
Best
Available

Copy

NASA Contractor Report 194903 AD-A280 503
ICASE Report No. 94-25

1 ICASE
ON THE DESIGN OF CHANT:

A TALKING THREADS PACKAGE

Vac QUALMl rNsBc•D a

Matthew Haines
David Cronk DTIC
Piyush Mehrotra ELECTE

Q JuN z21199411

S GD

Contract NAS I-19480 • 694-18963
April 1994

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center
Hampton, VA 23681-0(X) I

L Operated by Universities Space Research Association

"-94 6 2 0 0,3 l • - - *1

On the Design of Chant:
A Talking Threads Package* For

RAM

Matthew Haines David Cronk Piyush Mehrotra AB '

ion

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center, Mail Stop 132C o'Dstrbutin!

Hampton, VA 23681-0001 Availability Codes

[haines, cronk,pmj)icase. edu Avail and I or

Dist Special

Absract : I

Lightweight threads are becoming increasingly useful in supporting parallelism and

asynchronous control structures in applications and language implementations. How-
ever, lightweight thread packages traditionally support only shared memory synchro-
nization and communication primitives, limiting their use in distributed memory envi-
ronments. We introduce the design of a runtime interface, called Chant, that supports
lightweight threads with the capability of communication using both point-to-point
and remote service request primitives, built from standard message passing libraries.
This is accomplished by extending the POSIX pthreads interface with global thread
identifiers, global thread operations, and message passing primitives. This paper in-
troduces the Chant interface and describes the runtime issues in providing an efficient,
portable implementation of such an interface. In particular, we present performance

results of the initial portion of our runtime system: point-to-point message passing
among threads. We examine the issue of thread scheduling, in the presence of polling
for messages, and measure the overhead incurred when using this interface as opposed
to using the underlying communication layer directly. We show that our design can
accommodate various polling methods, depending on the level of support present in

the underlying thread system, and imposes little overhead in point-to-point message
passing over the existing communication layer.

*Research supported by the National Aeronautics and Space Administration under NASA Contract No.

NASA-19480, while the authors were in residence at ICASE, NASA Langley Research Center, Hampton, VA
23681.

1 Introduction

Lightweight thread packages are seldom used in distributed memory multiprocessors due to
their inability to support direct communication between individual threads in separate ad-
dress spaces. We introduce the term talking threads to represent the notion of two threads in
direct communication with each other, regardless of whether they exist in the same address
space or not. In this paper, we describe the design of a runtime system for talking threads

called Chant. Chant is capable of supporting both point-to-point primitives and remote
service requests (e.g., remote procedure call) using standard lightweight thread and com-
munication libraries. Standard point-to-point message passing primitives [9] are needed to
support most existing message passing programs, including those generated by parallelizing
compilers [15, 19, 34] and portable communication libraries [4, 301. Remote service request
primitives are needed to support RPC communications [26, 31] client-server applications,
and irregular computations.

Threads are becoming increasingly useful in supporting parallelism and asynchronous
events in applications and language implementations, for both parallel and sequential ma-
chines. Threads are used in simulation systems [11, 28] (to represent asynchronous events
that can be mapped onto single or multiple processors); they are used in language imple-
mentations [21, 22, 27] (to provide support for coroutines, Ada tasks, and C++ method
invocations); and they are used in generic runtime systems [10, 13, 33] (to support fine-grain
parallelism, multithreading, and interoperability). In light of their increasing use, the POSIX
committee has adopted a standard for a lightweight threads interface [161, and many inde-
pendent lightweight thread libraries have been designed and implemented for workstations
and shared memory multiprocessors [1, 3, 11, 18, 23, 29].

Despite their popularity in shared memory systems, lightweight thread packages for dis-
tributed memory systems have received little attention. This is unfortunate: in a distributed
memory system, lightweight threads can overlap communication with computation (latency
tolerance) [8, 121; they can emulate virtual processors [25]; and they can permit dynamic
scheduling and load balancing [6]. However, there is no widely accepted implementation of
a talking threads package.

Our goal is to design and implement a runtime system.capable of supporting talking
threads based on accepted lightweight thread and communication libraries. Our design goals
center on high portability, based on existing standards for lightweight threads and commu-
nication systems, and high efficiency, based on supporting point-to-point message passing
without interrupts or extra message buffer copies. This system will then be used to support
our extensions to the High Performance Fortran standard [14] for task parallelism and shared
data abstractions [5], as well as providing support for other languages and systems.

The remainder of the paper is organized as follows: Section 2 provides background on
lightweight threads, communication primitives, and related research. Section 3 discusses our
design of a new talking threads package. called Chant. We have implemented the bottom

1

layer of Chant; Section 4 reports on two experiments that validate our design decisions for
this layer.

2 Background

Chant: Talking Threads

Communication Library Lightweight Thread Library
(e~g. MPI, p4, PVM, ...3 (e.g. pthreads, cthreds,..

Figure 1: Chant runtime layers

Chant provides an interface for talking threads by extending the interfaces of a communi-
cation system and a lightweight thread system, as depicted in Figure 1. As far as Chant is
concerned, these systems can be abstracted as two "black boxes" of systems: one box for
communication packages, and one box for lightweight thread packages. Although there are
distinguishing features among the systems within each box, Chant is only interested in the
general characteristics of each box, as depicted in Figures 2 and 3. Rather than binding
Chant to a particular lightweight thread or communication package, we allow for a design
which can acommodate any system which provides this common set of capabilities.

2.1 Lightweight Thread Libraries

A thread represents an independent, sequential unit of computation that executes within
the context of a kernel-supported entity, such as a Unix process. Threads are often classified
by their "weight", which corresponds to the amount of context that must be saved when a
thread is removed from the processor, and restored when a thread is reinstated on a processor
(i.e. a context switch). The context of a Unix process includes the hardware register, kernel
stack, user-level stack, interrupt vectors, page tables, and more [2]. The time required to
switch this large context is typically on the order of thousands of microseconds, and thus
a Unix processes represents a heavyweight thread. Contemporary operating system kernels,
such as Mach, decouple the thread of control from the address space, allowing for multiple
threads within a single address space and reducing the context of a thread. However, the
context of a thread and all thread operations are still controlled by the kernel, which must
often include more context than a particular application cares about. Context switching
times for kernel-level threads are typically in the hundreds of microseconds, resulting in
a medium or middleweight thread. By exposing all context and thread operations at the
user-level, a minimal context for a particular application can be defined, and operations to

2

Thread Management Information

Set attributes Thread id

Define/access thread-local data Process id

Create Attribute info

Destroy Scheduling info

Synchronization Scheduling and Preemption

Lock (e.g., mutex) Set policy

Wait (e.g., condition variable) Set policy attributes
Yield

Figure 2: Desired lightweight thread package capabilities

manipulate threads may avoid crossing the kernel interface. As a result, user-level threads
can be switched in the order of tens of microseconds, and are thus termed lightweight.

Most lightweight thread packages contain functionality for creating, delet;ng, scheduling,
and synchronizing threads in a shared memory (uniprocessor or multiprocessor) environment.
Other features, such as control over stacks, signal handling within threads, thread-local data,
and priority scheduling are only available in certain systems. Table 1 lists several of these
lightweight thread packages, including a comparison of their thread creation and context
switching times for a Sun Sparcstation 10. In an attempt to provide a standard interface
and set of functionality, the POSIX committee has drafted a standard threads interface [16].

None of the thread packages listed, including the proposed standard, provide support for
direct communication between threads in separate address spaces. However, thread packages
that do support interprocessor communication mechanisms of some form (from within the
context of a lightweight thread) include:

* Nexus [101, a runtime interface designed to support interoperability among program-

ming languages on distributed memory computer systems, providing a thread abstrac-
tion that is capable of interprocessor communication in the form of asynchronous re-
mote procedure calls, or Active Messages [31]. However, standard send/receive prim-
itives are not directly supported, and the overhead in providing this functionality is
unknown. Also, the overhead to select, verify, and call the correct message handling
routine without hardware and operating system support is expensive on most machines
[26, 31]. Chant takes the opposite approach by providing a basis for efficient point-
to-point communication (using well-known libraries), on top of which a remote service
request mechanism is provided.

e NewThreads [8], an object-oriented runtime library that supports a non-preemptive,

3

Thread Package Create (,is) Switch (its)

cthreads [23], 423 81
originally developed as the Mach user-level threads package; has
been ported to many machines.

The REX lightweight process library [20], 230 60
defines a minimal, non-preemptive, priority-based threads package

for a number of workstations and shared memory multiprocessors.

pthreads [22], 1300 29
provides a library implementation of the POSIX pthreads standard
interface, draft 6.

The Sun Lightweight Process (LWP) library [29], 400 25
provides a comprehensive set of thread routines supporting prior-

ities, user-defined contexts, and stack management routines; only
available under the SunOS 4x operating system.

Quickthreads [18], 440 21
provides a low-level, portable set of stack primitives for writing

efficient thread packages.

Table 1: Performance of several thread packages on a Sun SparcStation 10

user-level threads class. Threads may communicate using special blocking point-to-
point communication calls in which messages are sent to ports, and a port can be
mapped into any thread on any node. A global name server is necessary to manage the
unique global port identifiers. NewThreads is closest in spirit to the goals of Chant,
but we extend its support in two directions:

1. support for general, point-to-point message passing as supported by most coin-
munication library systems and the proposed message passing interface (MPI) [9]
rather than blocking messages that must use a global naming server, and

2. support for a minimal, yet powerful, lightweight thread interface that extends the
POSIX standard, and can be quickly and efficiently implemented on a variety
of machines using existing POSIX thread libraries or our own POSIX interface,
implemented using the Quickthreads package.

* Various application-specific runtime systems which provide (either directly or indi-
rectly) support for talking threads, including a runtime system for parallel simulations

4

Process Management Point-to-Point

Create a process group Blocking send/receive

Add a process Nonblocking send/receive

Delete a process Message polling

Message Header Information

Processor Group id

Process Processor id

Data Process id
Size Message stats

User tag

Figure 3: Desired communication package capabilities

[25] and runtime systems for functional languages [7, 12]. However, these systems do

not provide a general library or interface for talking threads. They are often only
available under certain architectures and communication systems, and often use ex-

plicit thread management routines, encoded for a particular architecture, rather than

a portable lightweight threads library.

2.2 Communication Libraries

Communication systems for distributed memory architectures have traditionally been pro-
vided by the vendors, such as the Intel NX primitives [171 and nCUBE Vertex primitives

[24]. In response to the increasing demands of portability, several communication libraries

have been established that provide a portable message passing interface over a wide variety
of systems. Among these libraries, p4 [41 and PVM [30] have received the most attention.

Then, in an effort to unify the message passing community and entice vendors to support
a single message passing interface, the Message Passing Interface Forum was established to

prepare a standard interface that could be supported directly by vendors (for efficiency) and
would provide a portable interface for application's programmers and compilers. The result

is the message passing interface standard (MPI) [9]. However, neither the MPI standard nor

the other communication libraries provide direct support for message passing among threads.

Although it is possible to uniquely name each thread within some of these systems, the issues

of message delivery and thread scheduling as a result of message polling are not supported.

As a result, there is not a general method for supporting lightweight threads from within

one of these systems. Chant extends the functionality of these message passing systems to

support the notion of naming, message delivery, and polling within a thread system.

5

3 Design

Chant: Talking Threads

Chant pthread interface

| | Thread primitive extensions

Remote service requests

Point-to-point message passing

Communication Library Lightweight Thread Library

(e.g. MPI, p4, PVM, ...) (e.g. pthreads, cthreads, ..

Figure 4: Chant runtime layers: exposed view

Figure 4 provides another look at Chant in the context of a layered runtime system, but this

time we illustrate the intermediate layers of the Chant system itself. Chant is composed of

four sub-layers: a point-to-point communication system, a remote service request mechanism,

an extension of the lightweight threads interface to account for global threads, and a coherent

interface based on an extension of the pthreads standard interface. Remote service requests

are built upon the point-to-point layer, and thread extensions are, in turn, built upon the

remote service request layer (as Figure 4 depicts). We now present a discussion of the design

issues for supporting efficient point-to-point communication (Section 3.1), remote service

requests (Section 3.2), and global thread operations (Section 3.3). The proposed Chant

interface, based on the pthreads standard, is given in Appendix A. Each of these sections

begins with an iconic representation of Figure 4, in which the highlighted layer corresponds

to the given section.

3.1 Point-to-Point Communication

We now present a discussion regarding the design issues in providing efficient message passing

communication between threads using existing communication systems. Efficiency dictates

that Chant cannot make intermediate copies of the messages nor allow processor interrupts

that would disrupt the code and data caches, and thus our design of a point-to-point layer

takes these issues into account. A measure of the overhead incurred from the point-to-point

layer is presented in Section 4.1.

Point-to-point communication is defined by the fact that both the sending thread and

receiving thread agree that a message is to be transferred from the sending thread to the

receiving thread. Although there are various forms of send and receive primitives, the un-

derstanding on both sides that a communication is to occur is necessary. As a result of

6

this understanding, it is possible to avoid costly interrupts and buffer copies by registering
the receive with the operating system before the message actually arrives. This allows the
operating system to place the incoming message in the proper memory location upon ar-
rival, rather than making a local copy of the message in a system buffer. Chant ensures
that no message copies are incurred that wouldn't otherwise be made by the underlying
communication system, which is paramount to efficiency.

The basic point-to-point operations are send and receive, where a send operation creates
a message and places it into the network with a given destination, and the receive operation
takes a message from a specified source and remove it from the network. Both of these basic
operations can be blocking or nonblocking, with different degrees of blocking (such as locally-
blocking or globally-blocking). For a more thorough treatment of message passing concepts,
the user is encouraged to read the MPI standard [91, or related message passing documents.

To support message passing from one thread to another, Chant must provide solutions
to the problems of naming global threads within the context of an operating system entity
(which we'll refer to as a process), delivering messages within a process, and polling for
outstanding messages.

1. The naming issue. Similar to the way in which processes are named relative to a
particular processing element, threads will be globally named relative to a particular
process. Chant uses a 3-tuple to identify global threads, composed of a processing
element identifier (pe), a process identifier, and a local thread identifier. The type of
the local thread identifier is determined by the thread type of the underlying thread
package and, although this will vary for different thread pacakges, allows the global
threads to behave normally with respect to the underlying thread package for opera-
tions not concerned with global threads. This allows Chant to easilly inherit much of
the underlying thread interface.

2. The delivery issue. Most communication systems support delivery to a particular
process within a specified processing element, but do not provide direct support for
naming entities within a process. All message passing systems, however, support the
notion of a message header, which is used by the operating system as a signature for
delivering messages to the proper location (process). Messages also contain a body,
which contains the actual contents of the message. In order to ensure proper delivery
of messages to threads, and without having to make intermediate copes, the entire
global thread name (pe, process, thread) must appear in the message header. Some
communication systems, such as MPI, provide a mechanism by which thread names
can easilly be integrated into the message header. MPI accomplishes this using the
communicator field, which is similar to the process field in most other communication
systems except that it can be used to represent multiple entities within the same
process. However, most communication systems, such as p4, do not provide explicit
support for the addition of a thread identifier to the message header. For these systems,
we must overload one of the existing fields: typically the user-defined tag field. This

7

receive (args)
{

ireceive (args);
while (probe (args) !a true)

yield;
receive (args);

Figure 5: Pseudo-code for a blocking receive operation, thread polls

receive (args)

ireceive (args);
if (probe (args) ! true)

add probe request to scheduler table;
yield;

endif;
// rescheduled at this point only when the
// scheduler-activated probe succeeds.

receive (args);

Figure 6: Pseudo-code for a blocking receive operation, scheduler polls

approach has the disadvantage of reducing the number of tags allowed, typically to
half the number of bits, where the thread id would occupy half of the tag field and
the tag would occupy the other half. An alternative approach would be to place the
thread id in the body of the message, leaving the existing header intact. However,
this would force an intermediate thread to receive all incoming messages, decode the
body, and forward the remaining message to the proper thread. In a4dition to being
time consuming, this method would require the message body to be copied on both
the sending (to insert the thread id) and receiving (to extract the thread id) sides.
To maintain efficiency, message copies must be avoided, and thus placing the thread
identifier in the body of the message is not an acceptable option.

3. The polling issue. Although Chant supports, at the user interface, both blocking and
nonblocking message operations, only nonblocking communication primitives from the
underlying communication system are utilized. This is to prevent a blocking call from
suspending the entire process, thus preventing other ready threads from executing.

When a non-blocking operation is performed, the communication system returns a
"handle" that can be used to check the completion of the operation at a later point

8

in time. To implement a blocking receive, the calling thread issues a corresponding
nonblocking receive and waits until the operation has completed. However, rather than
block the processing element, we wish to schedule other ready threads for execution and
only return to the calling thread when the receive operation has been completed. This

leads to the question of how to perform the required polling operations necessary to
determine when the nonblocking operation has completed. A thread scheduling policy
must therefore take message polling into account when scheduling ready threads for
execution. There are two basic alternatives to polling for message completion: having
the thread poll for itself whenever it is rescheduled for execution (refer to Figure 5),
or having the scheduler issue the polling request on behalf of the thread whenever it is
between scheduling operations (see Figure 6). The former method has the advantage
of not having to register receive operations with the scheduler, but will cause context
switching overheads in the case when a thread is re-scheduled but cannot complete the
receive operation. The latter method requires all threads to register a receive with the
scheduler, and then are removed from the ready queue and placed on a blocking queue
until the message arrives. This avoids the overhead of scheduling a thread that is not
really ready to run, but forces the scheduler to poll for outstanding messages on each
context switch.

In Section 4.2, we address this scheduling decision in detail and evaluate the various
polling options and their influence on the scheduling of ready threads. Our goal is
to determine which polling option yields the best schedules over a variety of simu-
lated workloads. Our results indicate that, although having the scheduler poll for the
threads results in the best performance, having the threads poll for themselves is only
slightly worse in the average case scenario. This is significant because some underlying
lightweight thread packages won't allow modification of the scheduler's activities, but
all packages can safely implement the policy in which the thread polls for itself.

3.2 Remote Service Requests I

Having established a mechanism by which lightweight threads located in different addressing
spaces can communicate using point-to-point mechanisms, we now address the problem of
supporting remote service requests, which builds on our designs for point-to-point message
passing. Remote service request messages are distinguished from point-to-point messages in
that the destination thread is not expecting the message. Rather, the message details some
request that the destination thread is to perform on behalf of the source thread. The nature
of the request can be anything, but common examples include returning a value from a local
addressing space that is wanted by a thread in a different addressing space (remote fetch)!
executing a local function (remote procedure calf), and processing system requests necessary
to keep global state up-to-date (coherence management).

9

repeat forever

ireceive (remote-service-request-message-type);
if (probe (args) != true)

add probe request to scheduler table;
yield;

endif;
message - receive (args);
handler = unpack (message);
*handler (message);

Figure 7: Pseudo-code for the server thread, scheduler polls.

Most remote service requests require some acknowledgment to be sent back to the
i-equesting thread, such as value of a remote fetch or the return value from a remote procedure
call. To minimize the amount of time the source thread remains blocked, we wish to process
the remote service request as soon as possible on the destination processor, but without
having to interrupt a computation thread prematurely. Interruptions are costly to execute
and can disrupt the data and code caches which, as processor states increase, will continue
to have a detrimental effect on the efficiency of a program [26]. Also, the MPI standard
[9] does not support interrupt-driven message passing, thus utilizing interrupts in a design
would preclude the use of the MPI communications layer. Therefore, we need a polling
mechanism by which remote service requests can be checked without having to prematurely
interrupt a computation thread when such a request arrives.

Since the main problem with remote service requests is that they arrive at a processor
"unannounced", we simply introduce a new thread, called the server thread, which is respon-
sible for receiving all remote service requests. Using one of the polling techniques outlined in
Section 3.1, the server thread repeatedly issues nonblocking receive requests for any remote
service request message, which can be distinguished from point-to-point messages by virtue
of being sent to the server thread rather than a computation thread. When a remote service
request is received, the server thread assumes a higher scheduling priority than the compu-
tation threads, ensuring that it is scheduled at the next context switch point. Pseudo-code
for the server thread is given in Figure 7, showing how remote service requests are built upon
point-to-point messages.

10

3.3 Supporting Global Thread Operations I

As well as adding communication primitives to a lightweight thread interface, Chant must

support the existing lightweight thread primitives that are inherited from the underlying
thread package. These primitives provide functionality for thread management, thread syn-
chronization, thread scheduling, thread-local data, and thread signal handling. We divide

these primitives into two groups: those affected by the addition of global thread identifiers
in the system, and those not affected. For example, the thread creation primitive must be
capable of creating remote threads, but the thread-local data primitives are only concerned
with a particular local thread. Our goal in designing Chant is to provide an integrated and
seamless solution for both groups of primitives. This is accomplished in two ways.

1. Global thread identifiers are 3-tuples consisting of a processing element id, a process
id, and a local thread id whose type matches the thread type inherited from the un-
derlying system. This makes it possible to extract the local thread specification for the
primitives that are not concerned with global threads, such as the thread-local data

operations. Chant provides a primitive (pthread.chanter.pthread) that returns the

local thread portion of a global thread identifier for this purpose.

2. Thread primitives that are affected by the global identifiers either take a thread iden-
tifier as an argument (such as join) or return a thread identifier (such as create). In

either case, the primitive must handle the situation of a thread identifier that refers
to a remote thread. For example, consider the thread creation operation, which cre-
ates a local thread within the specified piocessing element and process. Since thread
resources (such as a stack) must be allocated by the processing element on which the
thread is to be executed, creating a remote thread may require the help of another
processing element.

Having described the details of how Chant supports remote service requests (in Sec-
tion 3.2), we can now utilize this functionality in the form of a remote procedure call.
Similar to how Unix creates a process on a remote machine [32], Chant utilizes the
server thread and the remote service request mechanism to implement primitives which

may require the cooperation of a remote processing element. Returning to our example
of a thread creation operation, if it is determined that the new thread is to be exe-
cuted on a remote processing element, a remote service request is sent to the specified
processing element, informing it to create the desired thread (allocate resources) and

insert it into the local thread queue.

11

4 Experimental Results

It is not our goal to argue that threads themselves are useful for programming distributed
memory multiprocessors (the argument can certainly be made: for example, consider la-
tency tolerance and dynamic load balancing capabilities, which are natural extensions of a
thread-based implementation). Instead, our goal is to demonstrate that our design decisions
were effective in implementing a talking threads interface, namely Chant. To prove the ef-
fectiveness of these decisions, we perform two different experiments on the point-to-point
layer of our system (refer to Figure 4), which is the layer we have currently implemented.
The other two layers, remote service requests and thread primitive extensions, have been de-
signed and are now being implemented atop our point-to-point layer, and we hope to report
on them soon. The first experiment is designed to measure the overhead of thread-based
point-to-point communication as opposed to point-to-point communication as supported
by the underlying communication system. The second experiment is designed to test the
various scheduling techniques that are available when polling for outstanding messages in
point-to-point communication. All of the experiments are carried out on an Intel Paragon
machine using the NX message pan-sing library and a small lightweight thread library as the
underlying components.

4.1 Thread-Based Point-to-Point Communication Overheads

If we assume that threads can simplify programming for such optimizations as latency toler-
ance and dynamic load balancing, then we wish to know the cost at which this simplification
comes. That is, what is the tradeoff, in terms of execution time overhead, for using thread-
based point-to-point communication over using the point-to-point communication mecha-
nism directly provided by the underlying system. To answer this question, we measure the
cost of sending and receiving messages on the Paragon using two processes and the NX prim-
itives, and compared this to the cost of sending and receiving messages between two threads
on two Paragon processors (one per processor) using Chant. In a sense, this is a worst-case
scenario for a threads system, since we are using the exact same calls as the process version,
but having to add some amount of overhead per message to handle the thread naming and
delivery issue, as well as a possible context switch. In the general case, we expect that there
would be multiple threads per processor, and a context switch would result in overlapping
communication with useful computation.

Table 2 (also depicted in Figure 8) gives the results of this experiment in terms of average
time per message (ps) and overhead relative to the process-based method. To get accurate
results, each test consisted of 100,000 message exchanges, and each test was repeated four
times. The numbers given represent an average of these runs. We actually implemented two
different thread-based approaches to demonstrate how the overhead is affected by message
polling. In first method, Thread (TP), threads poll for their own outstanding message (as
depicted in Figure 5). Since there is only one thread per processor, the scheduler simply

12

Process Thread (TP) Thread (SP)

Message size Time (ps) Time (is) Overhead (%) Time (ps) Overhead (%)
1024 667.1 710.8 6.4 773.7 15.9
2048 917.0 973.2 6.1 1126.5 22.8
4096 1639.3 1701.2 3.8 1828.8 11.5
8192 2873.5 2998.8 4.3 3130.8 8.9
16384 5531.8 5624.8 1.7 5689.0 2.9

Table 2: Average time per message (its) and overhead for thread-based point-to-point con-
munication, based on process-based communication times for various-length messages (bytes)

returns without having to perform a context switch each time. In the second method,
Thread (SP), the scheduler polls for outstanding requests on behalf of the thread (as depictd
in Figure 6), forcing a context switch for each message received. We study polling methods
in more detail in Section 4.2. Our results indicate that the overhead of the thread-based
point-to-point layer is low, adding only 15% overhead to the base message passing layer in
the worst case.

4.2 Thread Scheduling for Message Polling

In Section 3.1 we introduced the problem of polling for outstanding messages in point-to-
point communication. We now take a closer look at that problem, measuring three scheduling
algorithms, and determine their effect on the performance of the system.

Recall that there are essentially two methods of polling for an outstanding message:
thread polls (see Figure 5), which we will refer to as the Thread polls algorithm, and scheduler
polls (see Figure 6). The scheduler polls method is based on a list of polling requests that are

examined at each scheduling point to see if any outstanding messages have arrived. Ideally,
this would be implemented as a single call to the communication system, inquiring whether
any of the outstanding receive requests have been satisfied. If so, the value returned from
the check would designate a waiting thread, which could then be enabled for execution. On
some communication systems this functionality is provided. For example, MPI provides the
MPITESTANY primitive, which will test for the completion of any outstanding requests from
a given process. However, on other systems, such as the Intel NX system Chant is currently
using, this functionality is not supported. Therefore, the algorithm needs to be modified
so that each outstanding request will be tested in turn. This implies that all outstanding

messages are checked at each context switch. When a polling request is finally satisfied,
the corresponding thread is then scheduled for execution. We refer to this version of the
scheduler polling algorithm as Scheduler polls (WQ), where WQ stands for "waiting queue".

Another variation on having the scheduler poll for outstanding requests on behalf of

13

CWerbftd of thbrod-ftloo Pontn-to-Pol"~ cmunCýItlon

10000

I
i

1000

/Th0~d (tb-d. Poll..

Thr..d (th -d*.hl~pls

1000 D000

.. fa . i1z. (fbyti)

Figure 8: Execution times for native and thread-based cort. nication

threads is to eliminate the list of polling requests altogether. Each thread stores its polling
request in its thread control block (TCB), which is a data structure that defines a thread,
similar to how a process control block (PCB) defines a process [2]. When the scheduler is

invoked to perform a context switch, it selects the next available TCB from the thread queue

and determines if a request is pending. If not, the thread's context is restored. Otherwise,
the pending message is polled for by the scheduler. If the message has arrived, the thread

is restored, otherwise the TCB is placed back on the thread queue and the next TCB is
retrieved. This method eliminates polling for all outstanding requests at each scheduling
point, and does not fully restore a thread's context until its request has been satisfied. The

disadvantage of this approach is that some thread packages may not allow modification of
the scheduler activities necessary to poll for a thread before completing the thread switch.
We refer to this version of the scheduler polling algorithm as Scheduler polls (PS), where PS
stands for "partial switch".

Using the point-to-point communication layer of Chant, we encoded all three polling

algorithms (thread polls, scheduler polls using a list of requests, scheduler polls using partial
context switch) and tested the system to measure their relative performance using the thread

code depicted in Figure 9, where the parameters alpha and beta represent the number of

iterations for a generic computation, and were modified to affect the average number of
outstanding receive requests (or waiting threads).

First, we fix beta at 100 and vary alpha from 100 to 100000, then run the experiment
with two processors and 12 threads per processor, with each thread performing 100 iterations

14

loop

compute (alpha);
send 0;

compute (beta);

recv 0;

Figure 9: Pseudo-code for threads, polling exercise.

Thread polls Scheduler polls (PS) Scheduler polls (14
alpha Time CtxSw msgtest Time CtxSw msgtest Time CtxSw msgte3
100 2730 6655 2662 2413 5580 2011 5950 5488 11817
1000 2860 6655 2693 2515 5630 2010 6090 5489 11942
10000 4000 7029 3057 3660 5579 2535 6123 5509 11875
100000 7260 7977 3975 6815 5649 3723 9990 5534 13238

Table 3: Execution times (ms), average number of threads waiting on outstanding receive
requests, and total number of msgtest calls attempted for all three polling algorithms,
beta - 100

POllirA Rsdsulta: CHUIM•out T&WA

Thr4Nd Poll .--
I:r.dnl.r polio (P)

10000 V (I)

10000

- 6000

4000

28000

too 1000 10000 100000
S$I" of slow em0ptimo

Figure 10: Execution times for polling experiments, beta = 100

15

PIlloq 00l1 CQM*o t $1tch.
10000

""od poll.
SIh.lwdpe poll. PS•)

9500

I000

- 0500

- 0000

70071500I -

7000

0s500

5500

5000
00 100 o0000 100000

Sloe . .00M CMlIt€ Cl

Figure 11: Total context switches for polling experiments, beta = 100

of the outer send/receive loop. Table 3 presents these results, where Time represent the

total running time (ms) of the test, CtxSw represents the total number of complete context

switches performed, and msgtest represents the total number of msgtest calls attempted.

The data indicates that having the Scheduler poll (PS) algorithm yields the lowest running
times for the three approaches (depicted in Figure 10). This is because the Thread polls

algorithm must complete full context switches at each scheduling opportunity to check for
the completion of a message, while the Scheduler polls (PS) algorithm need only perform a
partial switch to check for outstanding messages. This is seen in comparing the total number
of context switches for the two methods (depicted in Figure 11). However, the Thread polls

algorithm performs, on average, only iM% worse than the Scheduler polls (PS) algorithm.
Thus, for a thread package that does not support the ability to modify the scheduler's
behavior as required for the Scheduler polls (PS) algorithm, we have found that only a 10%
degradation of performance will result from using the Thread polls algorithm, which can be
applied to any lightweight thread package. The data also shows that the Scheduler polls
(WQ) algorithm performs much worse than the other two, as a result of having to check all
outstanding requests at each scheduling opportunity., As we can see from the number of
msgtest calls performed by the three algorithms (depicted in Figure 12), the Scheduler polls

(WQ) algorithm performs far more msgtest calls than the other two algorithms, accounting
for its degraded performance. However, the Scheduler polls (WQ) algorithm does achieve the
lowest number of context switches of the three methods (see Figure 11), since threads are
only switched when they are ready to run. For systems that could implement this algorithm
as origionally intended, with a single msgtestany call rather than a test for each individual

16

llhmkl*.I r 0olls (001!

10000

!
U

I

1000'"

100 1000 10000 100000

Figure 12: Total msgtest calls attempted for polling experiments, beta = 100

message, we expect the relative performance of this algorithm to change. We hope to test
this hypothesis on a future version of Chant using the MPI communication system, which
supports the msgtestany functionality.

Figure 13, which plots the average waiting time versus alpha, confirms that by increasing
alpha, we successfully increases the number of threads waiting for outstanding requests.

Intuitively, this means that increasing the time between when a receive is posted and the
corresponding send is sent will increase the number of threads waiting for messages.

Finally, to support our conclusions, we repeated the experiments for beta values of 1000
and 0, presented in Tables 4 and 5, respectively. These additional results confirm our earlier
analysis regarding the relative performance of the three polling algorithms.

5 Conclusions

Threads are an emerging model for supporting parallelism and asynchronous events in ap-
plications and language implementations, for both parallel and sequential machines. Despite
their popularity and utility, lightweight thread packages for distributed memory systems

have received little attention.

In this paper, we introduce the notion of talking threads as a set of lightweight threads
capable of communication in a distributed memory environment, and describe the design of

17

Ths•ad poll* *s -
Sc'a polio a .

0.

i

100 1000 10000 100000
sibe of l1h 0, t6t,1_

Figure 13: Average number of waiting threads for polling experiments, beta - 100

a talking threads system called Chant. Chant is capable of supporting both point-to-point
communication (e.g., send/receive) and remote service request communication (e.g., remote
procedure call). Portability and efficiency are achieved by providing a minimal interface over
existing thread and communication libraries, such as pthreads, Quickthreads, NX, and MPI.

We have designed Chant in three layers: (1) point-to-point communication among
threads, (2) remote service requests using point-to-point communication and special server
threads, and (3) global thread operations using remote procedure calls. We have also de-
signed an interface to all of these layers which is based on an extension of the POSIX pthreads

Thread polls Scheduler polls (PS) Scheduler polls (WQ)

alpha Time CtxSw msgtest Time CtxSw msgtest Time CtxSw msgtest
100 6765 6945 2909 6480 5514 2415 10065 5485 12323
1000 69W0 6888 2837 6660 5523 2564 10262 5508 13496
10000 8000 6950 2887 7670 5530 2311 11350 5512 12676
100000 10980 7246 3239 10560 5537 2532 14100 5532 12405

Table 4: Execution times (ms), average number of threads waiting on outstanding receive
requests, and total number of asgtest calls attempted for all three polling algorithms,
beta = 1000

18

Thread polls Scheduler polls (PS) Scheduler polls (WQ)

alpha Time CtxSw msgtest Time CtxSw msgtest Time CtxSw msgtest

100 3290 5792 3578 2715 3628 3514 4940 3130 9845

1000 3460 5864 4646 2725 3622 3550 5120 3174 10000

10000 4570 6100 4887 3980 3608 4335 6080 3110 10310

100000 7805 7206 5977 7343 3630 6631 9263 3144 13024

Table 5: Execution times (mis), average number of threads waiting on outstanding receive

requests, and total number of msgtest calls attempted for all three polling algorithms,

beta = 0

standard.

We have implemented the point-to-point communication layer of Chant, and measured

its overhead relative the the underlying communication system. We found that in a worst-

case scenario, the overhead caused by Chant's point-to-point layer is low (about 15%), but

that this can be halved by avoiding a context switch when only a single thread exists oil a

processing element.

We have also implemented and measured three scheduling policies that poll for out-

standing receive operations. We found that the Scheduler polls (PS) policy, in which the

scheduler polls for threads after performing a partial context switch, is superior to the other

two methds: having the threads poll for themselves (Thread polls) and having the scheduler

poll for the threads using a waiting queue (Scheduler polls (WQ). However, since some thread

packages do not allow the scheduler to be manipulated as required to implement the Schcd-

uler polls (PS) algorithm, we found that the Thread polls algorithm performs only slightly

worse, yet can be implemtned using any lightweight thread pacakge.

We are continuing to develop Chant and its interface, and plan to use this runtime

system to support various parallel languages and programming systems. We plan to report

on the status of Chant and these support efforts in the near future.

References

[1] Thomas E. Anderson, Brian N. Bershad, Edward D. Lazowska, and Henry M. Levy. Scheduler

activations: Effective kernel support for the user-level management of parallelism. In ACM

Symposium on Operating Systems Principles, pages 95-109, 1991.

[21 Maurice J. Bach. The Design of the UNIX Operating System. Software Series. Prentice-Hall,

1986.

19

[3] Brian N. Bershad, Edward D. Lazowska, Henry M. Levy, and David B. Wagner. An open en-
vironment for building parallel programming systems. Technical Report 88-01-03, Department

of Computer Science, University of Washington, January 1988.

[4] Ralph Butler and Ewing Lusk. User's guide to the p4 parallel programming system. Technical

Report ANL-92/17, Argonne National Laboratory, October 1992.

[5] Barbara M. Chapman, Piyush Mehrotra, John Van Rosendale, and Hans P. Zima. A software

architecture of multidisciplinary applications: Integrating task and data parallelism. ICASE
Report 94-18, Institute for Computer Applications in Science and Engineering, Hampton, VA,

March 1994.

[6] T. C. K. Chou and J. A. Abraham. Load balancing in distributed systems. IEEE Transactions

on Software Engineering, SE-8(4), July 1982.

[71 D. E. Culler, A. Sah, K. E. Schauser, T. von Eicken, and J. Wawrzynek. Fine-grain paral-
lelism with minimal hardware support: A compiler-controlled threaded abstract machine. In
4 th International Conf. on Architectural Support for Programming Languages and Operating

Systems, 1991.

[8] Edward W. Felton and Dylan McNamee. Improving the performance of message-passing ap-
plications by multithreading. In Proceedings of the Scalable High Performance Computing

Conference, pages 84-89, April 1992.

[9] Message Passing Interface Forum. Document for a Standard Message Passing Interface, draft
edition, November 1993.

[10] Ian Foster, Carl Kesselman, Robert Olson, and Steven Tuecke. Nexus: An interoperability
layer for parallel and distributed computer systems. Technical Report Version 1.3, Argonne
National Labs, December 1993.

[11] Dirk Grunwald. A users guide to AWESIME: An object oriented parallel programming and
simulation system. Technical Report CU-CS-552-91, Department of Computer Science, Uni-

versity of Colorado at Boulder, November 1991.

[12] Matthew Haines and Wim B6hm. An evaluation of software multithreading in a conven-
tional distributed memory multiprocessor. In IEEE Symposium on Parallel and Distributed

Processing, pages 106-113, December 1993.

[13] Matthew Haines and Wim Bohm. On the design of distributed memory Sisal. Journal of

Programming Languages, 1:209-240, 1993.

[14] High Performance Fortran Forum. High Performance Fortran Language Specification, version
1.0 edition, May 1993.

[15] Seema Hiranandani, Ken Kennedy, and Chau-Wen Tseng. Compiling Fortran D for MIMD
distributed-memory machines. Communications of the ACM, 35(8):66-80, August 1992.

[16] IEEE. Threads Extension for Portable Operating Systems (Draft 7), February 1992.

20

[17] Intel ('orporation, Beaverton, OR. Paragon OSF/1 User's Guidc, April 1993.

[IX] David Keppel. Tools and techniques for building fast portable threads packages. Technical
Report UWCSE 93-05-06, University of Washington. 1993.

[19] C. Koelbel and P. Mehrotra. Compiling global name-space parallel loops for distributed exe-
cution. IEEE Transactions on Parallel and Distributed Systems, 2(4):440 451, October 1991.

[20] Jeff Kramer, Jeff Magee, Morris Sloman, Naranker Dulay, S.C. Cheung, Stephen Crane, and
Kevin Twindle. An introduction to distributed programming in REX. In Proccdig*gs of

ESPRIT-91, pages 207-222, Brussels, November 1991.

[21] Jeuq Kuen Lee and Dennis Gannon. Object oriented parallel programming experiments and
results. In Proccedings of Supercomputing 91, pages 273-282, Albuquerque, NM, November
1991.

[22] Frank Mueller. A library implementation of POSIX threads under UNIX. In Wint'r U'SENIX.

pages 29-41, San Diego, CA, January 1993.

[23] Bodhisattwa Mukherjee, Greg Eisenhauer, and Kaushik Ghosh. A machine independent inter-
face for lightweight threads. Technical Report CIT-CC-93/53, College of Computing, Georgia
Institute of Technology, Atlanta, Georgia, 1993.

[24] n('UBE, Beaverton, OR. nCUBE/2 Technical Overview. PROGRAMMING, 1990.

[25] David M. Nicol and Philip Heidelberger. Optimistic parallel simulation of continuous time
markov chains using uniforinization. Journal of Parallel and Distributed Computing. 18(4):395
410, August 1993.

[26] Matthew Rosing and Joel Saltz. Low latency messages on distributed memory multiprocessors.
Technical Report ICASE Report No. 93-30, Institute for Computer Applications in Science
and Engineering, NASA LaRC, Hampton, Virginia, June 1993.

[27] Carl Schmidtmann, Michael Tao, and Steven Watt. Design and implmentation of a multi-
threaded Xlib. In Winter USENIX, pages 193-203, San Diego, CA, January 1993.

[2X] H. Schwetman. C(SIM Reference Manual (Revision 9). Microelectronics and Computer Tech-
nology Corperation, 9430 Research Blvd, Austin, TX, 1986.

[29] Sun Microsystems, Inc. Lightweight Process Library, sun release 4.1 edition, January 1990.

[30] Vaidy Sunderam. PVM: A framework for parallel distributed computing. Concurrency: Pruc-
tice and Experience, 2(4):315-339, December 1990.

[31] Thorsten von Eicken, David E. Culler, Seth Copen Goldstein, and Klaus Erik Schauser. Active

messages: A mechanism for integrated communications and computation. In Proreedings of the

19th Annual International Symposium on Computer Architecture, pages 256-266, May 1992.

[32] W. E. Weihl. Remote procedure call. In Sape Mullender, editor, Distributed systems, chapter 4.

pages 65-86. ACM Press, 1989.

21

[33] Mark Weiser, Alan Demers, and Carl Hauser. The portable common runtime approach to
interoperability. A CM Symposium on Operating Systems Principles, pages 114-122, December
1989.

[34] Hans P. Zima and Barbara M. Chapman. Compiling for distributed memory systems. Pro-
ceedings of the IEEE, Special Section on Languages and Compilers for Parallel Machines (To

appear 1993), 1993. Also: Technical Report ACPC/TR 92-16, Austrian ('enter for Parallel
Computation (November 1992).

22

Appendix A: The Chant Interface I

The Chant interface can be viewed as an extension to the POSIX pthread interface, where
we have created a new thread object called a chanter, representing a global thread capable of
communication and synchronization with other global threads in the system. In addition to
the pthreads routines that deal with attributes, user-local data, mutex variables, condition
variables, and scheduling (which can all be applied to the pthread base of a global thread),
the chant interface consists of the following routines (also depicted with ANSI prototypes in
Figure 14):

" pthread.chanter.t is a new datatype that defines a global thread within the system,
composed of a processing element identifier, a process identifier, and a local thread
identifier, which is the base class of the thread type from the underlying thread package
(in this case, a pthread.t).

" pthreadchanter-create creates a global thread within a specified processing element
(pe) and process, which may be LOCAL.

"* pthread.chanter.j oin blocks the calling thread until the specified global thread exits.

"* pthread-chanter-detach informs the system that the storage for the specified global
thread is to be reclaimed when the thread exits.

" pthread-chanter-exit terminates the calling thread, making the specified value avail-
able to any threads joining with the calling thread.

" pthread-chanter-yield gives up the processing element to the next ready thread, as
determined by the (possibly global) scheduler.

"* pthread-chanter-self returns the pthreadchanter-t structure for the calling thread.

"* pthread-chanter.pthread returns the local thread identifier of the speficied global
thread, which can then be used for any of the local thread operations provided by the
underlying thread package. This allows any global thread to behave as a local thread
with respect to the underlying thread package, thus avoiding the need to provide full

lightweight thread capabilities at the Chant interface.

" pthread-chanter-pe returns the processing element identifier of the specified thread,
which can be used to test if two threads occupy the same processing element, perhaps

having access to common shared memory.

23

"* pthreadchanter-process returns the process identifier of the specified thread, which

can be used to test if two threads occupy the same process, and hence exist in the

same address space.

"* pthread-chanter-equal compares two global thread identifiers to see if they refer

to the same thiread. This functionality allows the global thread representation to be

hidden from the user interface.

"* pthread-chanter-cancel causes the specified global thread to exit as if it had called

tile

pthread-chanter-exit routine.

"* pthread.chanter-send sends the data pointed to by buf to the specified global thread.

This is a locally-blocking routine, and returns when the data being sent (buf) call be

modified.

"* pthread.-chanter-recv posts a receive for a message from the specified global thread,

informing the system where the message is to be placed. This is a blocking routine,

which returns only when the data is located in the specified buffer location.

"* pthread-chanter-irecv posts a receive for a message from the specified global thread,

informing the system where the message is to be placed. This is a non-blocking routine,

which returns immediately, and returning a handle by which the message can be later

checked for completion using the pthread-chant erzmsgt est or pthread-chant erimsgwait

routines. Although neither of the receive routines actually blocks the processing ele-

ment, this routine will return immediate control to the calling thread rather than some

other ready thread.

"* pthread-chanter-ansgtest checks for the completion of an immediate receive operation

using the handle returned by the pthread-chanterirecv routine, and returns a true

or false value.

"• pthread-chanter.msgwait waits for the completion of an immediate receive operation

using the handle returned by the pthread-chanterirecv routine.

24

typedef struct pthrea&..chariter{

int pa; IIprocessing element id
jut process; //kernel entity (process) id
pthread-.t thread; IIthread id

I pthread-chanter-.t;

jut pthrea&..chanter-.creat. (pthread..chanter..t *thread,
const pthread-.attr-.t *attr, void * (*start-.routine) (void*),
void *axg, jut pe, jut process);

jut pthread-.chanter-join (r-oust pthread..chanter..t *thread, void **status);

mnt pthread-chanter-detach (conat pthread..chanter..t *thread);

void pthread-.chanter-.exit (void *value..ptr);

void pthread.chanter-.yield (void);

pthread-chauter-.t *pthread..chanter-.self (void);

pthread..t pthread-.chanter-.pthread (coust pthread-.chanter-.t *thread);

mnt pthroad-chanter-.pe (const pthread-.chanter-.t *thread);

jut pthread-.chanter-process (coust pthread-chanter-.t *thread);

mnt pthread..chanter-.equal (coust pthread-.chanter-.t *tl,
coust pthread-.chanter...t *t2);

mnt pthread..chanter-.cancel (coust pthread..chanter..t *thread);

int pthread-.chanter..send (iut type, char *but, jut count,

coust pthread.chanter-.t *thread);

mnt pthread-.chanter..recv (jut type, char *but, jut count,
pthread-chanter-.t *thread);

int pthread-chanter..irecv (mt *handle, jut type, char *but, jut count,
pthread.chanter..t *thread);

jut pthread-.chanter...msgtest (mt handle);

jut pthread-.chanter-msgvait (jut handle);

Figure 14: Chant interface based on an extension of pthreads

25

REPO T D CUM NTATON AGEForm Approved

REPO T D CUM NTATON AGEOMB No 0704.0188

Public reporting burden for t;,,s collection of information is estimated to average I hour per response, including the time for reniewing instructions searching existing data sources.
gathering and maintaining the data needed, and completing and reviewing the collection of information Send comments regarding this burden estimate or any other aspect o' this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports. 1? Ii Jefferson
Davis Highway. Suite 1204. Arlington. VA 22202-4302. and to the Office of Management and Budget, Paperworis Reduction Project (0704 0188). Washington. Di 20S01
1. AGENCY USE ONLY(Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

I April 1994 Contractor Report

4. TITLE AND SUBTITLE S. FUNDING NUMBERS

ON THE DESR;N OF CHANT: A TALKING THREADS PA(CKAGE
(' NASI-19480
WU 505-90-52-01

6. AUTHOR(S)

Matthew Haines
D•avid Cronk
Piyush Mehrotra

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFOHMING ORGANIZATION

Institute for (Computer Applications in Science REPORT NUMBER

and Engineering ICASE Report No. 94-25
Mail Stop 132('% NASA Langley Research Center
Hampton. VA 23681-0001

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

National Aeronautics and Space Administration AGENCY REPORT NUMBER

Langley Research (enter NASA ('R-194903
IHampton. VA 23681-0001 l(ASE Report No. 94-25

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Michael F. Card
Final Report
To appear in Supercomputing '94

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Uncla.ssified-- 1 Unlimited

Subject Category 61

13. ABSTRACT (Maximum 200 words)

Lightweight threads are becoming increasingly useful in supporting parallelism and asynchronous control structurtcs in
applications and language implementations. However, lightweight thread packages traditionally support only shared
memory synchronization and communication primitives, limiting their use in distributed memory environments. We
introduce the design of a runtime interface, called Chant, that supports lightweight threads with the capability
of communication using both point-to-point and remote service request primitives. built from standard message

passing libraries. This is accomplished by extending the POSIX pthreads interface with global thread identifiers,
global thread operations, and message passing primitives. This paper introduces the Chant interface and describes
the runtime issues in providing an efficient, portable implementation of such an interface. In particular, we present

performance results of the initial portion of our runtime system: point-to-point message passing among threads. We
examine the issue of thread scheduling in the presence of polling for messages, and measure the overhead incurred
when using this interface as opposed to using the underlying communication layer directly. We show that our design
can accommodate various polling methods, depending on the level of support present in the underlying thread
system, and imposes little overhead in point-to-point message passing over the existing communication layer.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Lightweight threads, message passing, parallel routine systems 27

16. PRICE CODE

A03
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION

OF REPORT OF THIS PAGE OF ABSTRACT OF ABSTRACT
U nclassified Unclassified I

NSN 7540-01-280-5500 Standard Form 298(Rev. 2-89)
Prescribed by ANSI Std Z39-18
298-102

