefined components into
modules with the subsequent incorporation into main assembly line. OEMs reduce
production complexity, cost, and lead-time with this process.

• Modularization-in-use is defined as decomposition of a vehicle in order to satisfy
consumers’ requirements such as ease of use, ease of maintenance, low initial and
replacement costs, and individuality.

• Modularization-in-retirement is a new modularization process to easily separate
hazardous materials. Governments drive this process to enable compliance with
environmental regulations and improve recycling and re-use efforts for used vehicles.

In this research, we focus on the modularization-in-design and will call it as modu-
larization for the remainder of the thesis. Modularization should be applied cautiously,

Figure 5.2: Evolution of automobile industry [124].

78 Modularity Analysis of Automotive Control Software

otherwise it may cause higher design and development costs [124]. Modularization will
become increasingly important for OEMs in their fight to stay globally competitive,
particularly as it has been predicted [124] that the structure of the automotive industry
will change from a vertically integrated structure into a horizontal structure as illustrated
in Figure 5.2. According to this trend, OEMs are expected to become brand and service
providers creating overall design and innovative concepts, while suppliers provide modules
or systems.

The modularization process creates a modular architecture instead of an integrated
architecture. In an integrated architecture, there is no clear divisions between modules.
In a modular architecture, any module can be replaced or added easily, which facilitates
the maintainability of the system. This is in alignment with the following definition of
modularity in the ISO/IEC SQuaRe quality standard [115], in which modularity is one of
the maintainability sub-characteristics.

Definition 2. Modularity is a degree to which a system is composed of modules such
that a change to one module has minimal impact on other modules.

Based on this definition, we elaborate further on the modularity concept of Simulink
in Section 5.3.1. Simulink is one of the most used languages at automotive companies
and OEMs use Simulink more than imperative programming languages and formal
languages [15]. The research objective, method, and chapter outline are presented in the
subsections below.

5.1.1 Research Objective

Our research objective is to develop a method and evaluate the modularity of automotive
software models. Although this implies that the method needs to be applicable to all
levels of automotive electronics system shown in Figure 5.1, we limit our scope to the
modularity of Simulink models for the following reasons:

• Simulink usage: Automotive control software is commonly developed using model-
based design tools like Simulink and Stateflow1 together with automatic code
generation tools.

• Simulink model volume: Large automotive Simulink models can consist of up to
15,000 building blocks, 700 subsystems and 16 hierarchical levels [224]. A hierarchal
level represents a structure, where a lower layer represents the subsystem in a more
detailed way.

• Need for modularity evaluation: For automotive software, modularity is recog-
nized as being paramount since changing or reusing non-modular software is very
costly [185]. Therefore, evaluating the quality of Simulink models has become more
important for automotive manufacturers due to the increasing complexity of the
models and stricter safety-related requirements [107].

• Lack of modularity evaluation: Although there are a plethora of source code
quality analysis tools available, methods to evaluate the modularity of Simulink
models are still limited. Current quality assessment techniques such as the Math-
works Automotive Advisory Board (MAAB) guidelines and Model Advisor from

1http://www.mathworks.com/

http://www.mathworks.com/

5.1. Introduction 79

Mathworks focus mainly on configuration settings and guideline conformance rather
than model quality [107].

Thus, in this chapter, we address the research question RQ3.

RQ3: How can the quality of automotive software models be defined and
evaluated?

Applying Definition 2 on modularity in practice requires identification and mapping
of notions in Simulink models. Therefore, we elaborate on the modularity concept of
Simulink models and introduce the modularity metrics in this chapter. Furthermore, to
facilitate the application of the approach by industry practitioners, we suggest visualization
of Simulink modularity metrics using the SQuAVisiT tool [232].

5.1.2 Research Method and Chapter Outline

We have followed the Goal Question Metrics (GQM) paradigm of the software measurement
field to define modularity metrics [22]. Following the six-step GQM process, we carried
out the following steps:

1. Developed a goal and associated measurement goal for improving quality i.e., modu-
larity. Our goal was to define metrics for modularity of Simulink models for the
purpose of evaluating their indicative power of the quality of the Simulink mod-
els. The context of our research is early modularity assessment from the point of
view of stakeholders i.e., control system/software architects, designers, and control
engineers.

2. Generated questions that define the goal in a quantifiable way. We derive the
following question from this goal: “Which metrics can serve as indicators to assess
the modularity of Simulink models?” Posing this question to practitioners could,
however, bias their answers as they might have been tempted to give answers that
might be perceived as desirable by the researcher. Therefore, we have analyzed
general quality reviews of third-party Simulink models carried out by control system
architects and engineers of an OEM.

3. Specified the measures needed to be collected to answer those questions and tracked
process and product conformance to the goals. We specified metrics after analyzing
Simulink characteristics and modularity aspects of Simulink models. We conducted
a literature study related to modularity metrics for other languages e.g., object-
oriented and procedural languages, and other metrics defined for Simulink models.
The literature study is discussed in Section 5.2. Simulink modularity concept and
metrics are presented in Section 5.3.

4. Developed mechanisms for data collection. We developed a tool to measure modu-
larity metrics of Simulink models.

5. Collected, validated and analyzed the data in real time to provide feedback to projects
for corrective action. We carried out qualitative and quantitative analyses using
industrial applications to validate the metrics. Qualitative analysis helped assess if
the modularity metrics measure the modularity as expected by experts. Quantitative
analysis helped to assess if modularity metrics can be applied as a mechanism for a
fault prediction. Modularity metrics validation is discussed in Section 5.4.

80 Modularity Analysis of Automotive Control Software

6. Analyzed the Simulink models in a post mortem fashion to assess conformance to
the goals and to make recommendations for future improvements. We applied visual
analytics approach to facilitate the data analysis process. Section 5.5 elaborates
this step.

5.2 Related work

A quality model based on ISO/IEC 9126 standard for assessing the internal quality of
Simulink models is introduced by W. Hu et al. [107]. Six quality sub-characteristics of
analysability, changeability, stability, testability, understandability, and adaptability are
selected for the quality model together with respective metrics. However, modularity
sub-characteristic and respective metrics are not explicitly addressed by this quality model.
A metric suite to identify the most complex and instable parts of the Simulink system is
introduced by Menkhaus and Andrich [158]. It measures McCabe cyclomatic complexity,
instability of blocks inspired by Martin’s afferent and efferent connections between blocks
(based on the interaction of blocks with other blocks), and instability of system accounting
influences of the complete system on a block. Although afferent and efferent connections
between blocks are used in the metrics of instability of blocks, it is not directly related to
modularity. The objective of this metric suite is to guide the analysis team during the risk
assessment of failure modes rather than providing an insight into improving modularity
of the system or subsystem.

Mathworks provide quality related tools like Modeling Metric Tool [4, 105] and sldiag-
nostics [152] to quantitatively measure the content of Simulink models as well as Stateflow
models to improve the productivity and quality of model development, e.g., model size,
complexity, and defect densities. Quality analysis metrics to measure instability, abstract-
ness, and complexity of Simulink models are introduced by Olszewska (Pla֒ska) [173,174].
However, the modularity metrics are not explicitly addressed by the MathWorks tools
and Olszewska’s metrics.

Modularity metrics as part of software architecture metrics have been introduced by
Ahrens et al. [10]. Architectural connectivity metric referred to as directed connectivity is
introduced to provide a unifying basis for coupling and cohesion by Bril and Postma [35].
However, validation of these architectural metrics is not provided. Existing methods
for measuring modularity are mostly intended for imperative and object-oriented (OO)
software. These include Li and Henry’s OO metrics that measure maintainability, that
is, the number of methods invocations in class’s implementation, the number of abstract
data types used in the measured class and defined in another class of the system [140].
Other methods include Chidamber and Kemerer’s metrics suite for OO design, i.e.,
weighted methods per class, depth of inheritance, number of children, coupling between
objects, response for a class, lack of cohesion of methods [47], Martin’s OO design quality
metrics [148, 211], Lorenz and Kidd’s OO software metrics [144], and design quality
metrics of OO software systems of Abreu et al. [36]. Among these metrics, coupling and
cohesion are widely recognized as modularity metrics. Coupling measures the degree
of interdependence between software modules and cohesion measures the connectivity
between the software modules that are grouped together in the same cluster (subsystem).

In our work we have proposed a series of modularity metrics for Simulink subsystems.
Subsystems can be composed of larger subsystems, therefore, rather than evaluating
the larger ones directly, one could infer the metrics values of the larger subsystems by
aggregating the corresponding metric values of the smaller subsystems of which they are

5.3. Modularity Metrics in Simulink 81

Model Diagram

Subsystem

-isAtomic : bool

Block

BasicSubsystem

Port

OutPortInPort

BusSignal-_1

1

-_1

1

1

11
1

1 1

Figure 5.3: A simplified metamodel that describes the structure of Simulink models
(revised from [29]).

composed. This approach would be related to the metrics aggregation problem as known
in software maintenance. While the most common aggregation technique, the mean,
represents a central tendency and as such is unreliable for heavily skewed distributions,
typical for software metrics [235], recently applied to metrics aggregation econometric
inequality indices [163,212,236]. More profound study of metrics aggregation for Simulink
models is considered as a future work.

5.3 Modularity Metrics in Simulink

Main concepts of a Simulink model and the modularity related issues are discussed in
Section 5.3.1. Modularity metrics are presented in Section 5.3.2.

5.3.1 Simulink model

MATLAB Simulink is a visual modeling language and tool for developing, simulating and
analyzing multi-domain dynamic systems2. A metamodel of Simulink [29] is presented
in Figure 5.3. A Simulink Model contains a Diagram, which consists of a set of Blocks
(e.g., Transmission model in Figure 5.4). A block can be connected to another block
by a Signal or a Bus via its Ports. A block receives its data or control signals via its
InPorts (Input Ports) and provides its data or control signals via its OutPorts (Output
Ports). For the sake of diagram readability or understandability, (related) signals are
frequently grouped into Buses. Subsystems are blocks that contain a Simulink diagram
(e.g., TransmissionRatio subsystem is opened in a separate window in Figure 5.4). The
subsystem concept enables hierarchical modeling, i.e., subsystems can contain other
subsystems. We introduced a special kind of subsystem as a BasicSubsystem, if it does
not contain other subsystems (e.g., TransmissionRatio is also a basic subsystem). A
subsystem can be an Atomic subsystem, which means blocks within an atomic subsystem
are grouped together in the execution order. Any subsystem including a basic subsystem
can be an atomic subsystem. We revised the Simulink metamodel by adding these concepts
to it as illustrated in Figure 5.4.

2http://www.mathworks.com/products/simulink/

http://www.mathworks.com/products/simulink/

82 Modularity Analysis of Automotive Control Software

Figure 5.4: Simulink example model [110].

Figure 5.4 illustrates the Transmission model, which contains the Transmission di-
agram. Blocks, basic elements of a Simulink diagram, communicate via input (InPort)
and output (OutPort) ports: e.g.,, Tin is an input port and Tout is an output port of
TransmissionRatio. Simulink blocks have respective visual representations e.g., Torque-
Converter has a circle inside to represent its behavior and Multiply operation or block
has a multiplication inside the block.

Simulink blocks are categorized into non-virtual and virtual blocks [110]. Non-virtual
blocks are active blocks which influence model’s behavior in the simulation of a system.
Virtual blocks are used to organize the model graphically e.g., BusSelector, BusCreator,
and Subsystem (if the block is not conditionally executed) as illustrated in Figure 5.5. If
a block can be both virtual and non-virtual depending on the conditions, it is called a
conditionally virtual block.

Simulink diagram contains data and control flow as illustrated in Figure 5.5. Signals
are the streams of values that appear at the outputs (OutPorts) of blocks and travel
following the arrows through the connected blocks, when a model is simulated. If a signal
is used to initiate execution of another block (e.g., a function call or Action Subsystem -
a subsystem with an Action port, which allows for block execution based on conditional
inputs from an If block or Switch Case block [110]), it is called a control signal. A
dash-dot line is used to represent the control signal in Simulink when an execution is
started. As mentioned above, a set of signals can be grouped into a Signal Bus. A Signal

Figure 5.5: Simulink signals.

5.3. Modularity Metrics in Simulink 83

Bus is a virtual signal. Simulink uses thicker signals to display signal buses as shown in
Figure 5.5. A virtual block, BusCreator1, combines the input signals and a virtual block,
BusSelector1, selects signals from an incoming bus.

Applying the modularity definition of Section 5.1 to Simulink concepts, the module
is mapped to a Simulink subsystem. Therefore, modularity for Simulink is redefined as
following:

Definition 3. Simulink modularity is defined as the degree to which a system is com-
posed of subsystems such that a change to one subsystem has minimal impact on other
subsystems.

This definition means that a modular (sub-)system should contain highly related
blocks (high cohesion) and dependencies with other subsystems should be minimal
(low coupling). These are widely recognized modularity aspects from other disciplines,
for example, object-oriented and procedural programming. To investigate additional
modularity aspects specific to Simulink models, we investigated proprietary review reports
of Simulink models from an automotive company.

From our study of proprietary review reports, we identified many issues, which hinder
modularity of Simulink models. In the review reports of the Simulink models, domain
experts (e.g., system architects, designers, engineers) identify architectural problems and
provide modeling comments. In the review report, thirty of ninety seven problems are
directly or indirectly related to modularity. In Table 5.1, we list key modularity-related
quality issues identified by the experts and the derived metrics, which are elaborated in
Section 5.3.2.

Issues Description Derived metrics
Too many nested sub-
systems

Too many hierarchical levels of a
subsystem

Depth of a Subsystem
(DoS)

Too many input (bus)
signals

Extensive use of the large input bus
signals

Number of Input Sig-
nals (NIS)

Unbalanced decompo-
sition of Subsystems

Subsystems (blocks) that should be
combined into larger subsystems

Number of Contained
Subsystems (NCS)

Model clones Similar or duplicated functionality See Chapter 7

Table 5.1: Simulink modularity-related issues.

In the following Section 5.3.2, we define modularity metrics for Simulink models based
on the characteristics of Simulink models and elaborate the metrics defined for the issues
highlighted in the Table 5.1. The issue of similar or duplicated functionality (model
clones) is tackled in Chapter 7.

5.3.2 Metric definitions

Building on the long-standing tradition of modularity research in software engineering [47,
180,207], we have extracted metrics from Table 5.1 with those reflecting common software
engineering guidelines. These include keeping a low number of connections between
subsystems (low coupling), systems should contain similar or related functionalities (high
cohesion) and communication between subsystems should be limited (narrow interfaces).
In Table 5.2, the summary of modularity metrics for Simulink models is provided. The
interface granularity metrics are integrated into the coupling metrics. The definitions are
discussed in detail under two main categories.

84 Modularity Analysis of Automotive Control Software

Coupling metrics
CBS Coupling Between Subsystems
DSC Degree of Subsystem Coupling
NIP Number of Input Ports
NOP Number of Output Ports
NIS Number of Input Signals
NOS Number of Output Signals
Cohesion metrics
SCM Subsystem Cohesion Metric
SD Signal Density
SZ Subsystem size metric
Nesting metrics
DoS Depth of a Subsystem
NCS Number of Contained Subsystems
NBS Number of Basic Subsystems

Table 5.2: Modularity metrics for Simulink model.

Coupling metric definition Coupling is defined as the degree of interdependence
between modules [47,245]. In the context of Simulink models, two subsystems are coupled
if, and only if, at least one of them uses a signal of the other. We define the following
inter-subsystem metrics to measure the structure of the interconnections between Simulink
subsystems:

• CBS (Coupling Between Subsystems): To measure CBS for a given subsystem, S,
we count the number of subsystems coupled to the subsystem. FanIn(S) counts
the number of subsystems providing signals to the subsystem S and FanOut(S)
counts the number of subsystems receiving (using) signals from the subsystem S.
The reason to count FanIn and FanOut subsystems instead of other operational
blocks (e.g., sum, gain, merge, inport, outport) is that the subsystems are subject
to change and influence the coupled subsystem rather than standard operational
blocks. In Figure 5.6, we highlight example FanIn and FanOut subsystems of an
EngineDynamics subsystem, which is in the sldemo engine model [110].

CBS (S) = FanIn(S)+ FanOut (S)

CBS is close in spirit to Coupling Between Object classes [47], an object-oriented
metrics referring to the total number of methods of a class, which use methods or
instance variables of another class.

• DSC (Degree of Subsystem Coupling): DSC encompasses data and control flow
coupling, global coupling, and environmental coupling. We refer to data flow
coupling if the subsystems are coupled via data signals, and control flow coupling if
the signal type is control (triggers an action as explained above).

In a Simulink model, a DataStoreMemory block is used to store a global variable. It
defines a memory region usable by DataStoreRead and DataStoreWrite blocks that
specify the same data store name [110]. The number of DataStoreMemory blocks of
the subsystem represents the number of global variables of the subsystem. Global

5.3. Modularity Metrics in Simulink 85

Figure 5.6: FanIn and FanOut subsystems of the subsystem Engine Dynamics.

coupling involves global variables. Environmental coupling refers to the coupled
subsystems of the subsystem of interest i.e., FanIn and FanOut subsystems.

DSC(S) = 1−
1

ds + 2× cs + 2× gs + es

where, ds is number of data signals, cs is number of control signals, gs is number
of global variables, es refers to FanIn(S)+ FanOut (S) (same as the CBS metric).
DSC is derived from the coupling metric that encompasses data and control flow
coupling, global coupling, and environmental coupling [65]. Since CBS metric is
the same as the environmental metric, the DSC and CBS metrics are not truly
independent. However, we wanted to define the metrics first, and then select the
favorable metrics based on the metrics evaluation.

• NIP (Number of input Ports): NIP counts the number of input ports of a subsystem.
For example, in Figure 5.4, the subsystem TranmissionRatio has three input ports,
NIP (TranmissionRatio) = 3, namely Tin, Gear, and Nout.

• NOP (Number of output Ports): NOP counts the number of output ports of a
subsystem. For example, in Figure 5.4, the subsystem TranmissionRatio has two
output ports, NOP (TranmissionRatio) = 2, namely Tout and Nin.

• NIS (Number of input Signals): NIS counts the total number of input signals
including nested bus signals of a subsystem. Figure 5.7 illustrates a Simulink
subsystem, which has a single input port (NIP = 1), which transfers a nested signal
bus. In this case, NIS = 6 counting all bus signals including (nested) bus signal
itself (two signals with thicker dashed lines) and bus signals (<b1>, <b2>, <a1>,
<a2>).

• NOS (Number of output Signals): NOS measures the number of output signals
including nested bus signals of a subsystem. Buses can be nested to any depth using

86 Modularity Analysis of Automotive Control Software

Figure 5.7: Simulink nested input signal [110].

a BusCreator block. For example, in Figure 5.8 the Bus1 signal combines the Bus2
nested bus signal and the motor5 signal.

The example model in Figure 5.8 has a single output port NOP = 1 and NOS = 8
counting all bus signals including (nested) bus signals.

Cohesion metric definition Cohesion refers to the degree to which the elements of a
module belong together [245]. In the context of Simulink models, cohesion refers to the
inter-relation of the blocks including subsystems. Below we define these metrics.

• For the cohesion metric, we introduce Block-Signal Mapping (BSM) matrix. The
BSM is a binary n × m matrix, where n is the number of blocks and m is the
number of unique signals e.g., s1 and s2 in Figure 5.9 (a). When a signal is forked

Figure 5.8: Simulink nested input signal [110].

5.3. Modularity Metrics in Simulink 87

(a) Subsystem A using all signals.

(b) Subsystem B with an unrelated subsystem.

Figure 5.9: Example cohesive and in-cohesive subsystems.

and used by several blocks, we refer to only one of them as a unique signal. The
BSM matrix has rows indexed by the blocks and columns indexed by the signals,
1 6 i 6 n, 1 6 j 6 m:

oij =

{
1 if the ith block uses the jth signal,

0 otherwise.

Figure 5.9 illustrates an example cohesive and in-cohesive subsystems. To construct
the BSM matrix, the model of interest is analyzed by tracing the signals which are
used by the subsystems or blocks of the model. The BSM matrix for the Subsystem
A is obtained in Table 5.3. The signals s1 and s2 are used by all the subsystems, p1,
p2, and p3 of Subsystem A.

Table 5.3: A BSM matrix for the (a) Subsystem A and (b) Subsystem B.

(a)

s1 s2
p1 1 1
p2 1 1
p3 1 1

(b)

s1 s2
p1 0 1
p2 1 0
p3 0 0

We define the Subsystem Cohesion Metric (SCM) for a subsystem S:

88 Modularity Analysis of Automotive Control Software

SCM(S) =

0 if (m = 0),

1 if (σ = mn and (m > 0 and n > 0)),
σ

mn
otherwise.

where, σ =

m∑

i=1

n∑

j=1

oij , n is the number of blocks and m is the number of unique signals.

Note that (n = 0 and m > 0) condition is not possible, because signals need to be
connected between blocks in Simulink.

We considered several Simulink patterns to define the SCM metric:

– Although it is meaningless, a subsystem S can be empty (with no signals and
blocks), n = 0 and m = 0. In this case, the subsystem is considered to be
in-cohesive, SCM(S) = 0.

– A subsystem may contain only blocks without signals connected to them, n > 0
and m = 0. In this case, the subsystem is also considered in-cohesive, thus
SCM(S) = 0.

– A subsystem may contain only InPorts and OutPorts, or virtual blocks e.g.,
BusCreator, BusSelector. Then count all the ports as blocks as well and include
in the BSM.

– If a signal is used multiple times by the same block, then the BSM also contains
value 1 for the block and signal used.

– If all the subsystems are related as e.g., a Subsystem A in Figure 5.9, then the
cohesion value for such a subsystem must be the maximum value 1.

For the example Subsystem A and B, the SCM(SubsystemA) = 3+3
2×3 = 1 and

SCM(SubsystemB) = 1+1
2×3 ≈ 0.33 respectively. According to the inter-relation

of the blocks, Subsystem A has more related blocks than Subsystem B given the
number of signal relations between subsystems. The SCM(S) values confirms that
the Subsystem A is indeed more cohesive than the Subsystem B.

• SD (Signal Density): SD provides insight into the signal density of the subsystem.

SD =
k

n

where n is the number of blocks and k is the total number of signals.

• SZ (Size): SZ measures subsystem size by calculating total number of contained
blocks (including subsystems) and the total number of signals.

SZ = n+ k

where n is the number of blocks and k is the total number of signals.

5.4. Metrics tool and evaluation 89

Nesting metric definition Subsystems are hierarchal, thus we measure additional
metrics to measure the subsystem size and its hierarchal depth.

• DoS (Depth of a subsystem): DoS is the maximum level the subsystem has until
its basic subsystems.

• NCS (Number of Contained Subsystems): NCS calculates the number of all the
contained subsystems at all hierarchical levels (including the intermediate subsys-
tems).

• NBS (Number of Basic Subsystems): NBS calculates the number of all the contained
basic subsystems at all hierarchical levels.

In the following section, we illustrate the tool that we have implemented to measure
the identified metrics on the Simulink models.

5.4 Metrics tool and evaluation

We implemented a tool that automatically collects the metrics defined in Section 5.3.2
from Simulink models. The tool uses a Java parser for Simulink MDL files of the ConQAT
open-source tool [49], which is an integrated toolkit for continuous monitoring quality
characteristics of software systems. Our tool reads Simulink MDL files with the standard
structural format and generates the metrics files with the list of subsystems and the
respective modularity metrics. In the following sub-sections, we discuss the results of the
evaluations that were carried out in two main phases.

5.4.1 Expert evaluation

The first part of the evaluation effort was based on an expert evaluation. To this end
we have randomly selected a number of subsystems of an industrial application and had
them evaluated by the domain experts using a scale of 1 to 10, 1 meaning worst and 10
meaning best modularity. We have opted for the 1–10 scale rather than more customary
five- or seven-point Likert scales [142], since the 1–10 scale is used in Dutch schools and
universities, and, hence, is familiar to the domain experts. The experts also provide the
reasoning for the scores they give to the subsystems.

The domain experts included one control engineer and five senior architects, who are
responsible for modeling automotive software within one OEM at different architectural
levels, ranging from functional architecture to Electrical/Electronic (E/E) architecture.
All the architects had a Master of Science (MSc) degree in mechanical or electrical
engineering and had more than 10 years experience in the automotive domain. One
architect had a PhD in mechanical engineering. The control engineer had an MSc degree
in mechanical engineering and had more than three years experience in the automotive
domain.

Results from the expert evaluation are summarized in Table 5.4 (left). For confiden-
tiality reasons we abbreviate the names of the subsystems. Similarly, for privacy reasons
we do not disclose the names of the experts. We observed, however, that for individual
subsystems the expert ratings are not always consistent with each other: e.g.,, EH is
ranked 3 by experts A and B and 7 by experts C and F. To gain a better insight into the
reasons for this discrepancy, we discussed it with the experts. Discussion revealed that
experts A, B and C interpreted modularity in terms of coupling, while experts D, E and

90 Modularity Analysis of Automotive Control Software

F interpreted modularity in terms of cohesion. Thus as shown in Table 5.4, we grouped
the experts evaluation by coupling (A to C) and cohesion (D to F).

Subsystem
Experts

ABC DEF
EH 3 3 7 5 5 7
ED 7 9 7 8 6 8
IDA 9 8 7 7 7 8
GS 7 6 7 7 6 8
TP 9 8 7 8 8 8
TS 3 7 1 7 7 7
BTL 9 8 7 8 8 7
CC 7 8 1 8 7 6
TSCA 9 8 7 8 8 8
TRC 7 8 5 7 8 3

BTL

EH

TSCA

TS

TP

Table 5.4: Expert review of selected subsystems of the industrial application and the
corresponding T̃-graph. Components missing from the T̃-graph are incomparable.

We start by comparing the evaluation of different subsystems. Traditionally, com-
parison of multiple groups follows a two-step approach: first, a global null hypothesis
is tested, and then multiple comparisons are used to test sub-hypotheses pertaining to
each pair of groups. The first step is commonly carried out by means of analysis of
variance (ANOVA) [99] or by using its non-parametric counterpart, the Kruskal-Wallis
one-way analysis of variance by ranks [103]. The second step uses pairwise t-tests or
their nonparametric counterparts, Wilcoxon-Mann-Whitney tests [242], with Bonferroni
correction [68,214]. Unfortunately, the global test null hypothesis may be rejected while
none of the sub-hypotheses are rejected, or vice versa [87]. Moreover, simulation studies
suggest that the Wilcoxon-Mann-Whitney test is not robust enough to examine unequal
population variances, particularly in the case of unequal sample size [247]. Therefore,
one-step approaches are required: such an approach should produce confidence intervals
which always lead to the same test decisions as the multiple comparisons. We have
used the recently proposed multiple contrast test procedure T̃ [126] in combination with

a T̃-graph [234]. Using the T̃-procedure for the “all pairs” (Tukey-type) contrast and

95% confidence level and inspecting the corresponding T̃-graph (Table 5.4 right) we can
conclude that the experts prefer BTL, TP and TSCA over EH, and TP and TSCA over
TS.

The T̃-procedure does not reveal consistent differences between the expert evaluations,
i.e., one cannot argue that one of the experts consistently gives higher/lower rankings
than another one. Therefore, we do not exclude any of the evaluations.

Figure 5.10 shows scatter plot diagrams of coupling metrics values and an average
experts’ evaluation based on coupling (Experts A to C in Table 5.4). Note that it was
discovered in the comments provided by the experts that experts (A-C) gave higher scores
to the subsystems with low coupling or lean interfaces and lower scores to subsystems
with high coupling or complicated interfaces. Therefore, high values of coupling metrics
indicate poor modularity according to experts evaluation based on coupling. In the
review comments of the domain experts, the list of subsystems with high coupling metrics
values (e.g., high values of DSC) indeed were identified as subsystems that are difficult
to maintain due to higher number of signals. Input processing subsystems, which are

5.4. Metrics tool and evaluation 91

●

●

●

●

●

●

●

●

●

●

●

0 1 2 3 4

0
2

4
6

8
1
0

CBS vs. Exp

CBS

E
x
p
_
C

o
u
p
lin

g

●

●

●

●

●

●

●

●

●

●

●

0.90 0.94 0.98

0
2

4
6

8
1
0

DSC vs. Exp

DSC

E
x
p
_
C

o
u
p
lin

g

●

●

●

●

●

●

●

●

●

●

●

0 2 4 6 8

0
2

4
6

8
1
0

NIP vs. Exp

NIP

E
x
p
_
C

o
u
p
lin

g

●

●

●

●

●

●

●

●

●

●

●

2 4 6 8 10 12

0
2

4
6

8
1
0

NOP vs. Exp

NOP

E
x
p
_
C

o
u
p
lin

g

●

●

●

●

●

●

●

●

●

●

●

0 20 40 60

0
2

4
6

8
1
0

NIS vs. Exp

NIS

E
x
p
_
C

o
u
p
lin

g

●

●

●

●

●

●

●

●

●

●

●

0 5 10 15 20 25 30

0
2

4
6

8
1
0

NOS vs. Exp

NOS

E
x
p
_
C

o
u
p
lin

g

Figure 5.10: Scatter plot diagrams of expert evaluation and coupling metrics.

intended for processing input signals and providing higher number of output signals have
high DSC value as well. Therefore, it is not necessary to take the metrics as absolute
indicators of poor modularity but rather as a facilitator of the maintenance process.

Figure 5.11 shows scatter plot diagrams of cohesion and nesting metrics values and an
average experts’ evaluation based on cohesion (Experts E to F in Table 5.4). Cohesion
and nesting metrics are less relevant, therefore the lines are not necessary. Experts gave
higher scores to the subsystems with high cohesion (grouping of related blocks). Therefore,
high values of cohesion metrics indicate high modularity according to experts evaluation
based on cohesion.

Table 5.5 presents the descriptive statistics for the metrics and expert evaluations.
The minimum, maximum, mean, and standard deviation are calculated for each metric
and evaluations. N is the number of subsystems. The large standard deviation for NIS,
NOS, and SZ metrics indicate that the chance for significant relationships between these
metrics and other metrics is narrow. In the next subsection, we determine the statistically
independent metrics.

Before determining the relation between the modularity metrics and the number
of faults in Section 5.4.2, we carried out the Kendall’s τ correlation test [83] on the
modularity metrics to detect the statistically independent metrics for measuring coupling,
cohesion and nesting aspects. CBS and NOP have a positive correlation τ = 0.741 at the
significant level 0.010. DSC metric is related to interface metrics i.e., for NOP and NIS,
τ = 0.544 (p-value = 0.042) and τ = 0.523 (p-value = 0.038) respectively. DSC is related
to SCM, SD, and SZ metrics, τ = −0.822 (p-value = 0.012), τ = 0.600 (p-value = 0.016),
and τ = 0.956 (p-value = 0.0) respectively. NIP and NOS have a negative correlation with
the expert coupling value τ = −0.780 (p-value = 0.005), τ = −0.709 (p-value = 0.009).
Therefore, as the statistically independent metric for measuring coupling aspect, DSC is

92 Modularity Analysis of Automotive Control Software

●

●

●

●●

●

●

●

●

●

●

0.05 0.10 0.15 0.20

0
2

4
6

8
1
0

SCM vs. Exp

SCM

E
x
p
_
C

o
h
e
s
io

n

●

●

●

● ●

●

●

●

●

●

●

1 2 3 4 5 6

0
2

4
6

8
1
0

DoS vs. Exp

DoS

E
x
p
_
C

o
h
e
s
io

n

●

●

●

●●

●

●

●

●

●

●

0 5 10 15

0
2

4
6

8
1
0

NCS vs. Exp

NCS

E
x
p
_
C

o
h
e
s
io

n

●

●

●

●●

●

●

●

●

●

●

0 2 4 6 8 10

0
2

4
6

8
1
0

NBS vs. Exp

NBS

E
x
p
_
C

o
h
e
s
io

n

●

●

●

●●

●

●

●

●

●

●

1.0 1.5 2.0 2.5

0
2

4
6

8
1
0

SD vs. Exp

SD

E
x
p
_
C

o
h
e
s
io

n

●

●

●

● ●

●

●

●

●

●

●

50 100 150 200

0
2

4
6

8
1
0

SZ vs. Exp

SZ

E
x
p
_
C

o
h
e
s
io

n

Figure 5.11: Scatter plot diagrams of expert evaluation and cohesion and nesting metrics.

selected.
According to the Kendall’s τ correlation analysis on the cohesion-related metrics to

identify the statistically independent cohesion metrics, SCM and SZ have a negative
correlation, τ = −0.778 (p-value = 0.002). NCS and NBS have positive correlation,
τ = 0.766 (p-value = 0.004). Therefore, we exclude the NBS, SD and SZ metrics. Hence,
as the statistically independent metric for measuring cohesion aspect, SCM, DoS, and
NCS are selected.

5.4.2 Metrics evaluation

In this evaluation phase, we carried out a correlation analysis to detect if there is a relation
between modularity metrics and the number of faults. A fault is an incorrect program
step, process, or data definition in a computer program [84]. We use the term fault, but
exclude “incorrect step and process” from consideration to an error in modeling or logic
that cause the system to malfunction or to produce incorrect results. It is important to
measure model defects to keep control over the maintenance [27]. As stated earlier, our
main goal was to identify modularity aspects that hinder the quality of Simulink models.
By obtaining fault information and analyzing the relation of faults to modularity metrics,
we aim to determine quality and furthermore predict the fault-proneness.

We used the fault data collected from the second industrial application consisting of
40 subsystems, of which 20 subsystems contain faults. The Kendall’s τ correlation test is
used as in Section 5.4.1. This is because there are a number of tied values, therefore it is
important to establish if any modularity metric and the number of faults are statistically
dependent rather than simply measuring the degree of the linear relationship between
the variables. Figure 5.6 shows the correlations between the modularity metrics and the

5.4. Metrics tool and evaluation 93

Table 5.5: Descriptive statistics.

number of faults (NrDef).
The correlation coefficient calculates the strength and direction of the correlation. A

positive correlation coefficient indicates a positive relation between the metrics and defects,
while a negative correlation coefficient indicates a negative relation. The significance level
indicates the probability of such a result occurring due to a coincidence. We accept a
common significance level of 0.010.

As presented in Table 5.6, the DoS and NCS metrics are positively correlated with the
number of faults. Based on this preliminary analysis, we can conclude that the high value
of higher hierarchal levels and complex models may imply a more fault-prone system.
This is in line with the studies from other programming paradigms, which show that there
is a strong correlation between software maintenance effort and software metrics in the
procedural and object-oriented paradigms [140,195].

As the preliminary analyses concluded that the degree of a subsystem coupling (DSC),
subsystem cohesion metric (SCM), depth of a subsystem (DoS), and number of contained
subsystems (NCS) are statistically independent metrics to evaluate modularity of Simulink
models, it is important to visualize these metrics in an efficient manner.

5.4.3 Threats to Validity

Modularity metrics are developed in a proprietary setting. Therefore, applying this model
to a generic automotive system needs further investigation. A quality model and more
than 80 metrics are introduced in Scheible’s research [209], therefore in recent years there
is active research on the development of a quality model for automotive industry. This
also requires further collaboration between OEMs, suppliers, and tool vendors.

In addition, the selection of metrics can be too practical, since the metrics were defined
based on the literature and inputs from domain experts. The domain experts involved in
the qualitative analysis evaluated the models based on a 1-10 scale and we used the mean
of the evaluations for each of the quality attributes. Further empirical studies are needed
to validate the selection and application of metrics.

The number of domain experts involved in the evaluation is limited due to their

94 Modularity Analysis of Automotive Control Software

Table 5.6: Kendall’s τ correlation analysis.

restricted time and availability for the evaluation of the software quality. This is a
potential threat to the validity. However, to increase the number of participants for
the evaluation task by involving students or engineers with less expertise may not be
representative for practical model engineering tasks.

5.5 Visualization tool

To visualize metrics, we selected SQuAVisiT (Software Quality Assessment and Visu-
alization Toolset) [232] as it is a flexible tool for visual software analytics of multiple
programming languages. SQuAVisiT is intended to support a software development team
(including developers and maintainers) carrying out quality assurance and maintenance
tasks. Our metrics tool interfaces with the SQuAVisiT toolset.

In Figure 5.12, SQuAVisiT visualizes the modularity and dependency of an industrial
application that we studied in Section 5.4.1. (The subsystem names here and elsewhere
are blurred up for confidentiality reasons.) The radial view was first introduced by
Holten [104] and extended in SolidSX [192] and the SQuAVisiT toolset [201]. In this
view, subsystems are placed in concentric circles according to their depth in the Simulink
model i.e., subsystems are illustrated as nested rectangles in the outer rings of the radial
view. The relations between (basic) subsystems, such as input and output signals, are
shown as curved arrows in blue color. The tool allows for zooming into the subsystems for
more detailed views. The colors on subsystems are used to visualize values of modularity
metrics. The green subsystems show the modular and red ones show subsystems which
require attention to improve their modularity.

Figure 5.12 demonstrates the visualization of software with DSC (Degree of Subsystem
Coupling) metric, where DSC is selected in the right panel and DSC values for the
subsystems are illustrated with respective coloring. The grey rectangles represent Bus
Selectors and Bus Creators. Figure 5.12 highlights not only subsystems with high
coupling, but also shows subsystems upon which they depend, so that the developer can
easily navigate and zoom into the dependencies of a particular unusual subsystem. This
facilitates the signal tracing activity in Simulink and decreases the analysis time to detect

3http://www.solidsourceit.com/

5.5. Visualization tool 95

Figure 5.12: Visualization of system modularity with the help of SQuAVisiT tool. SQuA-
VisiT extended quality radial view of SolidSX tool3.

Figure 5.13: SQuAVisiT quality treemap view.

coupled subsystems. This tool gives early feedback about system modularity, making it
cheaper and easier to reuse and maintain than traditional techniques.

An example treemap view of our industrial application illustrated in Figure 5.13, shows

96 Modularity Analysis of Automotive Control Software

Figure 5.14: SQuAVisiT quality table view.

its structural nesting highlighted with the selected modularity measurements (green—
modular, red—nonmodular). The advantage of this view is all the subsystems and their
sub-components are shown simultaneously and it is easy for the architect to identify the
subsystems, which may require further inspection [192].

Figure 5.14 illustrates another example of quality visualization. We illustrate all the
metric values of the subsystems including the excluded metrics (NiP, NoP, NIS, NOS,
and NBS). The table contains cells as pixel bars scaled and colored by metric values as
first introduced by Rao et al. [188]. The first column displays the list of subsystems and
the rest of the columns list all the metric values and last column lists the number of
faults of the subsystems. Subsystems are sorted by descending number of fault value.
This can help the domain experts easily locate the most problematic subsystems and
their respective metric values. However, evaluating the effectiveness of using different
visualizations of Simulink model quality is a possible area of a future work.

5.6. Conclusion and future work 97

5.6 Conclusion and future work

It is important to assess automotive software quality because of the increasing complexity
and size of Simulink models [86]. In this chapter, we focused on the modularity aspects
of Simulink models and defined modularity metrics for Simulink models following the
Goal-Question-Metrics (GQM) approach. We defined a modularity metrics suit consisting
of nine coupling and cohesion-related metrics and evaluated it with experts’ reviews
and preliminary statistical analysis. We identified three independent metrics (degree of
subsystem coupling, number of contained subsystems, and depth of a subsystem) based
on the statistical analysis and identified a correlation between modularity metrics and
number of errors. We developed a tool to measure modularity of the Simulink models
and visualized the quality aspects with SQuAVisiT toolset.

Although we carried out a preliminary analysis to define a relation between modularity
metrics and number of faults, this needs to be explored further if the moderate correlation
is satisfactory. This investigation can be compared to source code or other graphical
modeling languages. Modularity metrics in combination with other quality metrics may
provide useful insight on fault prediction of automotive software [14]. Modularity metrics
can be also used to detect bad smells that indicate the need of refactoring. Tool support for
refactoring Simulink models is limited compare to the established refactoring techniques
from Object-Oriented programming [230]. The benefit of visualizing modularity metrics
using SQuAVisit also needs to be investigated further.

As identified in our previous research [58], which showed that connectors (signals or
dependencies) are not modeled as first-class objects in automotive architecture description
languages (ADLs), this also holds for MATLAB/Simulink modeling. Therefore, the
modularity metrics related to connectors e.g., number of subsystems using a signal,
unused signals of a bus needs to be refined further. We believe that the metrics we defined
here can be applied or extended to modularity metrics of automotive architectural models.
In addition, the modularity metrics should take into account the increasing number of
subsystems and dependencies when the system evolves, which has been identified in the
analysis of high-cohesion/low-coupling metrics [17].

Modularity is added as a sub-characteristics of ISO/IEC SQuaRE quality standard and
it is related to other quality (sub-)characteristics e.g., reusability, modifiability, and stability.
In the expert evaluation, understandability is considered by the automotive domain experts
as one of the key related quality characteristic as well due to the Simulink visual modeling.
In Section 6, we identified that complexity is closely related to the understandability and
analysability. Therefore, in the next chapter, we designed a complexity metrics suite
addressing different attributes of complexity. Once the modularity and complexity metrics
for the Simulink models in the automotive domain are thoroughly evaluated, they can be
modified or extended further for other embedded domains.

As stated in Section 5.2, future work may also investigate the viability of metrics
aggregation techniques for use in Simulink models. Finally, while in the current chapter
we have focused on one Simulink model, we intend to study changes in modularity
metrics during the system evolution, and investigate the applicability of Lehman’s general
software evolution laws [138] to evolution of Simulink models (cf. [43,117]). Should model
repositories become available, we can augment the evolutionary studies by repository
mining techniques [183].

Chapter 6

Complexity Metrics Suite for Simulink Models

Due to the increasing size and complexity of Simulink models, it is beneficial to monitor
these factors early in the development cycle, even as early at the design phase, in order to
manage the issues at early development phase. The current complexity metric for Simulink
is tightly coupled to the size metric. Other attributes contribute to complexity besides
size. Therefore we designed a complexity metrics suite to address different attributes of
complexity. Furthermore, complexity is an overloaded term with different interpretations.
To tackle the conflicting definition of what constitutes complexity, we related our complexity
metrics to the quality attributes based on qualitative analysis. The evaluation is based on
the analysis of the Simulink models performed by experts from the automotive domain.
Preliminary analysis suggests that complexity is closely related to analysability and under-
standability. It was also observed that due to the visual representation of Simulink models,
a broader view on complexity is needed. We support our claims with a case study from
the automotive domain.

6.1 Introduction

Since 90% of the innovation in the automotive industry is driven by electronics and
software [37, 217], ensuring software quality has become a necessity. In automotive
software engineering, MATLAB/Simulink is one of the most popular graphical modeling
languages and a simulation tool for modeling and simulating automotive software systems.
Since 85% of bugs are introduced in the early development phase, it is crucial to develop
techniques to detect bugs early instead of causing costly field recalls [57]. Automated
source code analysis methods and tools e.g., Klockwork’s SCA [123], Model-Engineering
Solutions’ M-XRAY [162], and CQSE’s ConQAT [49], have been developed to perform
quality analysis at the early development phase. However, these tools are commercial,
therefore the metrics defined for the source code and Simulink models are not publicly
available. This makes it difficult to reproduce the complexity evaluation and makes it
necessary to define publicly available complexity metrics for Simulink models.

To evaluate software complexity, different metrics have been defined. The cyclomatic

100 Complexity Metrics Suite for Simulink Models

complexity metric designed by McCabe in 1976 to indicate system’s testability and
understandability is one of the most popular complexity metrics. Mathworks Verification
and Validation software tool approximates the resulting McCabe complexity of generated
code out of Simulink models [151]. Scheible applies Halstead mapping out of the M-XRAY
tool to measure average local complexity and global complexity to manage testability and
maintainability respectively [209]. However, the Halstead mapping is not described due
to the commercial nature of the tool. Olszewska (Pla֒ska) [173, 174] defined structural
and data flow complexity metrics inspired by Card and Glass metrics [45], as well as
instability and abstractness metrics based on object oriented concepts [148]. However, the
evaluation of these metrics has not been carried out. The existing measurement techniques
have been in use for some time now, but utilized for different contexts, including various
programming languages, module-based systems, or object oriented designs [46,168]. .

We define and implement a complexity metrics suite for Simulink models. We analyse
the results and cross-reference the complexity measurements with the defect data we have
for the case study. We also explore the possible validity issues for the metrics and the
case study, separately, so that it is possible to replicate the study and to enable other
researchers and developers to employ the Complexity Metric Suite in their setting. The
remainder of the chapter is structured as follows. Section 6.2 presents the background of
the complexity definition, describes the existing complexity metrics. Section 6.3 discusses
further why complexity evaluation in the automotive industry is important. Section 6.4
presents a complexity metrics suite for Simulink models and Section 6.5 discusses the
evaluation of the metrics suite. The metrics suite discussion and threats to validity are
provided in Section 6.6. Related work is elaborated in Section 6.7. Finally, Section 6.8
concludes the paper and discusses future work.

6.2 Background

We discuss variations of complexity definitions and complexity metrics in this section.

6.2.1 Complexity Definition and Metrics

There has been a lack of consensus on the definition of complexity [9]. According to
IEEE Standard Computer Dictionary [88], complexity is defined as “the degree to which a
system or component has a design or implementation that is difficult to understand and
verify”, thus making complexity a characteristic addressing the design, implementation
and the effort needed to understand and verify the design or implementation. According
to Evans and Marciniak [79] complexity is “the degree of complication of a system or
system component, determined by such factors as: the number and intricacy of interfaces,
the number and intricacy of conditional branches, the degree of nesting, the types of
data structures”. Yet another proposed definition of complexity, embracing various
aspects, was given by Whitmire [241], where computational complexity is defined in
terms of “hardware resources required to execute the software”, psychological complexity
consists of “complexity problem solved by the software”, structural complexity includes
“characteristics of software (size, cohesion, coupling, etc.)” and programmer complexity
refers to “programmer’s knowledge and experience of the problem and solution domain”.
While the IEEE definition of complexity regards process and product, the Evans and
Marciniak’s definition focuses on the structure of a system. Finally, Whitmire’s definition
includes computational, psychological, and representational complexity. There is, however,

6.2. Background 101

no explicit definition of complexity in the ISO 25010 international standard also known
as SQuARE model.

Kan [120] related the design and code implementation metrics to software quality. He
identified the Lines of Code (LOC), Halstead’s software science metrics [96], and McCabe’s
cyclomatic complexity [153] as key metrics for code implementation. He indicated that
each program module is treated as a separate entity in these code metrics, hence the
structure metrics are presented as useful metrics capturing interactions between modules
in a software system.

6.2.2 Establishing Complexity Metrics

We refer to Section 5.3.1 for the description of main concepts of a Simulink model. In this
section, we discuss existing Simulink measurement mechanisms and establish complexity
metrics prior to introducing the metrics in the following section.

There are several measurement tools built in Simulink, one of them being sldiagnos-
tics [152]. It displays diagnostic information associated with the model or subsystem,
providing measurements on number of each type of block, number of each type of Stateflow
object, number of states, outputs, inputs, and sample times of the root model, names of
libraries referenced and instances of the referenced blocks, as well as time and additional
memory used for each compilation phase of the root model [152].

In the Simulink Verification and Validation toolbox, cyclomatic complexity is defined
as a measure of the complexity of a software module based on the number of nodes, edges
and components within a diagram [151]. For analysis purposes, each chart counts as a
single component.

Finally, as one of the mechanism for reducing the complexity of models Mathworks pro-
vided the MAAB guidelines [145]. However, these contribute to creating an aesthetically
pleasing design, rather than serve evaluation purposes.

It is essential to clearly define the attribute or property that is to be measured, since
the design of a measurement method and metric heavily depends on it. In our work we
define the complexity of a Simulink model as the property of a system showing the degree
to which the (sub)system or its part(s) has a design that is difficult to create, understand,
learn, analyse and test the system on a model level, as well as it is numerically challenging
to simulate. Therefore, our definition encapsulates the human and machine aspects of
complexity of Simulink models, respectively.

The aforementioned definition considers aspects related to design complexity and
testability of a system, as well as some views on the system related to how it is perceived
by humans (visual representation of the models in Simulink). Our goal is not only to
include the structure of the system and data flow view, but also the interrelations between
(sub)systems (meaning subsystems and signals).

Due to its visual representation and multiple Simulink-specific factors to consider,
complexity of Simulink models embraces more facets than the complexity of written code.
Therefore, our goal is to evaluate the complexity property with a collection of metrics.
We consider structural, data complexity, as well as the stability of a system as indicators
of complexity of (sub)systems.

102 Complexity Metrics Suite for Simulink Models

6.3 Motivation

Car buyers expect the product they own to be a safe and reliable operation. Particularly
for safety critical systems it is important to prevent failures, which demands a very
high level of testing, some of which is already mandatory by standards, e.g., ISO 26262.
Fixing a software bug is inexpensive during an early development phase, but can rise
up to millions of euros if a vendor needs to recall his cars to a dealers workshop for a
simple software update. Some studies have shown, e.g., Curtis et al. [51], that complexity
influences the time necessary to understand the code, and highly complex systems are
more prone to error. Automotive software testing relies on “In the loop” methods, which
test models before code before hardware before prototype cars. If defects can be detected
early, it is cheaper, because after fixing the defect, all the preceding test steps need to be
repeated, which costs money and time. The later in the process the defect is found, the
more expensive this becomes.

As the automotive industry is using model driven development, mainly with MATLAB
Simulink, it is interesting to gain knowledge about complexity during the modeling phase.
As Rakesh et al. [186] addresses, there are a lot of defect prediction methods to work on
source code, but none at model level. It is possible to automatically generate code from
models, but this is a time consuming step due to the various optimization imperatives.
Logical errors may be introduced during design and not during code generation, hence
test cases can be targeted at design. From a survey [15], we learned that software testers
are dedicated personnel, who could benefit during design phase if they could address error
prone (i.e., higher complex) parts in the earlier stages of design.

As Curtis states [51], the design of methods has an influence on the ability of developers
to understand a program. If a complexity metric can show which parts of a Simulink
architecture are too complex, the model can be redesigned, therefore complexity metrics
can be fundamental. The complexity metrics can be furthermore applied to the system
and software architectural models. Since early 2000, a number of automotive Architecture
Description Languages (ADLs) has been defined in the automotive industry. However,
there is still a lack of quality evaluation of the models represented in these ADLs [60].

6.4 Simulink Complexity Metrics Suite

Since a modeler is basically working on a one-level-at-a-time basis, our metrics are defined
per hierarchical level. In the following sub-sections, we first present the original metric
as found in the software engineering literature and then the Simulink-specific metric we
established. This is done in an iterative manner for each metric. However, the Halstead
mapping is not described due to the commercial nature of the tool. Although McCabe
and Halstead-based complexity metrics are mentioned by other researchers, the mapping
to Simulink model is not publicly provided in the literature (in English). We include the
structural and data flow complexity metrics by Olszewska (Pla֒ska) [173, 174] inspired
by Card and Glass metrics [45], as well as instability and abstractness metrics based on
object oriented concepts [148], since the evaluation of these metrics has not been carried
out.

6.4.1 Cyclomatic Complexity

McCabe’s cyclomatic complexity calculates the number of linearly independent
execution paths of the code [153]. Seeing a program as a control graph, G, the cyclomatic

6.4. Simulink Complexity Metrics Suite 103

complexity is calculated as the number of different paths the program can take.

V (G) = E −N + P

where V (G) is the cyclomatic complexity of a control graph G, E is the number of edges,
N is the number of nodes, and P is the number of connected components or parts.

For programs containing only binary decision nodes, we can apply the following
calculation of cyclomatic complexity, which the number of decision nodes are counted [91,
154].

V (G) = number of decision nodes+ 1

where, V (G) is the cyclomatic number of decision nodes, called predicates, including e.g.,
if, for, while, and switch.

Simulink Verification and Validation software from Mathworks determines
cyclomatic complexity metric, which approximates the McCabe complexity measure of
the generated code from Simulink model. It uses the following equation for calculating
cyclomatic complexity:

mCMX =

N∑

i=1

(oi − 1)

where mCMX is the Mathworks complexity, N is the number of decision points that the
object (such as a block, chart, or state) represents, and on is the number of outcomes for
the nth decision point. One is added as a complexity number for atomic subsystems and
Stateflow charts [151].

Cyclomatic complexity for Simulink is defined based on McCabe’s design com-
plexity calculation. We extend the mapping between the C statements and Simulink
control logic blocks [150] as shown in the Table 6.1.

Table 6.1: Mapping between C and Simulink concepts.

C statement Simulink blocks

if-else If block, If Action Subsystem
for For Iterator block, For Iterator

Subsystem
while, do-
while

While Iterator block, While Iter-
ator Subsystem

switch Switch Case block, Switch Case
Action Subsystem

In addition, For Each Subsystem, Atomic Subsystem, and the number of case statements
of the MultiPortSwitch block are also counted as decision statements. Hence the following
equation is defined:

mcCMX = P + 1

where, mcCMX is cyclomatic complexity and P is the total number of decision nodes
(including atomic subsystems).

104 Complexity Metrics Suite for Simulink Models

6.4.2 Static Syntactical Complexity

Halstead introduced a set of software science metrics to measure computational complex-
ity based on the operators (e.g., +,−, ∗,=) and operands (e.g., variables, constants) of a
module. The following metrics are defined as part of the computation complexity [96]:

n = n1 + n2

N = N1 +N2

V = N × log2(n)

D =
n1

2
×

N2

n2

where, n1 is the number of distinct operators appearing in a program (+, ++, > etc.
and return, if, continue etc.), n2 is the number of distinct operands appearing in a
program (identifiers, constants), N1 and N2 is the total number of operators and operands,
respectively. In the formulas, n represents the Program vocabulary metric, i.e., distinct
operators and operands, N stands for the Program length giving the size of the program,
V describes Volume, i.e., information contents of a program, D describes Difficulty, which
corresponds to complexity.

Halstead metrics for Simulink is represented in the same manner as in the original
version. We, however, map the concepts to Simulink concepts as illustrated in Figure 6.1:

Figure 6.1: Halstead concepts for Simulink.

• n1 is the number of distinct Simulink block types e.g., Divide, Gain, Product ;

• n2 is the number of distinct input signals;

• N1 is the total number of Simulink blocks;

• N2 is the total number of input and output signals.

We use hCMX D for D and hCMX V for V respectively.

6.4.3 Information Flow Complexity

Henry-Kafura defined complexity as a function of fan-in and fan-out to determine the
information flow between different modules1 as a formula:

Cp = length ∗ (fanin ∗ fanout)2

1There are some hybrid versions of the formula, see e.g., [213] and [101].

6.4. Simulink Complexity Metrics Suite 105

where, Cp is complexity of module p, length is measured as the lines of code, the fan-in
of procedure p is the number of local flows into procedure p plus the number of data
structures from which procedure p retrieves information, and the fan-out of procedure p

is the number of local flows from procedure p plus the number of data structures which
procedure p updates [100].

For the Simulink information flow complexity, we defined the following metrics
based on the Henry-Kafura’s metrics.

hkCMX = size ∗ (fanin ∗ fanout)2

where, hkCMX is the information flow complexity of a subsystem, S, size is the number
of contained blocks (including subsystem blocks), fanin represents the number of source
blocks of a subsystem, S and fanout represents the number of target blocks of a subsystem,
S. We use hkCMX notation for the hkCMX.

6.4.4 Structural and Data Complexity

Card and Glass defined structural, data, and total complexity metrics for systems:

S =
n∑

i=1

f2(i)

n

D =

V (i)

f(i) + 1

n

T = S +D

where, Structural complexity, S, is the mean of squared values of fan-out per number of
modules, f(i) is fan-out of module i and n is a number of modules in the system; Data
complexity, D, is a function that is dependent on the sum of Input/Output variables and
inversely dependent on the number of fan-out in the module; T is the Total complexity [45].
This is a theoretically sound metric set, however empirical investigation of the validation
of the metrics is needed.

For structural and data complexity of Simulink models, the Card and Glass
metrics are used as it is and modules are changed into subsystem blocks, I/O variables
are mapped to the arrows (signals) entering and exiting the subsystem block for input
and output, respectively. The metrics are reformulated as:

• Structural complexity (CMX S) is related to coupling of a system, and measures
the mean of squared values of fan-out per number of subsystem blocks, where f(i) is
fan-out of subsystem block i and n is a number of subsystem blocks in the system.

• Data complexity (CMX D) is related to cohesion of a system, and it is a function
that is dependent on the sum of Input/Output variables and inversely dependent
on the number of fan-out in the subsystem block.

• Total complexity (CMX T) is defined as the sum of the structural and data
complexity.

106 Complexity Metrics Suite for Simulink Models

6.4.5 Dependency Metrics

The dependency metrics of (in)stability, abstractness, and distance indicate how easily the
system (or a block or subsystem) can be changed in terms of dependency and abstractness
of the system. They are an indicator of a good design, where “goodness” of the design is
inversely proportional to complexity.

Scheible’s instability metric calculates the average stability of the blocks of a
Simulink model. It is based on the work of Menkhaus and Andrich [158] and calculated
as following:

Sch Inst =

∑
bǫblocks

fanin(b)
fanin(b)+fanout(b)

size

where, fanin(b) is the number of fan-in blocks of a block b, fanout(b) is the number of
fan-out blocks of a block b, and size is the number of contained blocks. In Scheible’s metric,
the fan-in and fan-out blocks are called predecessor and successor blocks, respectively.

It is indicated that a block with more fan-in blocks as fan-out blocks has a higher
probability of change (the more fan-in blocks for a block, the more likely that it has to be
changed to adapt the fan-in blocks) [209].

We define the instability metric for Simulink models as the number of efferent
couplings between blocks (CeB) divided by the sum of efferent (CeB) and afferent
couplings between blocks (CaB), which is given by the equation:

dCMX I =
CeB

CeB + CaB

where, Instability of a (subsystem) block is dCMX I, the number of efferent couplings
between blocks is CeB, the number of afferent couplings between blocks is CaB. Afferent
coupling between blocks (CaB) is measure of the total number of external blocks linked
to a given block due to incoming signal within one layer. In other words, it is the number
of destination blocks for the block under analysis.

Efferent coupling between blocks (CeB) is defined as the number of blocks that are
linked to a given block due to outgoing signal within one layer, i.e., it is the number of
source blocks for the given block. Values range from 0 (no incoming signals), dCMX I = 0
denotes a completely stable (subsystem) block to 1 (only incoming signals), dCMX I = 1
signifies a maximally instable (subsystem) block.

We define the abstractness metric for Simulink Models as a ratio of the number of
subsystem blocks to the total number of blocks:

dCMX A =
NaB

NB

where, dCMX A is the abstractness, NaB is the number of subsystem blocks, and NB is
the total number of blocks. Values range from 0 (denotes a concrete block) to 1 (represents
a completely abstract block).

We define the distance metric for Simulink models as the relationship between
instability and abstractness. It is computed as a normalised sum of these values decreased
by one:

dCMX D = |dCMX A+ dCMX I − 1|

6.5. Evaluation 107

Figure 6.2: Fault-Tolerant Fuel Control System [3].

where, dCMX D is distance, dCMX A is abstractness, and dCMX I is instability. Val-
ues range from 0 (desirable: blocks are either totally stable and abstract (scenario
dCMX I = 0 and dCMX A = 1)) to 1 (or entirely instable and concrete block
(dCMX I = 1 and dCMX A = 0).

6.5 Evaluation

We developed a complexity analysis tool to automatically measure the complexity metrics
defined in Section 6.4.

6.5.1 Fuel Control System Evaluation

We applied the complexity metric suite to a Fault-Tolerant Fuel Control System (FCS)
from Mathworks Simulink Example Library [3] which represents a fuel control system
for a gasoline engine. Figure 6.2 shows the top level of the FCS system. The subsystem
fuel rate control uses signals from the system’s sensors to determine the fuel rate. The
fuel rate combines with the actual air flow in the engine gas dynamics model to determine
the resulting mixture ratio as sensed at the exhaust [3]. The purpose of the evaluation of
the FCS system is to compare the complexity metric suite measurement to Mathworks’
complexity evaluation of the FCS system. The FCS system consists of 25 subsystems and
the maximum hierarchical depth is 5.

The complexity measurement of the FCS is provided in Table 6.2. The first column
lists the subsystems contained in all hierarchical levels of the FCS. The second column
(CMX M) contains the Mathworks complexity metric values. The third column (NCS)
lists the number of contained subsystems. The other columns contain the complexity
metrics values defined in Section 6.4.

We carried out the Kendall’s τ correlation analysis [83] on the complexity metric
suite and Mathworks’ cyclomatic complexity metric. According to the Mathworks’
complexity analysis, sldemo fuelsys, fuel rate control, and control logic subsystems are
considered the most complex and To Controller, To Plant, and validate sample time
subsystems are considered the least complex subsystems. We identified that the Mathworks
complexity metric (CMX M) is strongly correlated to the size metric, number of contained

108 Complexity Metrics Suite for Simulink Models

Table 6.2: Complexity Measurement of Fault Tolerant Fuel Control System.

subsystems (NCS) i.e., it has a strong correlation (r = 0.734). We accept a common
significance level of 0.05. The three most complex subsystems identified by the Mathworks’
metric are in fact composite subsystems. The three least complex subsystems have less
complexity according to our metric suite.

In addition, we identified that the other complexity metrics provide more insight into
the complexity analysis. The cyclomatic complexity (mcCMX) metric identifies that the
subsystem Throttle is the most complex, which is complemented by the higher values of
Halstead, Henry-Kafura, and instability metrics.

6.5.2 Expert Evaluation

We have compared expert evaluation of the complexity metrics. The evaluation process
involved five senior architects, who are responsible for modeling automotive software
within one vehicle manufacturer at different architectural levels, ranging from functional
architecture to Electrical/Electronic (E/E) architecture. All the architects had a Master
of Science (MSc) degree in mechanical or electrical engineering and had more than 10
years experience in the automotive domain. One architect had a PhD in mechanical
engineering.

Domain experts evaluated a number of randomly selected subsystems of an automotive
application using a scale of 1 to 10, 1 meaning the least complex and 10 meaning the
most complex. The 1-10 scale was chosen due to expert’s familiarity with the scale. The
expert group consisted of five experts with a role of a functional architect, a developer,
and a tester. Although there are in general no major inconsistencies between the experts,
the developer and tester would provide lower complexity score given their familiarity with
the system under review. The following complexity characteristics were recognized from
the experts’ feedback.

• Complexity vs. Analysability: If difficult blocks (e.g., flip flop, unit delay, hit
crossing) and many feedback loops are used, then the model is considered complex

6.5. Evaluation 109

Figure 6.3: Expert’s evaluation: Complexity vs. Quality attributes

and difficult to analyze.

• Complexity vs. Understandability: Too many input/output signals, hierarchical
levels, parameters, and unclear naming of subsystems make it complex and difficult
to understand. Whenever the number of input signals are high, used algorithms are
not complex then the model is considered not complex.

• Complexity vs. Testability: Too many parameters make the model complex and
difficult to configure correctly. Many dependencies with other modules make the
model complex as well.

Besides the complexity (’ExpCmx’), domain experts evaluated understandability (’Ex-
pUnd’), analysability (’ExpAnz’), and testability (’ExpTst’) of the system also using the
scale of 1 to 10. According to the expert’s evaluation as illustrated in Figure 6.3, all three
quality attributes are related to complexity. In the expert evaluation, however, analysabil-
ity and understandability are referred to further details when providing comments for the
complexity grading.

6.5.3 Correlation Analysis

We carried out a correlation analysis on the second automotive application to detect
a relation between complexity metrics and the number of defects. We used the data

110 Complexity Metrics Suite for Simulink Models

collected from the second automotive application consisting of 40 subsystems, from which
half of the subsystems contain defects because of proprietary library subsystems. Since
there are a number of tied values and we aim to establish if any complexity metric and
the number of faults are statistically correlated rather than measuring the degree of the
linear relationship between variables, we use the Kendall’s τ correlation test as used in
our modularity assessment of Simulink models [61].

The correlation coefficient infers the strength and direction of the correlation meaning a
positive correlation coefficient indicates a positive relation between the metrics and defects
and a negative correlation coefficient indicates a negative relation. The significance points
to a probability for a coincidence. We accept a common significance level of 0.05. According
to the correlation analysis, the structural complexity CMX S, data complexity CMX D,
total complexity CMX T , abstractness dCMX A and block instability dCMX I metrics
are positively correlated with the number of faults. This may imply that the subsystems
with higher number of fan-out subsystems and instability can be more prone to faults.

6.6 Discussion and Threats to Validity

We have defined and implemented a complexity metric suite based on the well-known
complexity metrics from the software engineering field. Although Mathworks provides a
cyclomatic complexity metric, we identified that it has a strong correlation with the size of
the subsystem. Although the novelty of the definition of the Simulink complexity metric
suite could be argued, the mapping of the complexity metrics from code to Simulink
models is not publicly shared. It could be due to the competitive nature of the automotive
industry. Furthermore, the tools available to analyze the complexity models do not share
the description of the metrics explicitly. Therefore, the lack of descriptions makes the
application of the metrics extremely challenging.

Complexity metrics are developed in a proprietary setting. Therefore, applying this
model to a generic automotive system needs further investigation. Also the selection of
metrics can be too practical, since the metrics were defined based on the literature and
inputs from domain experts. The domain experts involved in the qualitative analysis
evaluated the models based on 1-10 scale and we used the mean of the evaluations for
each of the quality attributes.

Another potential threat to validity stems from the limited number of domain experts
involved in the evaluation, which is due to their restricted time and availability for the
evaluation of the software quality. However, to increase the number of participants for
the evaluation task by involving students or engineers with less expertise may not be
representative of practical model engineering tasks. Furthermore empirical studies are
needed to validate the selection and application of complexity metrics on larger scale
data.

6.7 Related Work

Metrics for Simulink have already been used to evaluate the impact of changes to the
complexity and coupling properties of automotive software systems [69]. The authors
used two metrics: structural (Henry-Kafura) and coupling (Gupta and Chhabra) in
order to verify that certain quality attributes have not deteriorated. They also used
metrics to implicitly increase the product quality with respect to stability, reliability and
maintainability. In our work we use several complexity metrics, which tackle different

6.8. Conclusions and Future Work 111

perspectives of the Simulink model complexity. Furthermore, we focus on other quality
sub-attributes, defined by the experts as the ones the most impacted by the complexity
characteristic, i.e., understandability, analysability and testability.

The authors [107] build their quality model based on ISO/IEC 9126 and specify it for
the MATLAB/Simulink/Stateflow environment. A package of metrics for the assessment
of complexity was used, i.e., Halstead, McCabe, Henry and Kafura metrics. The authors
claim that it gives an overall assessment for a whole model or a specific subsystem.
However, the mapping of these metrics for Simulink models is not presented in the paper.
Moreover, Hu et. al tackled the stability quality attribute by computing average slice
per input signal, yet no description of this metric was given. This lack of descriptions
is also the case for other metrics, which makes the application of the metrics extremely
challenging. Furthermore, the tools e.g., Klockwork’s SCA [123], Model-Engineering
Solutions’ M-XRAY [162], and CQSE’s ConQAT [49] are commercial, therefore the metrics
defined for the source code and Simulink models are not publicly available. This makes it
difficult to reproduce the complexity evaluation and makes it necessary to define publicly
available complexity metrics for Simulink models.

Simulink models have been investigated quantitatively [174], where the authors pro-
posed a list of direct measurements, in addition to metrics based on Card and Glass
complexity model. Later work [172] extended the Simulink metrics with instability and ab-
stractness, as well as the distance metrics, which were described as indicators of “goodness”
of a design.

6.8 Conclusions and Future Work

Complexity of produced software systems is an issue regardless of the application domain,
as it is closely linked to the cost of the development. In particular, in safety-critical
domains, like automotive, quality, and thus complexity, is of utmost importance. In
addition, lower complex systems are easier to fulfill 100% coverage by a finite number of
test cases, which decreases the development cost and increases the quality. Nowadays, cars
can be seen essentially as big computer systems consisting of multiple components running
various software. There is a need for mechanisms to efficiently monitor the complexity of
the automotive software systems, particularly in the early stages of development cycle,
for example at the modeling stage, as it is more economical and beneficial.

A plethora of commercial tools are able to perform tests and verification at the source
code level, e.g., Astrée [111] or Polyspace [149], but generating the code from Simulink
models increases the likelihood of failure due to no optimal code generator settings or
even bugs in the code generator. Furthermore, it would decrease the development time
and cost if complexity analysis at model level can be performed.

In this chapter, we defined the complexity metrics suite for the Simulink modeling
language. Furthermore, we identified the relation between complexity characteristic
and other quality attributes, e.g., understandability, analysability and testability. A
preliminary analysis provided a strong correlation between some of the complexity metrics
and the number of errors.

Future work may consider continuing this research on two levels: (a) refining the
established metrics and (b) linking them to standards and architectural complexity models,
e.g., Software Architecture Complexity Model (SACM) [31]. The former refers to including
the factors that additionally impact the complexity of Simulink models, to the existing
Simulink complexity metrics suite. The preliminary discussions with experts showed

112 Complexity Metrics Suite for Simulink Models

that apart from the number of incoming signals (single signal or a bus) or depth of a
(sub)system, there are also other elements that need to be addressed. These include
loops in the model (also empty loops), algorithms and computations, number of GoTo
statements, number of parameters of the models or documentation and model description.
For some of these factors it is not sufficient to have metrics based on simple count; rather,
some further cognitive analysis may be needed. Furthermore, we need to determine if
Simulink operations can be weighted based on the difficulty and complexity level.

Complexity metrics can be evaluated further in the specific functional domains of au-
tomotive embedded systems. These include vehicle-centric functional domains (including
powertrain control, chassis control, and active/passive safety systems) and passenger-
centric functional domains (covering multimedia/telematics, body/comfort, and Human
Machine Interface (HMI)) [166]. In addition, the relationship between the complexity
metrics suite and standards specific to a functional domain such as IEC 51508, ISO 26262
and modeling guidelines e.g., MISRA can be explored further. Moreover, an architectural
complexity model can be built comprising of quality attributes originating from the ISO
25010 standard and linking them to the metrics suite we established. For that purpose
the existing quality and architectural complexity models need to be examined in more
detail and associate the metrics and quality attributes to the role of the person in the
development (tester, calibrator, developer, and maintenance staff). Operationalization
(e.g., interpretation models, aggregation method, and defining weights) is considered useful
to improve the understandability and applicability of quality attributes [238], therefore
operationalization of complexity needs to be carried out to make it easy to understand by
the stakeholders.

Chapter 7

Managing Clone Mutations in Simulink Models

Like any software system, real life Simulink models contain a considerable amount of
cloning. These clones are not always identical copies of each other, but actually show a
variety of differences from each other despite the overall similarities. Insufficient variability
mechanisms provided by the platform make it difficult to create generic structures to
represent these clones. Also, complete elimination of clones from the systems may not
always be practical, feasible, or cost-effective. In this chapter we propose a mechanism
for clone management based on Variant Configuration Language (VCL) which provides a
variability handling mechanism. In this mechanism, the clones are managed separate from
the models in a non-intrusive way and the original models will not be polluted with extra
complexity to manage clone instances. The proposed technique is validated by creating
generic solutions for Simulink clones with a variety of differences present between them.

7.1 Introduction

Software clone detection is a well established and mature field with continually increasing
research and tool development [128, 190, 203]. In software development, copying code
fragments and pasting them with or without modifications in other code sections are
common practice. This process is called software cloning and the copied code is called
software clone [190]. Maintaining software clones can lead to high maintenance costs [39],
because a bug detected in one section of code needs to be fixed in all related code
fragments [190].

The majority of existing software clone detection techniques are code based, which
means the clones are detected in the source code written in different programming
languages. Compare to code clone detection field, model clone detection is a new and
not well-researched field [203]. In the model clone detection field, clones are identified in
higher-level software models instead of source code. Our need for model clone detection
techniques stem firstly from the prominence of the model-driven development in many
domains and secondly detecting clones (redundancies) earlier in the models have higher
impact on the lower levels [203].

114 Managing Clone Mutations in Simulink Models

In recent years, model clone detection techniques have been developed for Simulink
models [12, 48, 63, 64, 119, 181, 203]. Simulink models can be comprised of thousand of
elements and are maintained over long periods by organizations. In these situations,
cloning becomes a relevant problem [12]. Similar to the code clones, separately maintaining
multiple similar parts of models could increase costs, and inconsistent changes to cloned
parts could lead to incorrect or undesired system behavior.

Completely eliminating clones from the systems may not always be necessary, practical,
feasible, or cost-effective. A viable alternative is to perform clone management. This is
especially relevant for product line based development of similar systems, where clones
represent reusable pieces of functionality, and their integration in a central repository is a
basic task for the development of product lines.

To be viable, clone management techniques require a representation of the clones that
could provide a powerful parameterization mechanism to capture all kinds of variations
that could possibly exist between clone instances, and is robust to evolutionary changes.
Model variants exhibit a range of differences. Similar to code clones, Type-1 (exact),
Type-2 (renamed), and Type-3 (near-miss) model clones have also been identified [12].
These clone types are demonstrated for Simulink models in Section 7.2. Model clones
can also occur across multiple layers [12]. A challenge is to unify all types of possible
differences between model clones with a single variability management technique, which
can facilitate the maintenance effort for a large model set.

To date, no clone management technique has been proposed for Simulink models. A
basic requirement for clone management is a powerful variability management technique.
Simulink provides a basic variability mechanism with its Variant Subsystems but this
mechanism is only meant for simulation and increases the size and complexity of the
models. A Variant Subsystem contains two or more child subsystems, from which only
one child subsystem is active during model execution [110]. Another option is to model
variability with general-purpose blocks like Switch blocks or if-action blocks for the
selection of alternative variants [95,210]. Another problem here is that it is not obvious
if a Switch block is for the selection of variants or to control the signal flow. There is
no possibility to remove unnecessary variability information and reduce a variant-rich
model to a specific system model [139]. This results in the intermixing of functionality
and variability handling mechanisms in the models, violating the principle of separation
of concerns [210].

We propose a clone management framework for Simulink models based on Variant
Configuration Language (VCL) [7]. VCL provides unrestricted parameterization of text-
based artifacts. As Simulink also provides an equivalent textual representation of its
models, this does not pose a limitation for the proposed solution. VCL based solution
is non-obstructive as the variability handling concern is addressed separately from the
functionality concern. Because of the powerful parameterization of VCL, we can define
variants capturing any kind of differences that could be present in clones. Finally, with
VCL we can also define new variation points to a generic structure without affecting the
existing variants.

In our proposal, we define separate roles for model developers and model managers with
regard to clone management to clarify the description of the process, although the same
person can fulfil these roles at different times. VCL based generic clone representations
are developed by model managers and stored in a clone repository. Colors are used to tag
the different parts of the Simulink models for cloning status and these tags are updated
when the cloning status is changed. Finally, we validate our technique by creating generic
representations of a number of clones exhibiting a variety of differences.

7.2. Background 115

(a) An Engine Dynamics subsystem of the sldemo engine model [110].

(b) An Engine Dynamics subsystem of the sldemo enginewc model [110].

Figure 7.1: A Type-1 model clone.

The rest of the chapter is organized as follows. In Section 7.2, we provide the
background information about the Simulink model clones and VCL. In Section 7.3,
we describe the details of our proposed approach for model clone management and
in Section 7.4, we validate our approach. Section 7.5 discusses the related work and
Section 7.6 concludes the chapter and discusses the future work.

7.2 Background

In the following sections we present the main concepts for Simulink model clones and
Variant Configuration Language (VCL), which are used in the Simulink clone management
approach that we propose in Section 7.3.

7.2.1 Simulink Model Clones

Simulink model clones are categorized into the following three types [13], which are similar
to the categorization used in the code clones:

• Type-1 (exact) model clones: Identical model fragments except for variations in
whitespace, comments, layout and formatting. Figure 7.1 illustrates an example of a
Type-1 model clone (Engine Dynamics subsystem), which is included in both engine
timing models, namely sldemo engine (with a triggered subsystem) in Figure 7.7a
and the sldemo enginewc (with a closed-loop control) in Figure 7.7b. The Engine
Dynamics subsystem is identical in both engine models except for a slight variation
in layout (positions of some blocks and signals vary slightly). However, it is still
considered an exact model clone in Simulink models.

116 Managing Clone Mutations in Simulink Models

(a) A Requisite Friction subsystem of the sldemo clutch if example model [110].

(b) A Friction Calc subsystem of the sldemo clutch if example model [110].

Figure 7.2: A Type-2 model clone.

• Type-2 (renamed) model clones: Structurally identical model fragments except
for variations in labels, values, and types, in addition to variations in Type-1 i.e.,
whitespace, comments, layout and formatting. Figure 7.2 illustrates an example
Type-2 model clone between different subsystems, namely the Requisite Friction in
Figure 7.2a and the Friction Calc subsystem contained in the same sldemo clutch if
example model as shown in Figure 7.2b. Blocks (inports and outports) have different
names in addition to variation in layout.

• Type-3 (near/miss) model clones : Model fragments with further modifications such
as changed, added or removed blocks or lines, in addition to the variations from
Type-1 and Type-2 clones. Figure 7.3 shows an example Type-3 model clone between
Rich Mode and Low Mode subsystems contained in the same sldemo fuelsys example
model, shown in Figure 7.3a and 7.3b respectively. The Discrete Filter block is
moved to another location in addition to variations in block names and layout.

7.2.2 VCL

Variant Configuration Language (VCL) [7] is a variability management technique with a
syntax inspired by C preprocessor (cpp). It is an enhanced version of XVCL, which is
a dialect of XML and uses XML trees, a parser for processing [118,171]. VCL does not

7.2. Background 117

(a) A Rich Mode subsystem of the sldemo fuelsys example model [110].

(b) A Low Mode subsystem of the sldemo fuelsys example model [110].

Figure 7.3: A Type-3 model clone.

use XML syntax and processing, instead it extends the capabilities of the basic cpp to
better manage software variability, including the product line scenario [7]. VCL organizes
and instruments the base code for ease of adaptation and reuse during development and
evolution of system variants. VCL allows instrumenting the source code for customization
at any level of details. VCL Processor goes through the base code, executing VCL
commands to generate a required system variant. VCL parameters exercise control over
the VCL processing separately from the base code.

VCL offers a flexible and user-defined syntax. The VCL default syntax is based on
cpp, but full support is provided to modify this syntax. If VCL hashtags conflict with
reserved hashtags in a program, a VCL user can easily change the syntax of some or all
of the VCL commands.

The overall scheme of operation of VCL is similar to that of cpp. However, compared
to cpp, VCL gives better control over the process of synthesizing system variants from
the base code, leading to more generic and reusable base code components. VCL’s ability
to organize base code in a way that replaces any significant pattern of repetition with
a generic, adaptable VCL representation, leads to significantly smaller base code and is
much simpler to work with.

In Figure 7.4, we illustrate an example of VCL. A VCL Processor starts processing
with the specification (SPC) file (in blue). The SPC file contains a set of VCL commands.
The VCL values assigned in #set commands are the same as the cpp variables assigned in
#define commands, except that the VCL variable values propagate to all adapted source
files (#adapt links) [7, 62]. Single and multi-value variables can be declared in the VCL
#set command. VCL #adapt file command is same as cpp #include, except that the
source file can be modified in different contexts in which it is adapted [7, 62]. In the SPC
file example in Figure 7.4, “SavingsAccount” value is assigned to the classname variable
and two different message values are assigned to the messages variable. Since only one

118 Managing Clone Mutations in Simulink Models

file is configured to be adapted in the SPC file, the VCL Processor starts processing the
“Account.vcl” file (in yellow) when it encounters the #adapt “Account.vcl” command.

The VCL Processor generates any source code found in the visited files [7,62]. Therefore,
when the VCL Processor encounters the #output?@className?”.java” command in
the “Account.vcl” file, it emits the output to “SavingsAccount.java” file (in green) as
shown in Figure 7.4. In a loop command (#while command) of the “Account.vcl” file,
the variable messages is iterated over. Therefore, both messages are generated in the
“SavingsAccount.java” file.

7.3 Approach

In our proposal, we differentiate between the roles of model developers and model managers
(similar to the role of frame engineers proposed by Bassett [24]). The same person could
be playing both roles, but for the sake of identifying relevant responsibilities, we describe
the proposal in terms of these distinct roles.

We start with a given set of clones identified in a Simulink model or a group of models.
There are tools available for detecting clones in Simulink models [12] [64]. SIMONE [12]
works with the textual representation of Simulink models and reports clones in the form
of clone classes and clone pairs. It detects not only type-1 and type-2 clones but also
reports type-3 clones. SIMONE reports only similar subsystems as clones. ConQAT [64]
detects clones using a graph matching technique and also reports clones at the block level.
However, it only detects type-1 and type-2 clones. Our proposed technique can work
with the output from any of these tools, but subsystem level clones gives a more crisp
boundary for a reusable element in Simulink, and therefore is preferred by our approach.

The responsibility of clone detection lies with the model manager role. From the
detected clones, the model manager will decide which clones need to be managed. Various

Figure 7.4: VCL Example [7].

7.3. Approach 119

Run clone detection
Select a clone class for

unification

Identify variation points and

variants

Create VCL representation

and store in repository

Any clone classes left

for unification?

yes no

All clone instances are

colored green

Figure 7.5: Flow of activities for the Model Manager.

clone related metrics can be used to identify clones that are of importance to the developers
and should be consistently maintained [63]. These selected clones are manually converted
into VCL representation and placed in a clone repository. In the actual Simulink models,
we mark each subsystem that is generated from a VCL managed clone by a unique color,
as in [139].

As discussed in [223] and [12], blocks, lines, ports and branches could be reordered
in the textual representation of type-1 model clones. For SIMONE, these elements are
sorted before clone detection [12]. For our proposed solution, we can safely sort these
elements in the generic representation with VCL. Although we can generate the exact
ordering of these elements for each clone instance, as it was before sorting, but we do
not need this extra complexity in the generic representation as the sorted and unsorted
subsystems would be functionally and graphically equivalent in the resulting Simulink
model. Figure 7.5 shows the workflow for the model manager role.

When a model developer (Figure 7.6) needs to reuse a subsystem from another part of
the model or from another model, there could be two possibilities. Either this subsystem
is an existing clone that has a VCL representation in the repository or it is the first
cloning of a subsystem. In the former case, the developer would generate the configured
clone from the VCL representation of the managed clone in the repository for the new
use, while marking this new copy accordingly. For the latter case, the developer will clone

Locate subsystem to

clone

Customize clone

from repository

Copy, paste, and modify the

subsystem in the new context

Subsystem is Green
yes

The two copies of the

subsystem are clored red

Concrete subsystem is

generated

no

Figure 7.6: Flow of activities for Model Developer.

120 Managing Clone Mutations in Simulink Models

(a) Subsystem A.

(b) Subsystem B.

Figure 7.7: Two subsystem clones differing in positions only.

the existing subsystem and reuse it in the new place. In this case also, the two copies will
be marked with another unique color indicating the presence of a clone that has not yet
been stored in the repository. This marking will act as a signal for the model manager to
create a VCL representation of this new emerging clone with suitable variation points
and variants.

When the developer selects a clone from the repository for reuse, she will be presented
with a list of variation points for the selected clone, and a list of previously existing
variants to choose from for each variation point. The developer can only configure the
new clone instance by selecting from these predefined variants for a variation point and
is not allowed to create new variants or new variation points. For every variation point,
there will be a default variant. When the developer has completed the configuration, a
concrete subsystem is generated based on the developer’s selection of variants and the
developer can now use this block where required.

If the developer modifies a generated copy of a clone in ways other than those captured
by the VCL representation, the block is marked with a third unique color. The model
manager will later analyze these clones to examine the extent of changes made to them.
If the changes are few, this instance could be merged with the generic version in the
repository by defining new variation points or new variants for the existing variation
points. Because of the flexibility provided by VCL, there are almost no restrictions on
the variants that could be provided at a variation point. However, if the new changes
have made this copy significantly different from the original clone, the model manager
can also choose to remove this particular instance from the clone class completely.

7.4 Validation

The most important aspect of the proposed mechanism is to effectively handle the wide
range of variability that could possibly be present in the clones. To validate the feasibility
of VCL for capturing all kinds of variations, we created numerous Simulink subsystems

7.4. Validation 121

System {

Name "Subsystem"

Location ?@subsystem_location?

Open on

ModelBrowserVisibility on

ModelBrowserWidth 200

ScreenColor "white"

PaperOrientation "landscape"

PaperPositionMode "auto"

PaperType "usletter"

PaperUnits "inches"

TiledPaperMargins [0.500000, 0.500000, 0.500000, 0.500000]

TiledPageScale 1

ShowPageBoundaries off

ZoomFactor "100"

Block {

BlockType Sum

Name "Add"

SID "1"

Ports [2, 1]

Position ?@sum_position?

ZOrder 2

InputSameDT off

OutDataTypeStr "Inherit: Inherit via internal rule"

SaturateOnIntegerOverflow off

}

Block {

BlockType Outport

Name "Out1"

SID "4"

Position ?@outport_position?

ZOrder -2

IconDisplay "Port number"

}

Line {

SrcBlock "In1"

SrcPort 1

#break line1_points

DstBlock "Add"

DstPort 2

}

Line {

SrcBlock "Add"

SrcPort 1

#break line2_points

DstBlock "Out1"

DstPort 1

}

}

Listing 7.1: Annotating the subsystem with VCL commands.

forming clone pairs. Each clone pair captures only one form of variation. Using VCL
commands, we created generic solutions for each of these clone pairs.

122 Managing Clone Mutations in Simulink Models

#set subsystem_location = "[596, 16, 1412, 554]"

#set sum_position = "[240, 80, 270, 120]"

#set outport_position = "[355, 93, 385, 107]"

#output "Layout2a_Position.mdl"

#adapt "Layout2a_Position"

#set subsystem_location = "[3, 15, 819, 553]"

#set sum_position = "[245, 135, 275, 175]"

#set outport_position = "[360, 103, 390, 117]"

#output "Layout2b_Position.mdl"

#adapt: "Layout2b_Position"

#insert line1_points

Points [47, 0; 0, 55]

#endinsert

#insert line2_points

Points [37, 0; 0, -45]

#endinsert

#endadapt

Listing 7.2: Configuring the two subsystems with VCL.

Overall, we captured all possible forms of variations listed by Stephan et. al [223].
These include:

• different layout (color, position, size, other attributes) of elements;

• different ordering of elements (blocks, lines, ports, branches);

• different names of elements (blocks, lines);

• different values of elements (blocks);

• added or deleted block;

• changed block type.

A concrete example of a clone pair, its corresponding generic subsystem annotated
with VCL, and its configuration to regenerate the original subsystems, are shown in
Figure 7.7, Listing 7.1 and 7.2 respectively.

7.5 Related work

Leitner et. al. [139] uses pure::variants Connector for Simulink to handle structural
variability in Simulink models. They identify common variability scenarios from the
industry, and propose a 3-layered template based mechanism to abstract the variability
implementation. Like our approach, they also hide variability mechanism from the
developers. However, we do not need any extra blocks to achieve this goal.

A variety of clone management techniques have been proposed for code-based software
systems. Toomim et al. [229] attempted to keep consistency among clone members by
linked editing of the clone members. Baxter et al. [25] eliminate clones automatically
using macros. Recently, solutions are being sought for manual clone management instead

7.6. Conclusion and Future Work 123

of a fully automatic refactoring tool, as the elimination of clones may not always be viable.
Duala-Ekoko et al. [67] use a descriptive language to help track of clones over software
evolution. However, this description language is specific to object-oriented languages like
Java and C++.

7.6 Conclusion and Future Work

In this chapter we have proposed a clone management framework for managing Simulink
model clones. The benefits of using VCL as the variability technique includes separating
the variability concern from the functionality concern. The variability mechanism has
been validated by converting a number of clone pairs with a varied set of differences into
generic representations of VCL. Furthermore, empirical evaluation of the approach can
be carried out in the future.

In addition to the clone detection tool for Simulink models, we also need a clone-
matching tool whereby we can search for other copies of a known clone in the newly
developed parts of a model. For future work the use of parameterized contracts to software
components [193] can be investigated to enhance the reusability of the VCL representation.
Visual rendering to VCL frames would be beneficial. In this manner, cloned subsystems
will have extra property pages at configuration time to concretize the block/subsystem
before using it.

Chapter 8

Conclusions

This chapter summarizes the contributions of this thesis and discusses the directions for
future research. The main results and conclusions of this research are provided for each
of the research questions stated in Chapter 1.

8.1 Contributions

As software becomes more and more important for automotive systems, the new discipline
called automotive software engineering has emerged as an intriguing field which introduces
new solutions or adopts existing methods for automotive software and electronics systems
from the software engineering discipline. More than a decade ago a list of emerging
challenges and research directions were presented in the scope of the automotive software
engineering field [37]. However the amount and complexity of technical and research
challenges that automotive companies face today are even higher due to the increasing
role of software for automotive innovations. The software work package for the Hybrid
Innovations for Trucks (HIT) multi-disciplinary project needed to tackle two main issues,
namely a suitable architecture modeling method and a quality technique to enable the
development of more efficient control software. These issues are considered vital in the
automotive software engineering field in general [37,166,208].

The first research question was formulated to address the automotive software archi-
tecture issue.

RQ1: What architecture description mechanisms can be employed to support
automotive architectural modeling at different architecture viewpoints?

To address this question, in Chapter 2 we evaluated the existing architecture descrip-
tion mechanisms for the automotive industry, as well as their benefits and gaps. Based
on this literature review we have proposed an Architecture Framework for Automotive
Systems (AFAS). The AFAS fills a gap that was identified during the evaluation, namely
the lack of the consistency between the Architecture Description (AD) elements in the

126 Conclusions

existing architecture description mechanisms, Architecture Frameworks (AFs) on the one
hand and Architecture Description Languages (ADLs) on the other hand.

Therefore, in Chapter 3, we presented the results of the comparison between
automotive-related ADLs based on the automotive architecture modeling requirements,
which were elicited from interviews with automotive domain experts. SysML was selected
as an ADL which satisfies the main modeling requirements, from the options of EAST-
ADL, TADL, AML, SysML, and MARTE. We then evaluated the usability of SysML
diagram types for automotive architecture modeling. While similar case studies can be
found in the literature [16,20,187,215], they gloss over the reasons why a certain diagram
type has been selected. Therefore, the conclusions from these case studies are not a priori
applicable to the specifics of the HIT project. Therefore, we have conducted a separate
case study using IBM Rational Rhapsody supporting SysML and compared the SysML
diagrams with those created by an OEM using proprietary approaches. The resulting
selection of the SysML diagram types concurs with the earlier results [16,20,187,215] and
provided further a rationale for the selection or de-selection of a certain diagram type.

The main conclusion was that SysML satisfies the main requirements of architecture
modeling at all abstraction levels from functional to Electrical/Electronic (E/E) architec-
ture. However, SysML and its supporting tool need further improvement or extension
on modeling architectural elements e.g., mapping signals between different architectural
levels, and interfacing with complex Simulink models. The key problem seems not to be
SysML’s inability to model the desired architectures, but rather its flexibility to enable
too many different solutions. Based on the conclusion of the SysML case study, we recom-
mended the OEM to start a pilot project with IBM Rhapsody within its industrial setting.
After the successful completion of the pilot project by the OEM, they have decided to
apply SysML and IBM Rational Rhapsody in an advanced modeling project [108].

The second research question was derived during the process of defining the AFAS
framework. It was formulated to address the consistency between automotive architecture
views.

RQ2: How can we formalize the correspondence rules between automotive
architecture viewpoints?

It is crucial to define correspondence and correspondence rules for an automotive AF
and ADL, which consist of multiple architecture viewpoints. Indeed, correspondence and
correspondence rules would facilitate the communication between different automotive
architects and domain experts, since a model is typically incrementally constructed in
close cooperation between (multi-disciplinary) domain experts. We have observed that
without the explicit correspondence rule enforcing relations within an AD or between ADs,
the communication between architects can be cumbersome and require ad hoc descriptions
to the refinements made at the architectural models at different architectural views. For
example, a functional architecture model is delivered to the software architect, who would
refine the given model. However, without the formal definition of the correspondence
between functional and software viewpoints, architects need to explain why certain
refinements are made to the given model. In Chapter 4 we addressed a similar issue
which discusses the situation whereby the functional model is developed by an OEM
and refined by a supplier. Therefore, facilitating communication between an OEM and a
supplier would save not only time, but also cost.

To address this practical problem, we investigated the consistency checking approaches
in the software architecture field and developed an inconsistency detection approach based
on the correspondence rule between automotive architecture views. Existing approaches

8.1. Contributions 127

for architecture consistency checking generally cover the issues related to the consistency
between the software architecture model and its counterpart model (sometimes called
an implementation model) that is reverse engineered or reconstructed from the source
code. Specifically, consistency checking for UML diagram types (between structural and
behavioral diagrams) is a well-researched area. Our approach is inspired by language-
neutral mechanisms [34,80,81,131,165].

We focused on the refinement correspondence between functional and software views,
where the functional models are refined by adding more details to the software view. A
prototype tool was developed for IBM Rational Rhapsody. The prototype can perform
consistency checking between functional and software views. The inconsistency checking
approach and the prototype tool were evaluated in the scope of Adaptive Cruise Control
functional and software models which were created by two separate student teams
emulating an OEM and an automotive supplier.

In addition to the architectural consistency checking, in the evaluation of automotive
ADLs in Chapter 3 we identified that the automotive ADLs lack the capability to ensure
architectural quality. Although it is not an explicit requirement of automotive ADLs,
improving architectural quality clearly gives an advantage to the quality of architectural
modeling. This is particularly important because ensuring internal quality, as measured
by looking inside the product, (e.g., by analyzing the static model or source code [159])
of the system influences the external quality, as measured by execution of the product,
(e.g., by performing testing [159]). This enables quality improvement at an earlier stage
of the software development cycle, i.e., the architectural and design phase. The following
research question was formulated to address the architectural quality issue. Answering
this question also addresses the second main issue required by the HIT project.

RQ3: How can the quality of automotive software models be defined and
evaluated?

To address this research question, we first clarified what the quality of architectural
models is. The software quality can be generally defined as a conformance to the
characteristics of software product with specified requirements. Therefore, we defined
an automotive quality model [56] based on the ISO/IEC 25010 international standard
for system/software product quality [115]. In addition, we reviewed automotive-specific
design quality frameworks and recent software quality modeling literature. The (sub-)
characteristics of quality model and respective metrics are defined together with an OEM
following the Goal-Question-Metric (GQM) approach. In this thesis, we focused on the
results of modularity and complexity metrics of Simulink models in Chapter 5 and
in Chapter 6, respectively. Modularity and complexity metrics were selected because
they were considered sub-sub-characteristics of several sub-characteristics e.g., reusability,
modifiability, and analysability, which are part of maintainability characteristic in our
quality model. The quality metrics are evaluated in the industrial setting. Simulink
models are selected because they are used broadly to develop automotive embedded
software and may consist of hundreds of building blocks and several hierarchal levels.

We evaluated the modularity of Simulink models based on the cohesion, coupling,
and control metrics for improving quality of Simulink models. During the evaluation of
the quality of control software, we identified that 40% of prototype control models were
clones (type I-III). Therefore, in Chapter 7, we introduced a novel method for clone
management based on Variant Configuration Language (VCL). This method provides a
variability handling mechanism for Simulink models. In this mechanism, the clones are
managed separately from the models in a non-intrusive way and the original models are

128 Conclusions

not polluted with extra complexity to manage clone instances. The proposed technique
was validated by creating generic solutions for Simulink clones with a variety of differences
present between them.

8.2 Directions for Further Research

In this thesis, we presented the research results on automotive architecture modeling and
automotive architectural quality. This section discusses the possible directions for further
research in these areas.

8.2.1 Automotive architecture modeling

For the definition of AFAS in Chapter 2, we aimed to integrate the main viewpoints
necessary for the automotive architecture modeling by investigating existing automotive
AFs and ADLs. The main purpose of AFAS is to use the results of the evaluation of
automotive ADLs and to contribute to the thought process in the automotive industry
as the Automotive Architecture Framework (AAF) and Architecture Design Framework
(ADF). During the definition of AFAS, we identified a number of further research directions:

• Eliciting the viewpoints for vehicle functional domains (i.e., powertrain control,
chassis control, active/passive safety systems, multimedia/telematics, body/comfort,
and human machine interface (HMI)). In each functional domain, stakeholders may
have varying concerns.

• Comparing the AFAS views with the views generated by the MEGAF approach [102],
since the MEGAF is built upon the ISO 42010 international standard and enables
the definition of a reusable and open architecture framework. Due to the limited
availability of the metamodels for the automotive ADLs (except EAST-ADL, SysML,
MARTE), the views were not generated using the MEGAF approach.

• Mapping the diagram types of the selected language, which was discussed in Chap-
ter 3, to the AFAS viewpoints. After the refinement of the AFAS, the SysML
diagram types can be mapped to the viewpoints together with the guidelines.

• Bridging a gap between architectural model and code by aligning the architectural
concepts and programming languages, which was considered one of the new challenges
in [41].

Besides an architecture framework, we studied automotive ADLs to answer the RQ1
more thoroughly. Instead of defining yet another ADL, we investigated existing automotive
ADLs and identified a generic ADL as a suitable language for representing an automotive
architecture. Industrial applicability of the chosen ADL was investigated by an OEM in a
pilot project. Valuable future work regarding automotive ADL, could focus on reverse
engineering source code to create architectures at different architectural levels. To do
this, reverse engineering methods like system grokking technology [55] can be used to
extract hierarchical state machines from the source code of an embedded application.
Reconstruction of SysML sequence and activity diagrams from the source code can be
considered similarly to UML [127,199,200]. Furthermore, model-based development using
automotive ADLs is a young field, where the language specification or metamodel of
architectural models evolve in short period of time, which causes a model co-evolution

8.2. Directions for Further Research 129

problem. A syntax-driven model co-evolution method [231] can be used to address the
ADL co-evolution issue.

A relation between automotive ADLs and AUTOSAR needs to be investigated further.
Since AUTOSAR is intended for automotive E/E architectures, the question remains if
the AFAS hardware view is consistent with the AUTOSAR. One of the criticisms that
the AUTOSAR received was that unnecessary or redundant functions and elements were
lobbied into the standard by many participant OEMs as well as tier-one suppliers [97].
Therefore, a detailed analysis of the relation between automotive ADLs (specifically its
E/E or hardware view) and AUTOSAR needs to be carried out.

8.2.2 Automotive architectural quality

Although the RQ2 was formulated during the case study for automotive architecture
modeling, architectural consistency is a part of the architectural quality issue. Due to the
lack of tool support for checking consistency between automotive architecture views, we
formalized the correspondence rule between automotive structural views and developed
a prototype tool to check the consistency. Because we solely focused on the refinement
correspondence, other correspondence and correspondence rules need to be defined and
formalized within or between architectural views such as conformance, obligation, and
traceability correspondence. The prototype tool can be improved by carrying out a
comprehensive case study in an industrial setting by extending the consistency rules
and overall usability of the tool. Support for consistency checking between the other
automotive views of AFAS is also needed. Furthermore, reverse engineering source
code to create architectural models at different architectural views is valuable. The
reverse engineering architectural model can be used to check inconsistency between other
architectural models.

Modularity and complexity metrics defined to address theRQ3 have been implemented
as part of a quality framework and evaluated using the automotive control software
in Simulink. However, further evaluation should be carried out on different type of
automotive architectural and design models. A preliminary analysis on defining a relation
between modularity/complexity metrics and number of faults (presence of faults) is
carried out. It requires further analysis on bigger dataset. Modularity and complexity
metrics may provide useful insight on fault prediction of automotive software [14]. These
metrics can be also used to detect bad smells that indicate the need of refactoring. Tool
support for refactoring Simulink models is limited compare to the established refactoring
techniques from Object-Oriented programming [230]. Furthermore, operationalization of
modularity and complexity needs to be carried out to make them easy to understand by
the stakeholders.

Visualizations of metrics were considered valuable by the domain experts to facilitate
the architecture review process. Extending visualizations for these metrics are also a
necessary step. For this purpose, a task-oriented view approach on a set of visualizations
of UML models and related metrics data can be applied [135,136].

The work on complexity metrics can be continued on two levels: (a) refining the
established metrics and (b) linking them to standards and complexity models. The former
involves including the factors that additionally impact the complexity of Simulink models,
to the existing Simulink complexity metric suite. Preliminary discussions with experts
showed that apart from the number of incoming signals (single signal or a bus) or depth of
a (sub)system, there are also other elements that need to be addressed, e.g. loops in the
model, algorithms and computations, number of GoTo statements, number of parameters

130 Conclusions

of the models or documentation and model description. For some of these factors it is not
sufficient to have metrics based on simple count; rather, some more cognitive analysis
might be needed. Furthermore, it needs to be determined if Simulink operations can be
weighted based on the difficulty and complexity level. Factor analysis [98] can be utilized
to investigate if any other operations contribute to different complexity metrics.

The complexity metrics can be evaluated further in the specific functional domains. In
addition, the relation of the complexity metrics suite and standards specific to a functional
domain such as IEC 51508, ISO 26262 and modeling guidelines e.g., MISRA can be
explored further. A complexity model can be built to comprise of quality attributes
originating from the ISO SQuARe standard and linking them to the metrics suite we
established.

In addition, metrics aggregation techniques for Simulink models can be investigated.
Changes in quality metrics during the system evolution can be studied and the applicability
of Lehman’s general software evolution laws [138] to evolution of Simulink models (cf. [43,
117]) also can be investigated. Should model repositories become available, the evolutionary
studies can be augmented by repository mining techniques [183]. Furthermore, these
metrics can be modified or extended further for other embedded domains.

Regarding the clone detection tool for Simulink models, a clone-matching tool needs to
be developed whereby other copies of a known clone can be searched for in the newly devel-
oped parts of a model. Visual rendering to VCL frames like pure:variants VAR Multiport
Switch and VAR Const [139] can also be developed. In this manner, cloned subsystems
will have extra property pages at configuration time to concretize the block/subsystem
before using it. Further, empirical evaluation of the approach is considered important
future work. The use of parameterized contracts to software components [193] can also
be investigated to enhance the reusability of the VCL representation.

Bibliography

[1] Arynga motivation. http://www.arynga.com/. (Accessed June 27, 2014).

[2] MISRA C coding standard. http://www.misra.org.uk/. (Accessed June 27,
2014).

[3] Modeling a fault-tolerant fuel control system. http://www.mathworks.

nl/products/simulink/examples.html?file=/products/demos/

shipping/simulink/sldemo_fuelsys.html.

[4] The modeling metric tool. http://www.mathworks.com/matlabcentral/

fileexchange/5574.

[5] The AUTomotive Open System ARchitecture (AUTOSAR). http://autosar.org/.
(Accessed June 27, 2014).

[6] The Open Group Architectural Framework (TOGAF). http://www.opengroup.
org/togaf/.

[7] Variant configuration language. http://vcl.comp.nus.edu.sg. (Accessed
January 10, 2014).

[8] AUTOSAR has become mature and accepted. ATZextra worldwide, 18(9), 2013.

[9] A. Abran. Software Metrics and Software Metrology. Wiley, 2010.

[10] D. Ahrens, A. Frey, A. Pfeiffer, and T. Bertram. Designing reusable and scal-
able software architectures for automotive embedded systems in driver assistance.
Technical Report 2010-01-0942, 2010.

[11] K. Ahsan. Car recalls: A problem unique to toyota or for all car makers? In
International Conference on Industrial Engineering and Operations Management
(IEOM), pages 2027–2036, 2012.

[12] M.H. Alalfi, J.R. Cordy, T.R. Dean, M. Stephan, and A. Stevenson. Models are code
too: Near-miss clone detection for Simulink models. In International Conference on
Software Maintenance (ICSM), pages 295–304. IEEE, 2012.

http://www.arynga.com/
http://www.misra.org.uk/
http://www.mathworks.nl/products/simulink/examples.html?file=/products/demos/shipping/simulink/sldemo_fuelsys.html
http://www.mathworks.nl/products/simulink/examples.html?file=/products/demos/shipping/simulink/sldemo_fuelsys.html
http://www.mathworks.nl/products/simulink/examples.html?file=/products/demos/shipping/simulink/sldemo_fuelsys.html
http://www.mathworks.com/matlabcentral/fileexchange/5574
http://www.mathworks.com/matlabcentral/fileexchange/5574
http://www.opengroup.org/togaf/
http://www.opengroup.org/togaf/
http://vcl.comp.nus.edu.sg

132 Bibliography

[13] M.H. Alalfi, J.R. Cordy, T.R. Dean, M. Stephan, and A. Stevenson. Near-miss
model clone detection for simulink models. In International Workshop on Software
Clones (IWSC), pages 78–79. IEEE, 2012.

[14] H. Altinger, S. Siegl, Y. Dajsuren, and F. Wotawa. A novel industry grade dataset
for fault prediction based on model-driven developed automotive embedded software.
In Working Conference on Mining Software Repositories (MSR). IEEE, 2015.

[15] H. Altinger, F. Wotawa, and M. Schurius. Testing methods used in the automotive
industry: Results from a survey. In Workshop on Joining AcadeMiA and Industry
Contributions to Test Automation and Model-based Testing (JAMAICA), pages 1–6.
ACM, 2014.

[16] E. Andrianarison and J.-D. Piques. SysML for embedded automotive systems: A
practical approach. In Embedded Real Time Software and Systems (ERTS2), pages
1–10, Toulouse, France, 2010. ERTS2 series.

[17] N. Anquetil and J. Laval. Legacy software restructuring: Analyzing a concrete
case. In the 15th European Conference on Software Maintenance and Reengineering,
pages 279–286, 2011.

[18] N. Anquetil and T.C. Lethbridge. Comparative study of clustering algorithms
and abstract representations for software remodularisation. In IEEE Proceedings –
Software, volume 150, pages 185–201, 2003.

[19] R. Aoun, V. Gunther, and Erhard P. Bauhaus – a tool suite for program analysis
and reverse engineering. In Ada-Europe, pages 71–82, 2006.

[20] L. Apvrille and A. Becoulet. Prototyping an embedded automotive system from
its UML/SysML models. In Embedded Real Time Software and Systems (ERTS2),
pages 1–10, Toulouse, France, 2012. ERTS2 series.

[21] Atego. Artisan Studio. http://atego.com/products/atego-modeler/.
(Accessed June 12, 2014).

[22] V.R. Basili. Software modeling and measurement: the Goal/Question/Metric
paradigm. Technical Report UMIACS TR-92-96, University of Maryland at College
Park, College Park, MD, USA, 1992.

[23] H.A. Basit and Y. Dajsuren. Handling clone mutations in Simulink models with
VCL. In International Workshop on Software Clones (IWSC), volume 63. Electronic
Communications of the EASST, 2014.

[24] P.G. Bassett. Framing software reuse: Lessons from the real world. Prentice-Hall,
Inc., 1996.

[25] I.D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier. Clone detection
using abstract syntax trees. In International Conference on Software Maintenance
(ICSM), pages 368–377. IEEE, 1998.

[26] L. Belategi, G. Sagardui, and L. Etxeberria. MARTE mechanisms to model
variability when analyzing embedded software product lines. In Software Product
Lines: Going Beyond, pages 466–470. Springer, 2010.

http://atego.com/products/atego-modeler/

Bibliography 133

[27] B.W. Boehm. Characteristics of Software Quality. TRW Software Series/Systems
Engineering and Integration Division, TRW Systems Group. 1973.

[28] B. Bolger. Software quality initiatives in automotive system development. 2014.

[29] P. Boström, R. Grönblom, T. Huotari, and J. Wiik. An approach to contract-based
verification of Simulink models. Technical Report 985, Turku Centre for Computer
Science, 2010.

[30] N. Boucké, D. Weyns, R. Hilliard, T. Holvoet, and A. Helleboogh. Characterizing
relations between architecture views. In R. Morrison, D. Balasubramaniam, and
K. Falkner, editors, Software Architecture, volume 5292 of Lecture Notes in Computer
Science, pages 66–81. Springer Berlin Heidelberg, 2008.

[31] E.M. Bouwers. Metric-based Evaluation of Implemented Software Architectures.
PhD thesis, Delft University of Technology, 2013.

[32] P. Braun and M. Rappl. A model-based approach for automotive software develop-
ment. In Workshop on Object-Oriented Modeling of Embedded Real-Time Systems
(OMER), volume 5, pages 100–105. LNI, 2001.

[33] R.K. Brayton. Logic minimization algorithms for VLSI synthesis, volume 2. Springer,
1984.

[34] R.J. Bril, L.M.G. Feijs, A. Glas, R.L. Krikhaar, and T. Winter. Hiding expressed
using relation algebra with multi-relations-oblique lifting and lowering for unbal-
anced systems. In European Conference on Software Maintenance (ECSM) and
Reengineering (CSMR), pages 33–43. IEEE, 2000.

[35] R.J. Bril and A. Postma. An architectural connectivity metric and its support for
incremental re-architecting of large legacy systems. In International Workshop on
Program Comprehension (IWPC), pages 269–280. IEEE, 2001.

[36] F. Brito e Abreu, M. Goulão, and R. Esteves. Toward the design quality evaluation
of Object-Oriented software systems. In International Conference of Software
Quality, pages 44–57, 1995.

[37] M. Broy. Automotive software engineering. In International Conference on Software
Engineering (ICSE), pages 719–720. IEEE, 2003.

[38] M. Broy. Challenges in automotive software engineering. In International Conference
on Software Engineering (ICSE), pages 33–42. ACM, 2006.

[39] M. Broy, F. Deißenböck, and M. Pizka. A holistic approach to software quality at
work. In World Congress for Software Quality (WCSQ), 2005.

[40] M. Broy, M. Gleirscher, S. Merenda, D. Wild, P. Kluge, and W. Krenzer. Toward a
holistic and standardized automotive architecture description. Computer, 42(12):98–
101, 2009.

[41] M. Broy and R.H. Reussner. Architedural concepts in programming languages.
Computer, 43(10):88–91, 2010.

[42] R.J.A. Buhr. Use case maps as architectural entities for complex systems. IEEE
Transactions on Software Engineering (ITSE), 24(12):1131–1155, 1998.

134 Bibliography

[43] J. Businge, A. Serebrenik, and M.G.J van den Brand. An empirical study of
the evolution of Eclipse third-party plug-ins. In the Joint ERCIM Workshop on
Software Evolution and International Workshop on Principles of Software Evolution
(IWPSE), pages 63–72, 2010.

[44] J. Capers. Applied software measurement. McGraw-Hill, 1996.

[45] D.N. Card and R.L. Glass. Measuring Software Design Quality. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1990.

[46] M.R.V. Chaudron. Quality assurance in model-based software development: Chal-
lenges and opportunities. In Software Quality. Process Automation in Software
Development, pages 1–9. Springer, 2012.

[47] S.R. Chidamber and C.F. Kemerer. A metrics suite for object oriented design. IEEE
Transactions on Software Engineering, 20(6):476–493, 1994.

[48] J.R. Cordy. Submodel pattern extraction for Simulink models. In International
Software Product Line Conference (SPLC), pages 7–10. ACM, 2013.

[49] CQSE. ConQAT. https://www.cqse.eu/en/products/conqat/

overview/. (Accessed September 4, 2014).

[50] P. Cuenot, P. Frey, R. Johansson, H. Lönn, Y. Papadopoulos, M. Reiser, A. Sand-
berg, D. Servat, R. T. Kolagari, M. Törngren, and M. Weber. The EAST-ADL
Architecture Description Language for Automotive Embedded Software. In Model-
Based Engineering of Embedded Real-Time Systems, pages 297–307. Springer Verlag,
2011.

[51] B. Curtis, S.B. Sheppard, and P. Milliman. Third time charm: Stronger prediction of
programmer performance by software complexity metrics. In The 4th international
conference on Software engineering, pages 356–360, 1979.

[52] DAF Trucks N.V. Adaptive Cruise Control. http://www.daf.

com/SiteCollectionDocuments/Products/Safety_and_comfort_

systems/DAF-ACC-EN.pdf, 2013. (Accessed March 25, 2013).

[53] Y. Dajsuren. Evaluating benefits of SysML for DAF. Technical report, DAF
technical report 51050/12-333 (Confidential), 2012.

[54] Y. Dajsuren, C.M. Gerpheide, A. Serebrenik, A. Wijs, B. Vasilescu, and M.G.J.
van den Brand. Formalizing correspondence rules for automotive architecture views.
In ACM Sigsoft Conference on Quality of Software Architectures (QoSA), pages
129–138. ACM, 2014.

[55] Y. Dajsuren, M. Goldstein, and D. Moshkovich. Modernizing legacy software using a
System Grokking technology. In International Conference on Software Maintenance
(ICSM), pages 1–7, 2010.

[56] Y. Dajsuren and R.G.M. Huisman. Definition and evaluation of quality metrics for
automotive software models. Technical report, DAF technical report 51050/15-041
(Confidential), 2015.

https://www.cqse.eu/en/products/conqat/overview/
https://www.cqse.eu/en/products/conqat/overview/
http://www.daf.com/SiteCollectionDocuments/Products/Safety_and_comfort_systems/DAF-ACC-EN.pdf
http://www.daf.com/SiteCollectionDocuments/Products/Safety_and_comfort_systems/DAF-ACC-EN.pdf
http://www.daf.com/SiteCollectionDocuments/Products/Safety_and_comfort_systems/DAF-ACC-EN.pdf

Bibliography 135

[57] Y. Dajsuren, A. Serebrenik, R.G.M. Huisman, and M.G.J. van den Brand. A quality
framework for evaluating automotive architecture. In the FISITA World Automotive
Congress, pages 1–7. FISITA, 2014.

[58] Y. Dajsuren, M.G.J. van den Brand, and A. Serebrenik. Evolution mechanisms of
automotive architecture description languages. In the 10th edition of the BElgian-
NEtherlands software eVOLution seminar, pages 24–25, 2011.

[59] Y. Dajsuren, M.G.J. van den Brand, and A. Serebrenik. Modularity analysis of
automotive control software. Intelligent Cars, ERCIM News issue 94, pages 20–21,
2013.

[60] Y. Dajsuren, M.G.J. van den Brand, A. Serebrenik, and R.G.M. Huisman. Automo-
tive ADLs: a study on enforcing consistency through multiple architectural levels.
In International ACM SIGSOFT conference on Quality of Software Architectures
(QoSA), pages 71–80. ACM, 2012.

[61] Y. Dajsuren, M.G.J. van den Brand, A. Serebrenik, and S.A. Roubtsov. Simulink
models are also software: Modularity assessment. In International ACM SIGSOFT
conference on Quality of Software Architectures (QoSA), pages 99–106. ACM, 2013.

[62] D. Dan, S. Jarzabek, and R. Ferenc. Configuring Software for Reuse with VCL,
pages 16–30. University of Szeged, 2013.

[63] F. Deissenboeck, B. Hummel, E. Jürgens, M. Pfaehler, and B. Schätz. Model
clone detection in practice. In the 4th International Workshop on Software Clones
(IWSC), pages 57–64. ACM, 2010.

[64] F. Deissenboeck, B. Hummel, E. Jürgens, B. Schätz, S. Wagner, J-F. Girard,
and S. Teuchert. Clone detection in automotive model-based development. In
International Conference on Software Engineering (ICSE), pages 603–612. ACM,
2008.

[65] H. Dhama. Quantitative models of cohesion and coupling in software. Journal of
Systems and Software, 29(1):65–74, 1995.

[66] R.M. Dijkman, D.A.C. Quartel, and M.J. van Sinderen. Consistency in multi-
viewpoint design of enterprise information systems. Information and Software
Technology (IST), 50(7):737–752, 2008.

[67] E. Duala-Ekoko and M.P. Robillard. Clone region descriptors: Representing and
tracking duplication in source code. ACM Transactions on Software Engineering
and Methodology (TOSEM), 20(1):3, 2010.

[68] O.J. Dunn. Multiple comparisons among means. Journal of American Statistical
Association, 56:52–64, 1961.

[69] D. Durisic, M. Nilsson, M. Staron, and J. Hansson. Measuring the impact of changes
to the complexity and coupling properties of automotive software systems. Journal
of Systems and Software, 86(5):1275–1293, 2013.

[70] S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian. Selecting empirical
methods for software engineering research. In Guide to advanced empirical software
engineering, pages 285–311. Springer, 2008.

136 Bibliography

[71] Eclipse. PolarSys (Former TOPCASED). http://polarsys.org/. (Accessed
June 12, 2014).

[72] Eclipse. Sirius. http://www.eclipse.org/sirius/. (Accessed June 12, 2014).

[73] A. Egyed. Automatically validating model consistency during refinement. In
International Conference on Software Engineering (ICSE), pages 12–19, 2000.

[74] A. Egyed. Scalable consistency checking between diagrams – The VIEWINTEGRA
approach. In International Conference on Automated Software Engineering (ASE),
pages 387–390. IEEE, 2001.

[75] A. Egyed. Fixing inconsistencies in UML design models. In International Conference
on Software Engineering (ICSE), pages 292–301, Washington, DC, USA, 2007. IEEE.

[76] M. Elaasar and L. Briand. An overview of UML consistency management. Technical
Report SCE-04-18, 2004.

[77] D. Emery and R. Hilliard. Every architecture description needs a framework: Ex-
pressing architecture frameworks using ISO/IEC 42010. In Joint Working IEEE/I-
FIP Conference on Software Architecture (WICSA) and European Conference on
Software Architecture (ECSA), pages 31–40, 2009.

[78] European Commission. Commission Regulation (EC) No 692/2008 of 18 July
2008 implementing and amending Regulation (EC) No 715/2007 of the European
Parliament and of the Council on type-approval of motor vehicles with respect to
emissions from light passenger and commercial vehicles (Euro 5 and Euro 6) and
on access to vehicle repair and maintenance information, 2008.

[79] M.W. Evans and J.J. Marciniak. Software quality assurance and management.
Wiley, 1987.

[80] L. Feijs, R. Krikhaar, and R. van Ommering. A relational approach to support
software architecture analysis. Software: Practice and Experience, 28(4):371–400,
1998.

[81] L. Feijs and R. van Ommering. Theory of relations and its applications to software
structuring. Technical report, 1995.

[82] P.H. Feiler, D.P. Gluch, and J.J. Hudak. The architecture analysis & design language
(AADL): An introduction. Technical Report CMU/SEI-2006-TN-011, Software
Engineering Institute, Carnegie Mellon University, 2006.

[83] A. Field. Discovering Statistics Using SPSS. SAGE Publications, 2005.

[84] W.A. Florac. Software Quality Measurement: A Framework for Counting Problems
and Defects. Technical Report CMU/SEI-92-TR-022, Software Engineering Institute,
Carnegie Mellon University, 1992.

[85] S. Friedenthal, A. Moore, and R. Steiner. A Practical Guide to SysML: The Systems
Modeling Language. Morgan Kaufmann/OMG Press, 2011.

[86] J. Friedman. MATLAB/Simulink for automotive systems design. In Design,
Automation and Test in Europe, pages 1–2, 2006.

http://polarsys.org/
http://www.eclipse.org/sirius/

Bibliography 137

[87] K.R. Gabriel. Simultaneous test procedures—some theory of multiple comparisons.
The Annals Mathematical Statistics, 40(1):224–250, 1969.

[88] A. Geraci. IEEE Standard Computer Dictionary: Compilation of IEEE Standard
Computer Glossaries. IEEE Press, Piscataway, NJ, USA, 1991.

[89] S. Gerard and H. Espinoza. Rationale of the UML profile for Marte. Chapter of the
book: From MDD Concepts to Experiments and Illustrations, pages 43–52, 2006.

[90] P.C. Gerhardt Jr. Computer applications in gating and risering system design for
ductile iron castings. AFS Transactions, 91:475–476, 1983.

[91] G.K. Gill and C.F. Kemerer. Cyclomatic complexity density and software mainte-
nance productivity. IEEE Transaction on Software Engineering, 17(12):1284–1288,
December 1991.

[92] H.G.C Góngora, T. Gaudré, and S. Tucci-Piergiovanni. Towards an architectural
design framework for automotive systems development. In Complex Systems Design
and Management, pages 241–258. Springer, 2013.

[93] H. Graves and Y. Bijan. Using formal methods with SysML in aerospace design
and engineering. Annals of Mathematics and Artificial Intelligence (AMAI), pages
1–50, 2012.

[94] H. Grönniger, J. Hartmann, H. Krahn, S. Kriebel, L. Rothhardt, and B. Rumpe.
View-centric modeling of automotive logical architectures. In Modellbasierte En-
twicklung eingebetteter Systeme, pages 3–12, 2008.

[95] A. Haber, C. Kolassa, P. Manhart, P.M.S. Nazari, B. Rumpe, and I. Schaefer.
First-class variability modeling in Matlab/Simulink. In International Workshop on
Variability Modelling of Software-intensive Systems (VaMoS), pages 11–18. ACM,
2013.

[96] M.H. Halstead. Elements of Software Science (Operating and Programming Systems
Series). Elsevier Science Inc., New York, NY, USA, 1977.

[97] C. Hammerschmidt. AUTOSAR standard not ready to plug-and-play. http://
www.eetimes.com/document.asp?doc_id=1247499, 2007. (Accessed June
27, 2014).

[98] H.H. Harman. Modern factor analysis. University of Chicago Press, 1976.

[99] R.J. Harris. ANOVA: An Analysis of Variance Primer. F.E. Peacock Publishers,
1994.

[100] S. Henry and D. Kafura. Software structure metrics based on information flow.
IEEE Transactions on Software Engineering, 7(5):510–518, 1981.

[101] S. Henry and C. Selig. Predicting source-code complexity at the design stage. IEEE
Software, 7(2):36–44, March 1990.

[102] R. Hilliard, I. Malavolta, H. Muccini, and P. Pelliccione. On the composition and
reuse of viewpoints across architecture frameworks. In the Joint Working IEEE/IFIP
Conference on Software Architecture (WICSA) and European Conference on Software
Architecture (ECSA), pages 131–140. IEEE, 2012.

http://www.eetimes.com/document.asp?doc_id=1247499
http://www.eetimes.com/document.asp?doc_id=1247499

138 Bibliography

[103] M. Holander and D.A. Wolfe. Nonparametric statistical methods. Wiley, 1973.

[104] D. Holten. Hierarchical edge bundles: Visualization of adjacency relations in
hierarchical data. IEEE Transactions on Visualization and Computer Graphics,
12(5):741–748, 2006.

[105] A. Hosagrahara and P. Smith. Measuring productivity and quality in model-based
design. Technical Report 2005-01-1357, The MathWorks, Inc., 2005.

[106] S.E. Hove and B. Anda. Experiences from conducting semi-structured interviews in
empirical software engineering research. In 11th IEEE International Symposium on
Software Metrics, pages 10–23, 2005.

[107] W. Hu, T. Loeffler, and J. Wegener. Quality model based on ISO/IEC 9126 for
internal quality of MATLAB/Simulink/Stateflow models. In the IEEE International
Conference on Industrial Technology (ICIT), pages 325–330, 2012.

[108] R.G.M. Huisman. Vertically integrated (functional/EE) architectures. VDI-Tagung,
2014.

[109] IBM. Rational Rhapsody Designer for systems engineers. http://www.ibm.com/
software/products/. (Accessed June 27, 2014).

[110] The MathWorks Inc. Simulink - Simulation and Model-based Design. http:

//www.mathworks.com/products/simulink/. (Accessed June 27, 2014).

[111] INRIA. The Astrée Static Analyzer. http://www.astree.ens.fr/. (Accessed
January 7, 2015).

[112] ISO. ISO/IEC 10746-1 Information technology – Reference Model of Open Dis-
tributed Processing (RM-ODP). 1998.

[113] ISO. ISO/IEC 9126-1 Product quality–Part 1: Quality model, 2001.

[114] ISO. ISO/DIS 26262-2 road vehicles - Functional safety – part 2: management of
functional safety, 2009.

[115] ISO. ISO/IEC 25010 SQuaRE - Systems and software Quality Requirements and
Evaluation–System and software quality models, 2011.

[116] ISO. ISO/IEC/IEEE 42010 - Systems and software engineering–Architecture de-
scription, 2011.

[117] A. Israeli and D.G. Feitelson. The Linux kernel as a case study in software evolution.
Journal of Systems and Software, 83(3):485–501, 2010.

[118] S. Jarzabek, P. Bassett, H. Zhang, and W. Zhang. XVCL: XML-based variant
configuration language. In International Conference on Software Engineering (ICSE),
pages 810–811. IEEE, 2003.

[119] E. Juergens. Why and how to control cloning in software artifacts. PhD thesis,
Technische Universität München, 2011.

[120] S.H. Kan. Metrics and Models in Software Quality Engineering. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2nd edition, 2002.

http://www.ibm.com/software/products/
http://www.ibm.com/software/products/
http://www.mathworks.com/products/simulink/
http://www.mathworks.com/products/simulink/
http://www.astree.ens.fr/

Bibliography 139

[121] K.C. Kang, S.G Cohen, J.A. Hess, W.E. Novak, and A.S. Peterson. Feature-oriented
domain analysis (foda) feasibility study. Technical report, DTIC Document, 1990.

[122] klockwork. Software on wheels: Addressing the challenges of embedded automotive
software. www.klocwork.com/, 2014.

[123] Klocwork. Source Code Analysis. http://www.klocwork.com/

products-services/klocwork/static-code-analysis. (Accessed
September 4, 2014).

[124] P.R. Knittig, S. Shimizu, and R.J. Ballon. Modularization and its limitations in
the automobile industry. Working Paper for the Second Wold Conference on POM
and 15th POM Conference, 30.04.-03.05. 2004, Cancun, 2004.

[125] J. Knodel and D. Popescu. A comparison of static architecture compliance checking
approaches. In the Working IEEE/IFIP Conference on Software Architecture
(WICSA), pages 12–12. IEEE, 2007.

[126] F. Konietschke, L.A. Hothorn, and E. Brunner. Rank-based multiple test procedures
and simultaneous confidence intervals. Electronic Journal of Statistics, 6:738–759,
2012.

[127] E. Korshunova, M. Petković, M.G.J. van den Brand, and M.R. Mousavi. CPP2XMI:
Reverse engineering of UML class, sequence, and activity diagrams from C++ source
code. In Working Conference on Reverse Engineering (WCRE), pages 297–298,
2006.

[128] R. Koschke. Survey of research on software clones. Internationales Begegnungs-
und Forschungszentrum für Informatik, 2007.

[129] R. Koschke and D. Simon. Hierarchical reflexion models. In Working Conference
on Reverse Engineering (WCRE), page 36. IEEE, 2003.

[130] Y. Kotb and T. Katayama. Consistency checking of UML model diagrams using
the xml semantics approach. In Special Interest Tracks and Posters of the 14th
International Conference on World Wide Web (WWW), pages 982–983. ACM, 2005.

[131] R. Krikhaar. Software Architecture Reconstruction. PhD thesis, University of
Amsterdam, 1999.

[132] P. Kruchten. The rational unified process: an introduction. Addison-Wesley Profes-
sional, 2004.

[133] P.B. Kruchten. The 4+1 View Model of architecture. Software, IEEE, 12(6):42–50,
November 1995. doi:10.1109/52.469759.

[134] J.G. Lamm and T. Weilkiens. Functional architectures in SysML. Tag des Systems
Engineering (TdSE), 2010.

[135] C.F.J Lange. Assessing and Improving the Quality of Modeling: A Series of
Empirical Studies about the UML. PhD thesis, Eindhoven University of Technology,
2007.

[136] C.F.J. Lange, M.R.V. Chaudron, and J. Muskens. In practice: UML software
architecture and design description. IEEE Software, 23(2):40–46, 2006.

www.klocwork.com/
http://www.klocwork.com/products-services/klocwork/static-code-analysis
http://www.klocwork.com/products-services/klocwork/static-code-analysis
http://dx.doi.org/10.1109/52.469759

140 Bibliography

[137] K.-H. Lee, P.-G. Min, J.-H. Cho, and D.-J. Lim. Model-driven requirements
validation for automotive embedded software using uml. In International Conference
on Computing Technology and Information Management (ICCM), volume 1, pages
46–50, april 2012.

[138] M.M. Lehman and L.A. Belady, editors. Program evolution: processes of software
change. Academic Press Professional, Inc., San Diego, CA, USA, 1985.

[139] A. Leitner, W. Ebner, and C. Kreiner. Mechanisms to handle structural variability
in MATLAB/Simulink models. In Safe and Secure Software Reuse, pages 17–31.
Springer, 2013.

[140] W. Li and S. Henry. Object-oriented metrics that predict maintainability. Journal
of Systems and Software, 23(2):111–122, 1993.

[141] J.K. Liker. The way back for Toyota. Industrial Engineer (März), pages 29–33,
2010.

[142] R. Likert. A technique for the measurement of attitudes. Archives of psychology,
1932.

[143] D. Liu, K. Subramaniam, B.H. Far, and A. Eberlein. Automating transition from
use-cases to class model. In IEEE Canadian Conference on Electrical and Computer
Engineering (CCECE), volume 2, pages 831–834. IEEE, 2003.

[144] M. Lorenz and J. Kidd. Object-oriented software metrics: a practical guide. Prentice-
Hall, Inc., Upper Saddle River, NJ, USA, 1994.

[145] MathWorks Automotive Advisory Board (MAAB). Control Algorithm Modelling
Guidelines Using MATLAB, Simulink, and Stateflow Version 3.0. MathWorks,
2012.

[146] MAENAD. EAST-ADL 2.1.12 domain model specification. http://east-adl.
info/Specification/V2.1.12/html/index.html. (Accessed September 4,
2014).

[147] MAENAD. ICT MAENAD project. http://maenad.eu/. (Accessed September
4, 2014).

[148] R. Martin. OO Design Quality Metrics – An Analysis of Dependencies. In Workshop
Pragmatic and Theoretical Directions in Object-Oriented Software Metrics. OOPSLA,
1994.

[149] MathWorks. Polyspace. http://www.mathworks.com/products/

polyspace/?s_cid=wiki_polyspace_2. (Accessed January 7, 2015).

[150] Mathworks. Simulink control flow logic. http://www.mathworks.nl/help/
simulink/ug/modeling-control-flow-logic.html.

[151] MathWorks. 2014a documentation, types of model coverage - mat-
lab and simulink. http://www.mathworks.com/help/slvnv/ug/

types-of-model-coverage.html, 2014.

http://east-adl.info/Specification/V2.1.12/html/index.html
http://east-adl.info/Specification/V2.1.12/html/index.html
http://maenad.eu/
http://www.mathworks.com/products/polyspace/?s_cid=wiki_polyspace_2
http://www.mathworks.com/products/polyspace/?s_cid=wiki_polyspace_2
http://www.mathworks.nl/help/simulink/ug/modeling-control-flow-logic.html
http://www.mathworks.nl/help/simulink/ug/modeling-control-flow-logic.html
http://www.mathworks.com/help/slvnv/ug/types-of-model-coverage.html
http://www.mathworks.com/help/slvnv/ug/types-of-model-coverage.html

Bibliography 141

[152] MathWorks. Matlab sldiagnostics – display diagnostic information about
Simulink system. http://www.mathworks.com/help/simulink/slref/

sldiagnostics.html, 2014.

[153] T.J. McCabe. A complexity measure. IEEE Transactions on Software Engineering,
(4):308–320, 1976.

[154] T.J. McCabe and C.W. Butler. Design complexity measurement and testing.
Communications of the ACM, 32(12):1415–1425, 1989.

[155] J.A. McCall, P.K. Richards, and G.F. Walters. Factors in software quality: Concept
and definitions of software quality. PN, 1977.

[156] C. Mead and L. Conway. Physical Design Automation of VLSI Systems, volume 2.
Addison, 1980.

[157] N. Medvidović and R.N. Taylor. A Classification and Comparison Framework for
Software Architecture Description Languages. IEEE Transactions on Software
Engineering, 26(1):70–93, 2000.

[158] G. Menkhaus and B. Andrich. Metric suite for directing the failure mode analysis
of embedded software systems. In the International Conference on Enterprise
Information Systems, pages 266–273, 2005.

[159] T. Mens and A. (Eds.) Serebrenik, A. Cleve. Evolving Software Systems. Springer,
2014.

[160] T.D. Miller and P. Elgard. Defining modules, modularity and modularization. In
IPS Research Seminar, 1998.

[161] Ministry of Economy, Trade and Industry, Japan. Strengthening efforts to enhance
dependability and security of information system software. Technical Report Interim
report, 2009.

[162] Model Engineering Solutions. MES M-XRAY tool. http://www.

model-engineers.com/en/m-xray.html. (Accessed September 4, 2014).

[163] K. Mordal, N. Anquetil, J. Laval, A. Serebrenik, B. Vasilescu, and S. Ducasse.
Software quality metrics aggregation in industry. Journal of Software: Evolution
and Process, 25(10):1117–1135, 2013.

[164] G.C. Murphy, D. Notkin, and K. Sullivan. Software reflexion models: bridging
the gap between source and high-level models. In SIGSOFT Software Engineering
Notes (SEN), volume 20, pages 18–28, New York, NY, USA, 1995.

[165] J. Muskens, R.J. Bril, and M.R.V. Chaudron. Generalizing consistency checking
between software views. InWorking IEEE/IFIP Conference on Software Architecture
(WICSA), pages 169–180, 2005.

[166] N. Navet and F. Simonot-Lion. Automotive Embedded Systems Handbook. Industrial
Information Technology Series. CRC Press, 2009.

[167] NoMagic. MagicDraw SysML plugin. http://www.nomagic.com/products/
magicdraw-addons/sysml-plugin.html. (Accessed June 12, 2014).

http://www.mathworks.com/help/simulink/slref/sldiagnostics.html
http://www.mathworks.com/help/simulink/slref/sldiagnostics.html
http://www.model-engineers.com/en/m-xray.html
http://www.model-engineers.com/en/m-xray.html
http://www.nomagic.com/products/magicdraw-addons/sysml-plugin.html
http://www.nomagic.com/products/magicdraw-addons/sysml-plugin.html

142 Bibliography

[168] A. Nugroho, M.R.V. Chaudron, and E. Arisholm. Assessing UML design metrics
for predicting fault-prone classes in a Java system. In IEEE Working Conference
on Mining Software Repositories (MSR), pages 21–30. IEEE, 2010.

[169] Object Management Group. UML Profile for MARTE: Modeling and Analysis
of Real-Time Embedded Systems Version 1.1. http://www.omg.org/spec/

MARTE/1.1, 2011. (Accessed June 12, 2014).

[170] British Ministry of Defence. MOD Architecture Framework. http://www.modaf.
org.uk/. (Accessed September 27, 2014).

[171] National University of Singapore (XVCL) Team. XML-based variant configuration
language. http://xvcl.comp.nus.edu.sg. (Accessed January 10, 2014).

[172] M. Olszewska (Pla֒ska). On the Impact of Rigorous Approaches on the Quality of
Development. PhD thesis, Turku Centre for Computer Science, 2011.

[173] M. Olszewska (Pla֒ska). Simulink-specific design quality metrics. Technical Report
1002, Turku Centre for Computer Science, Turku, Finland, 2011.

[174] M. Olszewska (Pla֒ska), M. Huova, M. Waldén, K. Sere, and M. Linjama. Quality
analysis of Simulink models. In Conference on Quality Engineering in Software
Technology, pages 223–240. Dpunkt.Verlag GmbH, 2009.

[175] OMG. The Unified Modeling Language - UML 2.0. http://www.omg.org/

spec/UML/2.0/. (Accessed October 3, 2014).

[176] OMG. Systems Modeling Language (SysML) Specification version 1.3. http:

//www.omg.org/spec/SysML/, 2012.

[177] R. Pallierer and F. Wandling. AUTOSAR 4.0 – and Now? Challenges and solution
approaches to use. ATZelektronik worldwide, 7(3):38–41, 2012.

[178] J. Pandremenos, J. Paralikas, K. Salonitis, and G. Chryssolouris. Modularity con-
cepts for the automotive industry: a critical review. CIRP Journal of Manufacturing
Science and Technology, 1(3):148–152, 2009.

[179] C. Paredis, Y. Bernard, R.M. Burkhart, H. de Koning, S. Friedenthal, P. Fritzson,
N.F. Rouquette, and W. Schamai. An overview of the SysML-Modelica transforma-
tion specification. In INCOSE International Symposium, 2010.

[180] D.L. Parnas. On the criteria to be used in decomposing systems into modules.
Communications of the ACM, 15(12):1053–1058, 1972.

[181] M. Pfähler. Improving clone detection for models. Master’s thesis, Technische
Universität München, 2009.

[182] D. Pietrowski and B. Vijayendra. Softer side of quality. 2010.

[183] W. Poncin, A. Serebrenik, and M.G.J van den Brand. Process mining software
repositories. In European Conference on Software Maintenance and Reengineering
(CSMR), pages 5–14, 2011.

[184] C. Potts. Software-engineering research revisited. IEEE Software, 10(5):19–28,
1993.

http://www.omg.org/spec/MARTE/1.1
http://www.omg.org/spec/MARTE/1.1
http://www.modaf.org.uk/
http://www.modaf.org.uk/
http://xvcl.comp.nus.edu.sg
http://www.omg.org/spec/UML/2.0/
http://www.omg.org/spec/UML/2.0/
http://www.omg.org/spec/SysML/
http://www.omg.org/spec/SysML/

Bibliography 143

[185] A. Pretschner, M. Broy, I.H. Kruger, and T. Stauner. Software engineering for
automotive systems: A roadmap. In Future of Software Engineering, pages 55–71.
IEEE, 2007.

[186] R. Rana, M. Staron, J. Hansson, and M. Nilsson. Defect prediction over software
life cycle in automotive domain. In the International Joint conference on Software
Technologies (ICSOFT), Vienna, Austria, 2014.

[187] A. C. Rao, G. Dhadyalla, R. P. Jones, R. McMurran, and D. White. Systems
modelling of a driver information system – automotive industry case study. In
System of Systems Engineering (SSE), pages 254–259. IEEE, 2006.

[188] R. Rao and S.K. Card. The table lens: merging graphical and symbolic represen-
tations in an interactive focus+context visualization for tabular information. In
Conference Companion on Human Factors in Computing Systems, pages 318–322,
New York, NY, USA, 1994. ACM.

[189] M. Rappl, P. Braun, M. Von Der Beeck, and C. Schröder. Automotive software
development: A model based approach. Technical report, SAE Technical Paper,
2002.

[190] D. Rattan, R. Bhatia, and M. Singh. Software clone detection: A systematic review.
Information and Software Technology, 55(7):1165–1199, 2013.

[191] B. Ravi. Computer-aided casting design–past, present and future. KOREA,
1(1.48):777, 1999.

[192] D. Reniers, L. Voinea, and A. Telea. Visual exploration of program structure,
dependencies and metrics with SolidSX. In Visualizing Software for Understanding
and Analysis, pages 1–4, 2011.

[193] R.H. Reussner. The use of parameterised contracts for architecting systems with soft-
ware components. In International Workshop on Component-Oriented Programming
(WCOP), 2001.

[194] N.C. Robert. This car runs on code. http://www.spectrum.ieee.org/

feb09/7649, 2009. (Accessed June 27, 2014).

[195] H.D. Rombach. A controlled expeniment on the impact of software structure on
maintainability. IEEE Transactions on Software Engineering, SE-13(3):344–354,
1987.

[196] J.R. Romero, J.I. Jaen, and A. Vallecillo. Realizing correspondences in multi-
viewpoint specifications. In IEEE International Conference on Enterprise Distributed
Object Computing (EDOC), pages 163–172. IEEE, 2009.

[197] J.R. Romero and A. Vallecillo. Well-formed rules for viewpoint correspondences
specification. In Enterprise Distributed Object Computing Conference Workshops
(EDOC), pages 441–443, 2008.

[198] J. Rosik, J. Buckley, and M.A. Babar. Design requirements for an architecture
consistency tool. In Annual Conference on Psychology of Programming Interest
Group (PPIG), pages 1–15, 2009.

http://www.spectrum.ieee.org/feb09/7649
http://www.spectrum.ieee.org/feb09/7649

144 Bibliography

[199] S.A. Roubtsov, A. Serebrenik, A. Mazoyer, and M.G.J. van den Brand. I2SD: Reverse
engineering Sequence Diagrams from Enterprise Java Beans with interceptors. In
IEEE International Working Conference on Source Code Analysis and Manipulation
(SCAM), pages 155–164, 2011.

[200] S.A. Roubtsov, A. Serebrenik, A. Mazoyer, M.G.J. van den Brand, and E. Roubtsova.
I2SD: Reverse Engineering Sequence Diagrams from Enterprise Java Beans with
interceptors. IET software, 7(3):150–166, 2013.

[201] S.A. Roubtsov, A. Telea, and D. Holten. SQuAVisiT: A software quality assessment
and visualisation toolset. In the Seventh IEEE International Working Conference
on Source Code Analysis and Manipulation (SCAM), pages 155–156, Washington,
DC, USA, 2007. IEEE.

[202] Routio, P. Theory of Architecture. http://www.uiah.fi/projects/metodi/
13k.htm. (Accessed September 4, 2014).

[203] C.K. Roy, J.R. Cordy, and R. Koschke. Comparison and evaluation of code clone
detection techniques and tools: A qualitative approach. Science of Computer
Programming, 74(7):470–495, 2009.

[204] N. Rozanski and E. Woods. Software Systems Architecture: Working With Stake-
holders Using Viewpoints and Perspectives. Addison-Wesley Professional, 2005.

[205] SAE International. Architecture Analysis and Design Language. http://www.

aadl.info/.

[206] A. Sangiovanni-Vincentelli and M. Di Natale. Embedded system design for automo-
tive applications. IEEE Computer, 40(10):42–51, 2007.

[207] C.N. Sant’Anna. On the modularity of aspect-oriented design: A concern-driven mea-
surement approach. Pontifica Universidade Catolica do Rio de Janeiro. Computer
Science Department., Rio de Janeiro, PhD Thesis, 2008.

[208] J. Schäuffele and T. Zurawka. Automotive Software Engineering: Principles, Pro-
cesses, Methods, And Tools. Society of Automotive Engineers. SAE International,
2005.

[209] J. Scheible. Automatisierte Qualitätsbewertung am Beispiel von MATLAB Simulink-
Modellen in der Automobil-Domäne. PhD thesis, Universität Tübingen, Wilhelmstr.
32, 72074 Tübingen, 2012.

[210] M. Schulze, J. Weiland, and D. Beuche. Automotive model-driven development
and the challenge of variability. In the 16th International Software Product Line
Conference (SPLC), volume 1, pages 207–214. ACM, 2012.

[211] A. Serebrenik, S.A. Roubtsov, and M.G.J van den Brand. Dn-based architecture
assessment of Java Open Source software systems. In IEEE 17th International
Conference on Program Comprehension, pages 198–207. IEEE, 2009.

[212] A. Serebrenik and M.G.J van den Brand. Theil index for aggregation of software
metrics values. In IEEE International Conference on Software Maintenance, pages
1–9, 2010.

http://www.uiah.fi/projects/metodi/13k.htm
http://www.uiah.fi/projects/metodi/13k.htm
http://www.aadl.info/
http://www.aadl.info/

Bibliography 145

[213] M. Shepperd and D. Ince. Derivation and Validation of Software Metrics. Interna-
tional Series of Monographs on Computer Science. Clarendon Press, 1993.

[214] D.J. Sheskin. Handbook of Parametric and Nonparametric Statistical Procedures.
Chapman & Hall, 4th edition, 2007.

[215] S. Shiraishi and M. Abe. Automotive system development based on collaborative
modeling using multiple ADLs. In European Software Engineering Conference/-
Foundations of Software Engineering (ESEC/FSE), pages 1–4, 2011.

[216] B. Shishkov, Z. Xie, K. Lui, and J. Dietz. Using norm analysis to derive use case
from business processes. In Workshop on Organizations Semiotics (WOS), pages
14–15, 2002.

[217] R. Shorey. Emerging trends in vehicular communications. IEEE, 2014.

[218] Software Quality Metrics Methodology Working Group. IEEE Standard for a
Software Quality Metrics Methodology, 1998/2004.

[219] Sparx Systems. Enterprise Architect. http://www.sparxsystems.com/. (Ac-
cessed June 12, 2014).

[220] M.K. Starr. Modular production–a new concept. Harvard business review, 43(6):131–
142, 1965.

[221] M.K. Starr. Modular production–a 45-year-old concept. International Journal of
Operations & Production Management, 30(1):7–19, 2010.

[222] N. Steinkamp and J. Reed. Automotive industry: Warranty and recall annual report.
SAA, 2013.

[223] M. Stephan, M.H. Alalfi, A. Stevenson, and J.R. Cordy. Using mutation analysis
for a model-clone detector comparison framework. In International Conference on
Software Engineering (ICSE), pages 1261–1264. IEEE, 2013.

[224] I. Stürmer and H. Pohlheim. Model quality assessment in practice: How to measure
and assess the quality of software models during the embedded software development
process. In Embedded Real Time Software and Systems, 2012.

[225] The ATESST Consortium. EAST-ADL 2.0 Specification. http://www.

atesst.org/home/liblocal/docs/EAST-ADL-2.0-Specification_

2008-02-29.pdf.

[226] The Boston Consulting Group. Automotive industry is entering a new golden era of
innovation. http://www.bcg.com/media/PressReleaseDetails.aspx?

id=tcm:12-152696, 2014.

[227] The Consultative Committee for Space Data Systems. Reference architecture for
space data systems. http://public.ccsds.org/publications/.

[228] The TIMMO Consortium. TADL: Timing Augmented Description Language version
2. http://www.timmo-2-use.org/timmo/index.htm. (Accessed June 27,
2014).

http://www.sparxsystems.com/
 http://www.atesst.org/home/liblocal/docs/EAST-ADL-2.0-Specification_2008-02-29.pdf
 http://www.atesst.org/home/liblocal/docs/EAST-ADL-2.0-Specification_2008-02-29.pdf
 http://www.atesst.org/home/liblocal/docs/EAST-ADL-2.0-Specification_2008-02-29.pdf
http://www.bcg.com/media/PressReleaseDetails.aspx?id=tcm:12-152696
http://www.bcg.com/media/PressReleaseDetails.aspx?id=tcm:12-152696
http://public.ccsds.org/publications/
http://www.timmo-2-use.org/timmo/index.htm

146 Bibliography

[229] M. Toomim, A. Begel, and S.L. Graham. Managing duplicated code with linked
editing. In IEEE Symposium on Visual Languages and Human Centric Computing
(VL/HCC), pages 173–180. IEEE, 2004.

[230] Minh T.Q. and I. Kreuz. Refactoring of Simulink models. In MathWorks Automotive
Conference, 2012.

[231] M.G.J. van den Brand, Z. Protić, and T. Verhoeff. A generic solution for syntax-
driven model co-evolution. In TOOLS, pages 36–51, 2011.

[232] M.G.J. van den Brand, S.A. Roubtsov, and A. Serebrenik. SQuAVisiT: A flexible tool
for visual software analytics. In the European Conference on Software Maintenance
and Reengineering (CSMR), pages 331–332, Washington, DC, USA, 2009. IEEE.

[233] V. van Reeven, T. Hofman, R.G.M. Huisman, and M. Steinbuch. Extending energy
management in hybrid electric vehicles with explicit control of gear shifting and
start-stop. In American Control Conference (ACC), pages 521–526. IEEE, 2012.

[234] B. Vasilescu, A. Serebrenik, M. Goeminne, and T. Mens. On the variation and spe-
cialisation of workload–a case study of the Gnome ecosystem community. Empirical
Software Engineering, 19(4):955–1008, 2014.

[235] B. Vasilescu, A. Serebrenik, and M.G.J. van den Brand. By no means: a study on
aggregating software metrics. In International Workshop on Emerging Trends in
Software Metrics (WETSoM), pages 23–26, New York, NY, USA, 2011. ACM.

[236] B. Vasilescu, A. Serebrenik, and M.G.J van den Brand. You can’t control the
unfamiliar: A study on the relations between aggregation techniques for software
metrics. In the 27th IEEE International Conference on Software Maintenance
(ICSM), pages 313–322, 2011.

[237] S. Vestal. MetaH support for real-time multi-processor avionics. In Parallel and
Distributed Real-Time Systems workshop, pages 11–21, 1997.

[238] S. Wagner, A. Goeb, L. Heinemann, M. Kläs, C. Lampasona, K. Lochmann, A. Mayr,
R. Plösch, A. Seidl, J. Streit, et al. Operationalised product quality models and
assessment: The Quamoco approach. Information and Software Technology, 62:101–
123, 2015.

[239] P.D. Webster and J.M. Young. Computer aided gating systems design. The British
Foundryman, 94:276–284, 1986.

[240] T. Weilkiens. Systems engineering with SysML/UML: modeling, analysis, design.
Morgan Kaufmann, 2011.

[241] S.A. Whitmire. Object Oriented Design Measurement. John Wiley & Sons, Inc.,
New York, NY, USA, 1st edition, 1997.

[242] F. Wilcoxon. Individual comparisons by ranking methods. Biometrics Bulletin,
1(6):80–83, 1945.

[243] R.K. Yin. Case study research: Design and methods. Sage publications, 2013.

[244] J. Yoshida. Honda admits software problem. http://www.eetimes.com/

document.asp?doc_id=1323061, 2014. (Accessed August 10, 2014).

http://www.eetimes.com/document.asp?doc_id=1323061
http://www.eetimes.com/document.asp?doc_id=1323061

Bibliography 147

[245] E. Yourdon and L.L. Constantine. Structured design: Fundamentals of a discipline
of computer program and systems design, volume 5. Prentice-Hall Englewood Cliffs,
1979.

[246] C. Zapata, G. González, and A. Gelbukh. A rule-based system for assessing
consistency between UML models. Mexican International Conference on Advances
in Artificial Intelligence (MICAI), pages 215–224, 2007.

[247] D.W. Zimmerman and B.D. Zumbo. Parametric alternatives to the Student t test
under violation of normality and homogeneity of variance. Perceptual and Motor
Skills, 74(3(1)):835–844, 1992.

Summary

On the Design of an Architecture Framework and

Quality Evaluation for Automotive Software Systems

Nowadays, 90 percent of the innovation in vehicles is enabled by software. Over the past
thirty years different methods have been developed to tackle the increasing complexity
and to decrease the development costs of the automotive software systems. In the scope
of this thesis, automotive architectural modeling and quality evaluation methods have
been addressed. According to the ISO 42010 standard, an Architecture Description
language (ADL) and an Architecture Framework (AF) are the key mechanisms used
in architecture descriptions. ADLs can exist without respective AFs. However, the
successful application of an ADL can depend on the proper definition of an AF, since
an AF enables better organization and application of an ADL with clear separation of
concerns. Although automotive ADLs have been developed over the last decade, only in
recent years, automotive companies started to take initiative in defining an architecture
framework for automotive systems, e.g., the Architecture Design Framework by Renault.
The first draft of the Automotive Architecture Framework (AAF) was already proposed
half a decade ago by Broy. The first contribution of this thesis is the definition of an
Architecture Framework for Automotive Systems (AFAS), which fills a major gap between
existing automotive AFs and ADLs that was identified during the literature review and
the evaluation of automotive ADLs.

During the evaluation of automotive ADLs, we identified the lack of the capability
to ensure the architectural quality. Even though quality models based on the ISO/IEC
SQuaRe quality standard have been specified for MATLAB Simulink design models, the
quality framework for automotive architectural models has not been defined. Based on a
series of structured interviews with architects (from one automotive company) responsible
for modeling automotive software at different architectural viewpoints, we identified
consistency, modularity, and complexity as the three main pillars of quality for automotive
architectures. Modeling hierarchal elements consistently from different architectural
viewpoints, and handling data and control complexity are the key needs of automotive
architecture modeling. Therefore, the second contribution of this thesis is the definition
and development of the quality evaluation framework for automotive software systems.

Ensuring consistency between the different architectural viewpoints is one of the
key issues regarding architectural quality of automotive systems. Correspondence rules
between architectural viewpoints are not formally defined in the scope of the automotive
architecture description mechanisms. Therefore, we propose a consistency detection
mechanism based on correspondence rules between automotive architectural viewpoints

150 Summary

and developed a prototype tool to perform this consistency checking between different
architectural viewpoints. The consistency checking approach and the prototype tool were
evaluated in the scope of an Adaptive Cruise Control modeling between two separate
teams emulating OEM and automotive supplier.

To evaluate modularity and complexity, we follow the Goal-Question-Metric (GQM)
approach. By conducting a series of interviews with automotive architects and reviewing
relevant standards, we have identified complexity and modularity aspects serving as goals
in GQM. Then based on the academic and industrial publications, we have identified
a series of questions that need to be answered to achieve the aforementioned goals.
Automotive architects have again reviewed these questions. Finally, we have defined
metrics required to answer the questions, and identified/implemented tools capable
of measuring and presenting these metrics. The quality framework has been applied
to industrial automotive architectural and design models. Results of the framework
application have been evaluated by means of qualitative and quantitative analyses. By
applying the framework to three subsequent releases of an architectural model and
the corresponding design models, we have observed, for example, that addition of new
functionality or bug fixing in design models often come at a price of increased complexity
at the design level, and sometimes compromise modularity of the architectural model.

To facilitate the quality evaluation process, the framework applies visual analytics
approach for the visualization of modularity and complexity with the help of SQuAVisiT
toolset. This approach enables early feedback about software quality making it cheaper and
easier to reuse and maintain than traditional techniques. In addition to the visualizations,
a mechanism for clone management based on Variant Configuration Language (VCL)
is developed to manage model clones and variants. The benefits of using VCL as the
variability technique includes separating the variability concern from the functionality
concern. The variability mechanism has been validated by converting a number of clone
pairs with a varied set of differences into generic representations of VCL.

To summarize, we defined an architecture framework for automotive software systems
with a coherent set of viewpoints and views for automotive ADLs. Having a coherent set of
architecture viewpoints and views and analyzing automotive specific needs for architecture
description mechanisms, we identified consistency, modularity, and complexity as the three
main quality attributes for automotive software systems. We developed a correspondence
rule based method for ensuring consistency between different architectural viewpoints
and defined metric sets for assessing modularity and complexity as part of the quality
framework. The quality framework is also extended by the quality visualization and clone
detection mechanisms to improve software quality.

Curriculum Vitae

Yanjindulam (Yanja) Dajsuren was born on February 7th, 1979 in Gobi-Altai, Mongolia.
After obtaining her Bachelor of Science degree in Computer Science with honors in 2000
at the National University of Mongolia (NUM) in Ulaanbaatar, Mongolia, she worked as
a Software Developer at the Computer Information Center of the NUM and a Part-time
Lecturer and afterwards a Lecturer at the NUM. She earned her Master of Business
Administration degree at Maastricht School of Management, the Netherlands in 2002. She
obtained a Professional Doctorate in Engineering degree (PDEng) at Eindhoven University
of Technology (TU/e), the Netherlands in 2005 and then worked as a (Senior) Research
Scientist at Philips Research, NXP Semiconductors, and Virage Logic in the Netherlands.
In October 2010 she started a PhD research in collaboration with DAF Trucks NV within
the Hybrid Innovations for Trucks (HIT) project at the TU/e in Eindhoven, of which the
results are presented in this thesis. Since October 2014 she is employed as a Researcher
at the TU/e.

Titles in the IPA Dissertation Series since 2009

M.H.G. Verhoef. Modeling and Validat-
ing Distributed Embedded Real-Time Con-
trol Systems. Faculty of Science, Mathe-
matics and Computer Science, RU. 2009-01

M. de Mol. Reasoning about Functional
Programs: Sparkle, a proof assistant for
Clean. Faculty of Science, Mathematics
and Computer Science, RU. 2009-02

M. Lormans. Managing Requirements
Evolution. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Science,
TUD. 2009-03

M.P.W.J. van Osch. Automated Model-
based Testing of Hybrid Systems. Faculty
of Mathematics and Computer Science,
TU/e. 2009-04

H. Sozer. Architecting Fault-Tolerant
Software Systems. Faculty of Electrical En-
gineering, Mathematics & Computer Sci-
ence, UT. 2009-05

M.J. van Weerdenburg. Efficient
Rewriting Techniques. Faculty of
Mathematics and Computer Science,
TU/e. 2009-06

H.H. Hansen. Coalgebraic Modelling:
Applications in Automata Theory and
Modal Logic. Faculty of Sciences, Divi-
sion of Mathematics and Computer Sci-
ence, VUA. 2009-07

A. Mesbah. Analysis and Testing
of Ajax-based Single-page Web Applica-
tions. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Science,
TUD. 2009-08

A.L. Rodriguez Yakushev. To-
wards Getting Generic Programming Ready
for Prime Time. Faculty of Science,
UU. 2009-9

K.R. Olmos Joffré. Strategies for Con-
text Sensitive Program Transformation.
Faculty of Science, UU. 2009-10

J.A.G.M. van den Berg. Reasoning
about Java programs in PVS using JML.

Faculty of Science, Mathematics and Com-
puter Science, RU. 2009-11

M.G. Khatib. MEMS-Based Storage De-
vices. Integration in Energy-Constrained
Mobile Systems. Faculty of Electrical Engi-
neering, Mathematics & Computer Science,
UT. 2009-12

S.G.M. Cornelissen. Evaluating Dy-
namic Analysis Techniques for Program
Comprehension. Faculty of Electrical Engi-
neering, Mathematics, and Computer Sci-
ence, TUD. 2009-13

D. Bolzoni. Revisiting Anomaly-based
Network Intrusion Detection Systems. Fac-
ulty of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2009-14

H.L. Jonker. Security Matters: Privacy
in Voting and Fairness in Digital Exchange.
Faculty of Mathematics and Computer Sci-
ence, TU/e. 2009-15

M.R. Czenko. TuLiP - Reshaping Trust
Management. Faculty of Electrical Engi-
neering, Mathematics & Computer Science,
UT. 2009-16

T. Chen. Clocks, Dice and Processes. Fac-
ulty of Sciences, Division of Mathematics
and Computer Science, VUA. 2009-17

C. Kaliszyk. Correctness and Availabil-
ity: Building Computer Algebra on top of
Proof Assistants and making Proof Assis-
tants available over the Web. Faculty of
Science, Mathematics and Computer Sci-
ence, RU. 2009-18

R.S.S. O’Connor. Incompleteness &
Completeness: Formalizing Logic and
Analysis in Type Theory. Faculty of Sci-
ence, Mathematics and Computer Science,
RU. 2009-19

B. Ploeger. Improved Verification Meth-
ods for Concurrent Systems. Faculty
of Mathematics and Computer Science,
TU/e. 2009-20

T. Han. Diagnosis, Synthesis and Analy-
sis of Probabilistic Models. Faculty of Elec-
trical Engineering, Mathematics & Com-
puter Science, UT. 2009-21

R. Li. Mixed-Integer Evolution Strategies
for Parameter Optimization and Their Ap-
plications to Medical Image Analysis. Fac-
ulty of Mathematics and Natural Sciences,
UL. 2009-22

J.H.P. Kwisthout. The Computational
Complexity of Probabilistic Networks. Fac-
ulty of Science, UU. 2009-23

T.K. Cocx. Algorithmic Tools for
Data-Oriented Law Enforcement. Fac-
ulty of Mathematics and Natural Sciences,
UL. 2009-24

A.I. Baars. Embedded Compilers. Fac-
ulty of Science, UU. 2009-25

M.A.C. Dekker. Flexible Access Control
for Dynamic Collaborative Environments.
Faculty of Electrical Engineering, Mathe-
matics & Computer Science, UT. 2009-26

J.F.J. Laros. Metrics and Visualisation
for Crime Analysis and Genomics. Fac-
ulty of Mathematics and Natural Sciences,
UL. 2009-27

C.J. Boogerd. Focusing Automatic Code
Inspections. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Science,
TUD. 2010-01

M.R. Neuhäußer. Model Checking Non-
deterministic and Randomly Timed Sys-
tems. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2010-02

J. Endrullis. Termination and Pro-
ductivity. Faculty of Sciences, Division
of Mathematics and Computer Science,
VUA. 2010-03

T. Staijen. Graph-Based Specification
and Verification for Aspect-Oriented Lan-
guages. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2010-04

Y. Wang. Epistemic Modelling and
Protocol Dynamics. Faculty of Science,
UvA. 2010-05

J.K. Berendsen. Abstraction, Prices and
Probability in Model Checking Timed Au-
tomata. Faculty of Science, Mathematics
and Computer Science, RU. 2010-06

A. Nugroho. The Effects of UML Mod-
eling on the Quality of Software. Fac-
ulty of Mathematics and Natural Sciences,
UL. 2010-07

A. Silva. Kleene Coalgebra. Faculty of
Science, Mathematics and Computer Sci-
ence, RU. 2010-08

J.S. de Bruin. Service-Oriented Dis-
covery of Knowledge - Foundations, Im-
plementations and Applications. Faculty
of Mathematics and Natural Sciences,
UL. 2010-09

D. Costa. Formal Models for Component
Connectors. Faculty of Sciences, Division
of Mathematics and Computer Science,
VUA. 2010-10

M.M. Jaghoori. Time at Your Service:
Schedulability Analysis of Real-Time and
Distributed Services. Faculty of Mathemat-
ics and Natural Sciences, UL. 2010-11

R. Bakhshi. Gossiping Models: Formal
Analysis of Epidemic Protocols. Faculty of
Sciences, Department of Computer Science,
VUA. 2011-01

B.J. Arnoldus. An Illumination of the
Template Enigma: Software Code Genera-
tion with Templates. Faculty of Mathemat-
ics and Computer Science, TU/e. 2011-02

E. Zambon. Towards Optimal IT Avail-
ability Planning: Methods and Tools. Fac-
ulty of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2011-03

L. Astefanoaei. An Executable Theory
of Multi-Agent Systems Refinement. Fac-
ulty of Mathematics and Natural Sciences,
UL. 2011-04

J. Proença. Synchronous coordination of
distributed components. Faculty of Mathe-
matics and Natural Sciences, UL. 2011-05

A. Moralı. IT Architecture-Based Confi-
dentiality Risk Assessment in Networks of
Organizations. Faculty of Electrical Engi-
neering, Mathematics & Computer Science,
UT. 2011-06

M. van der Bijl. On changing models in
Model-Based Testing. Faculty of Electri-
cal Engineering, Mathematics & Computer
Science, UT. 2011-07

C. Krause. Reconfigurable Component
Connectors. Faculty of Mathematics and
Natural Sciences, UL. 2011-08

M.E. Andrés. Quantitative Analysis of
Information Leakage in Probabilistic and
Nondeterministic Systems. Faculty of Sci-
ence, Mathematics and Computer Science,
RU. 2011-09

M. Atif. Formal Modeling and Verifica-
tion of Distributed Failure Detectors. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2011-10

P.J.A. van Tilburg. From Com-
putability to Executability – A process-
theoretic view on automata theory. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2011-11

Z. Protic. Configuration management for
models: Generic methods for model com-
parison and model co-evolution. Faculty
of Mathematics and Computer Science,
TU/e. 2011-12

S. Georgievska. Probability and Hid-
ing in Concurrent Processes. Faculty
of Mathematics and Computer Science,
TU/e. 2011-13

S. Malakuti. Event Composition Model:
Achieving Naturalness in Runtime Enforce-
ment. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2011-14

M. Raffelsieper. Cell Libraries and Veri-
fication. Faculty of Mathematics and Com-
puter Science, TU/e. 2011-15

C.P. Tsirogiannis. Analysis of Flow and
Visibility on Triangulated Terrains. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2011-16

Y.-J. Moon. Stochastic Models for Qual-
ity of Service of Component Connectors.
Faculty of Mathematics and Natural Sci-
ences, UL. 2011-17

R. Middelkoop. Capturing and Exploit-
ing Abstract Views of States in OO Verifi-
cation. Faculty of Mathematics and Com-
puter Science, TU/e. 2011-18

M.F. van Amstel. Assessing and Im-
proving the Quality of Model Transforma-
tions. Faculty of Mathematics and Com-
puter Science, TU/e. 2011-19

A.N. Tamalet. Towards Correct Pro-
grams in Practice. Faculty of Sci-
ence, Mathematics and Computer Science,
RU. 2011-20

H.J.S. Basten. Ambiguity Detection for
Programming Language Grammars. Fac-
ulty of Science, UvA. 2011-21

M. Izadi. Model Checking of Component
Connectors. Faculty of Mathematics and
Natural Sciences, UL. 2011-22

L.C.L. Kats. Building Blocks for Lan-
guage Workbenches. Faculty of Electrical
Engineering, Mathematics, and Computer
Science, TUD. 2011-23

S. Kemper. Modelling and Analysis of
Real-Time Coordination Patterns. Fac-
ulty of Mathematics and Natural Sciences,
UL. 2011-24

J. Wang. Spiking Neural P Systems. Fac-
ulty of Mathematics and Natural Sciences,
UL. 2011-25

A. Khosravi. Optimal Geometric Data
Structures. Faculty of Mathematics and
Computer Science, TU/e. 2012-01

A. Middelkoop. Inference of Program
Properties with Attribute Grammars, Re-
visited. Faculty of Science, UU. 2012-02

Z. Hemel. Methods and Techniques for
the Design and Implementation of Domain-
Specific Languages. Faculty of Electrical
Engineering, Mathematics, and Computer
Science, TUD. 2012-03

T. Dimkov. Alignment of Organizational
Security Policies: Theory and Practice.
Faculty of Electrical Engineering, Math-
ematics & Computer Science, UT. 2012-04

S. Sedghi. Towards Provably Secure Ef-
ficiently Searchable Encryption. Faculty
of Electrical Engineering, Mathematics &
Computer Science, UT. 2012-05

F. Heidarian Dehkordi. Studies on Ver-
ification of Wireless Sensor Networks and
Abstraction Learning for System Inference.
Faculty of Science, Mathematics and Com-
puter Science, RU. 2012-06

K. Verbeek. Algorithms for Cartographic
Visualization. Faculty of Mathematics and
Computer Science, TU/e. 2012-07

D.E. Nadales Agut. A Compositional
Interchange Format for Hybrid Systems:
Design and Implementation. Faculty of
Mechanical Engineering, TU/e. 2012-08

H. Rahmani. Analysis of Protein-
Protein Interaction Networks by Means of
Annotated Graph Mining Algorithms. Fac-
ulty of Mathematics and Natural Sciences,
UL. 2012-09

S.D. Vermolen. Software Language Evo-
lution. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Science,
TUD. 2012-10

L.J.P. Engelen. From Napkin Sketches
to Reliable Software. Faculty of Mathemat-
ics and Computer Science, TU/e. 2012-11

F.P.M. Stappers. Bridging Formal Mod-
els – An Engineering Perspective. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2012-12

W. Heijstek. Software Architecture De-
sign in Global and Model-Centric Software
Development. Faculty of Mathematics and
Natural Sciences, UL. 2012-13

C. Kop. Higher Order Termination. Fac-
ulty of Sciences, Department of Computer
Science, VUA. 2012-14

A. Osaiweran. Formal Development of
Control Software in the Medical Systems
Domain. Faculty of Mathematics and Com-
puter Science, TU/e. 2012-15

W. Kuijper. Compositional Synthesis of
Safety Controllers. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2012-16

H. Beohar. Refinement of Communica-
tion and States in Models of Embedded Sys-
tems. Faculty of Mathematics and Com-
puter Science, TU/e. 2013-01

G. Igna. Performance Analysis of Real-
Time Task Systems using Timed Automata.
Faculty of Science, Mathematics and Com-
puter Science, RU. 2013-02

E. Zambon. Abstract Graph Transfor-
mation – Theory and Practice. Faculty
of Electrical Engineering, Mathematics &
Computer Science, UT. 2013-03

B. Lijnse. TOP to the Rescue – Task-
Oriented Programming for Incident Re-
sponse Applications. Faculty of Sci-
ence, Mathematics and Computer Science,
RU. 2013-04

G.T. de Koning Gans. Outsmarting
Smart Cards. Faculty of Science, Mathe-
matics and Computer Science, RU. 2013-05

M.S. Greiler. Test Suite Comprehension
for Modular and Dynamic Systems. Fac-
ulty of Electrical Engineering, Mathemat-
ics, and Computer Science, TUD. 2013-06

L.E. Mamane. Interactive mathemati-
cal documents: creation and presentation.
Faculty of Science, Mathematics and Com-
puter Science, RU. 2013-07

M.M.H.P. van den Heuvel. Compo-
sition and synchronization of real-time
components upon one processor. Faculty
of Mathematics and Computer Science,
TU/e. 2013-08

J. Businge. Co-evolution of the Eclipse
Framework and its Third-party Plug-ins.
Faculty of Mathematics and Computer Sci-
ence, TU/e. 2013-09

S. van der Burg. A Reference Archi-
tecture for Distributed Software Deploy-
ment. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Science,
TUD. 2013-10

J.J.A. Keiren. Advanced Reduction
Techniques for Model Checking. Faculty
of Mathematics and Computer Science,
TU/e. 2013-11

D.H.P. Gerrits. Pushing and Pulling:
Computing push plans for disk-shaped
robots, and dynamic labelings for moving
points. Faculty of Mathematics and Com-
puter Science, TU/e. 2013-12

M. Timmer. Efficient Modelling, Gener-
ation and Analysis of Markov Automata.
Faculty of Electrical Engineering, Mathe-
matics & Computer Science, UT. 2013-13

M.J.M. Roeloffzen. Kinetic Data Struc-
tures in the Black-Box Model. Faculty
of Mathematics and Computer Science,
TU/e. 2013-14

L. Lensink. Applying Formal Methods
in Software Development. Faculty of Sci-
ence, Mathematics and Computer Science,
RU. 2013-15

C. Tankink. Documentation and For-
mal Mathematics — Web Technology
meets Proof Assistants. Faculty of Sci-
ence, Mathematics and Computer Science,
RU. 2013-16

C. de Gouw. Combining Monitoring
with Run-time Assertion Checking. Fac-
ulty of Mathematics and Natural Sciences,
UL. 2013-17

J. van den Bos. Gathering Evidence:
Model-Driven Software Engineering in Au-
tomated Digital Forensics. Faculty of Sci-
ence, UvA. 2014-01

D. Hadziosmanovic. The Process Mat-
ters: Cyber Security in Industrial Control
Systems. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2014-02

A.J.P. Jeckmans. Cryptographically-
Enhanced Privacy for Recommender Sys-
tems. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2014-03

C.-P. Bezemer. Performance Opti-
mization of Multi-Tenant Software Sys-
tems. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Science,
TUD. 2014-04

T.M. Ngo. Qualitative and Quantita-
tive Information Flow Analysis for Multi-
threaded Programs. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2014-05

A.W. Laarman. Scalable Multi-Core
Model Checking. Faculty of Electrical Engi-
neering, Mathematics & Computer Science,
UT. 2014-06

J. Winter. Coalgebraic Characterizations
of Automata-Theoretic Classes. Faculty of
Science, Mathematics and Computer Sci-
ence, RU. 2014-07

W. Meulemans. Similarity Measures
and Algorithms for Cartographic Schemati-
zation. Faculty of Mathematics and Com-
puter Science, TU/e. 2014-08

A.F.E. Belinfante. JTorX: Exploring
Model-Based Testing. Faculty of Electri-
cal Engineering, Mathematics & Computer
Science, UT. 2014-09

A.P. van der Meer. Domain Specific
Languages and their Type Systems. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2014-10

B.N. Vasilescu. Social Aspects of Collab-
oration in Online Software Communities.
Faculty of Mathematics and Computer Sci-
ence, TU/e. 2014-11

F.D. Aarts. Tomte: Bridging the Gap
between Active Learning and Real-World
Systems. Faculty of Science, Mathematics
and Computer Science, RU. 2014-12

N. Noroozi. Improving Input-Output
Conformance Testing Theories. Faculty
of Mathematics and Computer Science,
TU/e. 2014-13

M. Helvensteijn. Abstract Delta Model-
ing: Software Product Lines and Beyond.
Faculty of Mathematics and Natural Sci-
ences, UL. 2014-14

P. Vullers. Efficient Implementations
of Attribute-based Credentials on Smart
Cards. Faculty of Science, Mathematics
and Computer Science, RU. 2014-15

F.W. Takes. Algorithms for Analyz-
ing and Mining Real-World Graphs. Fac-
ulty of Mathematics and Natural Sciences,
UL. 2014-16

M.P. Schraagen. Aspects of Record Link-
age. Faculty of Mathematics and Natural
Sciences, UL. 2014-17

G. Alpár. Attribute-Based Identity Man-
agement: Bridging the Cryptographic De-
sign of ABCs with the Real World. Faculty
of Science, Mathematics and Computer
Science, RU. 2015-01

A.J. van der Ploeg. Efficient Abstrac-
tions for Visualization and Interaction.
Faculty of Science, UvA. 2015-02

R.J.M. Theunissen. Supervisory Con-
trol in Health Care Systems. Faculty of
Mechanical Engineering, TU/e. 2015-03

T.V. Bui. A Software Architecture
for Body Area Sensor Networks: Flex-
ibility and Trustworthiness. Faculty
of Mathematics and Computer Science,
TU/e. 2015-04

A. Guzzi. Supporting Developers’ Team-
work from within the IDE. Faculty of Elec-
trical Engineering, Mathematics, and Com-
puter Science, TUD. 2015-05

T. Espinha. Web Service Growing
Pains: Understanding Services and Their
Clients. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Science,
TUD. 2015-06

S. Dietzel. Resilient In-network Aggre-
gation for Vehicular Networks. Faculty
of Electrical Engineering, Mathematics &
Computer Science, UT. 2015-07

E. Costante. Privacy throughout the
Data Cycle. Faculty of Mathematics and
Computer Science, TU/e. 2015-08

S. Cranen. Getting the point — Obtain-
ing and understanding fixpoints in model
checking. Faculty of Mathematics and
Computer Science, TU/e. 2015-09

R. Verdult. The (in)security of pro-
prietary cryptography. Faculty of Sci-
ence, Mathematics and Computer Science,
RU. 2015-10

J.E.J. de Ruiter. Lessons learned in the
analysis of the EMV and TLS security pro-
tocols. Faculty of Science, Mathematics
and Computer Science, RU. 2015-11

Y. Dajsuren. On the Design of an Ar-
chitecture Framework and Quality Eval-
uation for Automotive Software Systems.
Faculty of Mathematics and Computer Sci-
ence, TU/e. 2015-12

	Acknowledgments
	Table of Contents
	List of Acronyms
	Introduction
	Background
	Project Objectives
	Research Questions
	Research Methodology
	Thesis Outline

	Architecture Framework for Automotive Systems
	Introduction
	Automotive AFs and Viewpoints
	Automotive ADLs and Viewpoints
	Architecture Framework For Automotive Systems
	Conclusion

	Automotive Architecture Modeling
	Introduction
	Architecture modeling requirements
	Evaluation of Automotive ADLs
	Modeling Automotive Systems in SysML
	Conclusion

	Formalizing A Correspondence Rule for Automotive Architecture Views
	Introduction
	Architectural Notations
	Architecture Correspondence
	Tool Development
	Evaluation
	Related Work
	Conclusion and Future Work

	Modularity Analysis of Automotive Control Software
	Introduction
	Related work
	Modularity Metrics in Simulink
	Metrics tool and evaluation
	Visualization tool
	Conclusion and future work

	Complexity Metrics Suite for Simulink Models
	Introduction
	Background
	Motivation
	Simulink Complexity Metrics Suite
	Evaluation
	Discussion and Threats to Validity
	Related Work
	Conclusions and Future Work

	Managing Clone Mutations in Simulink Models
	Introduction
	Background
	Approach
	Validation
	Related work
	Conclusion and Future Work

	Conclusions
	Contributions
	Directions for Further Research

	Bibliography
	Summary
	Curriculum Vitae

