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with the Computational Complexity

A. Massa and M. Salucci

Abstract

The System-by-Design (SbD) is an emerging engineering framework for the optimization-driven

design of complex electromagnetic (EM) devices and systems. More specifically, the computational

complexity of the design problem at hand is addressed by means of a suitable selection and inte-

gration of functional blocks comprising problem-dependent and computationally-efficient modeling

and analysis tools as well as reliable prediction and optimization strategies. Thanks to the suitable

re-formulation of the problem at hand as an optimization one, the profitable minimum-size coding

of the degrees-of-freedom (DoFs), the “smart” replacement of expensive full-wave (FW) simulators

with proper surrogate models (SMs), which yield fast yet accurate predictions starting from mini-

mum size/reduced CPU-costs training sets, a favorable “environment” for an optimal exploitation

of the features of global optimization tools in sampling wide/complex/nonlinear solution spaces is

built. This research summary is then aimed at (i) providing a comprehensive description of the SbD

framework and of its pillar concepts and strategies, (ii) giving useful guidelines for its successful

customization and application to different EM design problems characterized by different levels of

computational complexity, (iii) envisaging future trends and advances in this fascinating and high-

interest (because of its relevant and topical industrial and commercial implications) topic. Repre-

sentative benchmarks concerned with the synthesis of single antenna devices as well as complex

array systems are presented to highlight advantages and potentialities as well as current limitations

of the SbD paradigm.

Key words: Complex EM Problems, Optimization, Surrogate Modeling, Learning-by-Examples

(LBE), System-by-Design (SbD).
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1 Introduction

In the last years, there have been many and significant progresses in the development of nu-

merical techniques - denoted as full-wave (FW) solvers - for the accurate analysis of complex

electromagnetic (EM) devices and systems (see for examples [1]-[8] and the reference therein).

Although highly-reliable, FW solvers are generally time-consuming [8] and their exploitation to

solve complex EM synthesis problems(1) often implies “local” refinements of an initial/reference

solution based on parametric sweeps and/or trial-and-error steps. Otherwise, design strategies

involving analytic/semi-analytic methods (AMs) (e.g., [9][10]) are generally less computation-

ally demanding, thus allowing the use of more effective and complex synthesis strategies (e.g.,

global optimization or gradient-based deterministic and iterative methods), but they may be un-

reliable when dealing with high-complexity systems since they typically approximate or even

neglect nonlinear EM phenomena that require the FW solution of Maxwell’s equations. More-

over, AMs cannot deal with whatever EM device or system, while they are generally suitable

for canonical or rather “simple” structures [10]. Therefore the “holy-grail” in synthesizing

complex EM systems is, on the one hand, to take advantage of the modeling accuracy of FW

solvers, on the other, to exploit global optimization strategies for finding the global optimum

(or the closest one) of the cost function that quantifies the mismatch between user-requirements

and design outcomes. As a matter of fact, global optimization strategies, based for example

on nature-inspired evolutionary algorithms (EAs) [11]-[15], have been widely applied in many

EM engineering problems since they allow an efficient exploration of the whole solution space

and, unlike deterministic algorithms, they require neither the analytic knowledge nor the dif-

ferentiation of the cost function. Moreover, a-priori information (e.g., physical requirements

or already available sub-optimal solutions) can be introduced in a straightforward manner as

additional constraints on the iterative process of selecting trial solutions [13]. Of course, global

optimizers require the evaluation of many solutions (typically hundreds or thousands) to ensure

an effective sampling of the solution space and to find a solution fitting all user requirements,

thus the “bare” integration of a FW solver in an iterative optimization tool will imply unreal-

(1)A problem is regarded as inherently complex if its solution requires significant resources, whatever the algo-

rithm used. In other words, “complexity” is a “measure” of (i) the problem dimension, (ii) the adopted mathemat-

ical model, as well as (iii) the computational burden.
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istic/unaffordable computational costs. In order to overcome those issues, different approaches

have been proposed ranging from (i) the improvement of the convergence rate of EAs by (i.1)

using a set of “good” (i.e., close to the global optimum) trial solutions at the initialization of the

optimization process [16][17] and/or by (i.2) identifying a minimum set of representative solu-

tion parameters [18][19] up to (iii) the reduction of the time for evaluating (i.e., the computation

of the mismatch cost function) a single solution [20]-[24] also integrating suitable coarse-to-fine

space mapping strategies [25][26].

Within this context, the System-by-Design (SbD) recently emerged as an innovative paradigm

able to exploit such strategies in a more integrated and seamless fashion [27]-[34]. As a mat-

ter of fact, the SbD enables an effective, reliable, and computationally-efficient use of global

optimizers for addressing complex EM design problems, since it is aimed at the "task-oriented

design, definition, and integration of system components to yield EM devices with user-desired

performance having the minim costs, the maximum scalability, and suitable reconfigurability

properties". Applications of the SbD to the synthesis of innovative meta-materials [27]-[29],

fractal antennas [30], electrically-large airborne radomes [31], wide angle impedance matching

layers (WAIMs) [32][33], and reflectarray antennas [34] have been recently documented.

The aim of this work is (i) to provide a comprehensive description of the SbD framework and of

its pillar concepts and strategies, (ii) to give useful guidelines for its successful customization

and application to different EM design problems that share the common issue of the compu-

tational complexity, (iii) to envisage future trends and advances in this fascinating and high-

interest (because its relevant and topical industrial and commercial implications) topic.

The outline of the paper is as follows. The general principles of the SbD are pointed out in Sect.

II, while the description of the functional blocks of the SbD is given in Sect. III. Two novel

advanced SbD-based synthesis strategies are presented in Sect. IV. Representative synthesis

benchmarks are illustrated (Sect. V) to show the SbD working as well as to give some proofs

of the method effectiveness and efficiency when dealing with computational complexity issues.

Some concluding remarks are finally drawn also envisaging future trends (Sect. VI).
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2 The SbD Paradigm

By denoting with Ω (Ω = {Ωk; k = 1, ..., K}) the set of K descriptive parameters [i.e., the

degrees-of-freedom (DoFs)] of the design problem at hand, the goal of the SbD is to yield, in a

reasonable time frame(2) , the setup of the DoFs, Ω(end), so that the corresponding cost function

value, Φ
{
Ω(end)

}
, differs from that of the global optimum, Φ

{
Ω(opt)

}
, at most for a maximum

deviation ξ

Ω(end) :
∣∣∣Φ
{
Ω(end)

}
− Φ

{
Ω(opt)

}∣∣∣ ≤ ξ (1)

Φ being a metric that quantifies the mismatch of a problem solution, Ω, from the project/user

requirements, Γth,

Φ {Ω} ,
∥∥Γth −Υ {Ω}

∥∥2 (2)

where Υ is the mapping function between the solution space, ℜ{Ω}, and the requirements

space, ℜ{Γ} (Υ : ℜ{Ω} → ℜ{Γ}, being ℜ{Γ} ≡ ℜ{Φ}).

To find a computationally-efficient solution of such a design problem (1), the SbD exploits four

interconnected functional blocks devoted to the following sub-tasks (Fig. 1):

1. Requirements and Constraints Definition (RCD) - Mathematical definition of the project

requirements, Γth, and of a set of physical-admissibility constraints, Gmin
a ≤ Ga (Ω) ≤

Gmax
a (a = 1, ..., A), starting from specifications, guidelines, and objectives provided by

the end-users in the statement of work (SoW);

2. Problem Formulation (PF) - Mathematical re-formulation of the synthesis problem as an

optimization one by (i) selecting/defining a parametric model of the solution, (ii) identify-

ing the corresponding DoFs, Ω, that is the minimum number of univocally representative

model descriptors, and (iii) choosing the cost function, Φ {Ω}, which mathematically

codes the mismatch between the project requirements/constraints and the performance of

the model, Υ {Ω}, whose global optimum corresponds to the best admissible physical

solution of the problem at hand;

(2)Clearly, the expression is rather vague and intuitive. Of course, there is the need of quantify the meaning of

“reasonable time frame” in a rigorous mathematical way for moving from a purely qualitative statement to a more

engineer-oriented/quantitative one (see Sects. 3-4).
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3. Cost Function Computation (CFC) - Evaluation, in the most efficient and accurate way,

of the cost function value Φ
{
Ω(p)

}
of a trial solution Ω(p) in order to “quantify” the

optimality of the p-th (p = 1, ..., P ) trial physical solution (i.e., the fitness of this solution

to the problem at hand);

4. Solution Space Exploration (SSE) - Dealing with an optimization problem, the task to

carry out is the sampling of the solution space, ℜ{Ω}, bounded by Gmin
a ≤ Ga (Ω) ≤

Gmax
a (a = 1, ..., A), to look for the global optimum of the cost function Φ {Ω} [i.e.,

Ω(end) in (1)]. Therefore, the SSE block is aimed at generating a succession of I trial

solutions {Ω
(p)
i ; i = 1, ..., I} (p = 1, ..., P ), P and I being the number of agents and

of iterations, respectively, by means of a suitable optimization algorithm so that Ω(end) =

arg
{
mini=1,...,I

[
Φbest

i

]}
(Φbest

i , Φ
{
Ωbest

i

}
) being Ωbest

i = arg
{
minp=1,...,P

[
Φ

(p)
i

]}

(Φ
(p)
i , Φ

{
Ω

(p)
i

}
). Generally speaking, Ω

(p)
i+1 = Ω

(p)
i +v

(p)
i where v

(p)
i =

{
v
(p)
i, k; k = 1, ..., K

}

is a vectorial increment defined on the basis of a suitable set of operators L, v
(p)
i =

L

[(
Ω

(q)
j , Φ

(q)
j

)
; j = 1, ..., (i− 1); q = 1, ..., P ] depending on the optimization strategy

at hand.

3 SbD Functional Blocks Implementation

To provide the readers with a general description of the SbD framework and implementation

strategies, let us now focus on the PF, CFC, and SSE functional blocks, postponing the details

of the first block (RCD) to the illustrative examples discussed later on.

3.1 Problem Formulation (PF)

In order to synthesize satisfactory and reliable solutions, all project requirements/constraints

defined by the end-user must be carefully “translated” into a proper mathematical framework,

as detailed in the following:
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- Solution Model and DoFs Identification

In global search strategies, such as EAs, the number P of agents/trial solutions evaluated at each

i-th (i = 1, ..., I) iteration is proportional to the number of DoFs, K [13][14]. Accordingly, a

suitable formulation of the problem at hand must be made so that (i) K is as low as possible

to minimize the computational burden for a more efficient design, but at the same time, (ii) the

choice of the K DoFs, Ω, guarantees the existence of a solution fitting the SbD goal (1) as well

as its careful correspondence with a feasible physical solution. Towards this end, parametric

studies are a valid approach to perform a sensitivity analysis and to identify which descriptors

(varied within suitable bounds) have the highest impact on the performance indexes, Υ {Ω},

and are the most representative to define the minimum set of K descriptors. On the other

hand, a key factor in the “representation” of the actual physical solution is the choice of the

basis functions to be exploited for defining smarter solution models, which are characterized

by a reduced dimensionality,K, while ensuring a high flexibility in the solution representation.

This is the case, for instance, when synthesizing the shape/profile of an EM device as in [27]

where linear arrays have been miniaturized by means of isotropic covering meta-lenses. More

in detail, the goal has been that of determining the optimal transformation-optics 2D profile,

γ (x, y), such that the lens-enclosed antenna mimic a reference one with larger aperture. By

describing γ (x, y) with a pixel-basis representation

γ(pix) (x, y) =

K(pix)∑

k=1

Ω
(pix)
k B

(pix)
k (x, y) (3)

where B
(pix)
k (x, y) = 1 if (x, y) ∈ ρk, while B

(pix)
k (x, y) = 0 otherwise, ρk being the k-th

discretization cell of the lens, the arising number of DoFs was equal to the number of pix-

els, K(pix) [Fig. 2(a)]. Differently, a spline-based representation has been adopted in [27] to

describe the lens profile in terms of Bezier quadratic curves by means of second order polyno-

mials, B
(spl)
k

(
x, y, Ω(spl)

)
(k = 1, ..., K(spl)) [18][19][31] so that the DoFs coincide with the

control points of the spline curve, Ω(spl) =
{(
x
(spl)
k , y

(spl)
k

)
; k = 1, ..., K(spl)

}
[Fig. 2(b)]. It

is worth pointing out that while the pixel-based representation (3) needs a significantly larger

number of descriptors, K(pix) ≫ K(spl), to yield a detailed model of γ (x, y), the use of spline
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bases allows one to model a continuous profile with a limited number of control points (e.g.,

K(spl) = 5 [27]). Of course, using a spline-based representation is not always the best solu-

tion, but certainly a careful study on the representation properties of a set of basis functions is a

“golden” rule for having a competitive SbD-based design approach;

- Cost Function Definition

The cost function Φ {Ω} is the unique link between the optimization strategy and the physics of

the EM problem. Therefore, it must be carefully defined to guarantee the correct sampling of

the solution space and the achievement of feasible solutions [13]. Moreover, the choice of the

cost function determines the overall complexity of the K-dimensional landscape explored by

the SSE block. To the best of authors’ knowledge, there is not a general guideline to optimally

select Φ {Ω} as well as to have the arising cost function with suitable properties, for instance,

to limit the occurrence of local minima/false solutions. However, similarly to what is done in

inverse scattering [35][36], its behavior can be roughly estimated by analyzing the functional

cuts along some directions of the solution space

Φ
{
t, Ω(1), Ω(2)

}
= Φ

{
(1− t)× Ω(1) + t× Ω(2)

}
(4)

Ω(1) and Ω(2) being two user-chosen positions within the solution space, while t is a real vari-

able. From (4), it turns out that Φ
{
t, Ω(1), Ω(2)

}
= Φ

{
Ω(1)

}
if t = 0 and Φ

{
t, Ω(1), Ω(2)

}
=

Φ
{
Ω(2)

}
if t = 1, while sweeping t within suitable bounds gives some insights on the behavior

of the cost function along a one-dimensional (1-D) cut passing through Ω(1) and Ω(2). What is

the reason for doing it? On the one hand, such evaluations allows one to have some indications

(not analytic proofs) on the degree of complexity/nonlinearity of the functional space at hand (3).

On the other hand, they can provide a valid support for the optimal choice and implementation

of the CFC and SSE blocks.

(3)The feasibility of such analyses clearly depends on the computational complexity and CPU-time of each

evaluation of the cost function. Of course, careful a-priori analyses must be performed case-by-case to infer about

their worthiness and proper set-up.
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3.2 Cost Function Computation (CFC)

The computation of Φ {Ω} requires the evaluation of specific performance indexes of the syn-

thesized EM device. Towards this aim, several numerical techniques are available for perform-

ing accurate FW analyses [1][2][3]. By formulating forward EM problems by means of properly

discretized sets of integral and/or differential equations, the corresponding numerical solution

needs the computation of thousands or millions of unknowns. Therefore, a repeated evaluation

of the cost function Φ {Ω} is the real bottleneck of standard (StD) optimization-based designs

whose computational burden is

∆tStD = (P × I)×∆tFW (5)

∆tFW being the CPU time for a single FW simulation. Unless reliable analytic model are

available, learning by examples (LBE) techniques are exploited by the SbD to significantly

reduce the computational burden, while keeping a reliable prediction of the performance of the

synthesized device/system. In short, LBEs are devoted to build fast surrogate models (SMs) able

to predict, in a computationally-efficient fashion, the outcome of high-fidelity EM simulations

[37]. From an architectural viewpoint, LBE strategies are two-step implementations composed

by (i) a training and (ii) a testing phase. The training phase is typically performed off-line

and it is devoted to build an accurate and fast surrogate of the cost function Φ {Ω}, Φ̃ {Ω},

starting from a training set of S examples/observations of the input/output (I/O) relationship,

DS =
[(

Ω(s); Φ(s)
)
; s = 1, ..., S

]
where Φ(s) stands for Φ(s) , Φ

{
Ω(s)

}
(Fig. 3). During

the test phase, on-line predictions of the cost function value are then outputted for previously-

unseen inputs [37].

Among several LBE strategies, let us focus in the following on the most commonly-adopted

ones in EM engineering [37]. Radial Basis Function Networks (RBFNs) are popular artificial

neural networks (ANNs) computing the surrogate Φ̃ {Ω} as a linear combination, through suit-

able real expansion coefficients, {w(s); s = 1, ..., S}, of S Gaussian functions [37], {ψ(s) {Ω};

s = 1, ..., S},

Φ̃ {Ω} =

S∑

s=1

ψ(s) {Ω}w(s). (6)
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Otherwise, Support Vector Regressors (SVRs) define the surrogate model as follows

Φ̃ {Ω} =

S∑

s=1

[(
α(s) − β(s)

)
K
{
Ω(s), Ω

}]
+ ς (7)

where α(s) and β(s)(s = 1, ..., S) are the SVR weights, whileK
{
Ω(s), Ω

}
is the kernel function,

ς being a bias [37]. A main difference between RBFNs and SVRs is the intrinsic capability of

RBFNs to exactly fit/interpolate the training samples (i.e., Φ̃
{
Ω(s)

}
= Φ

{
Ω(s)

}
, s = 1, ..., S).

Otherwise, the SVR tolerates/neglects deviations of the surrogate prediction Φ̃ {Ω} from the

actual cost function Φ {Ω} smaller than a threshold ǫ by defining an “ǫ-insensitive tube” [37].

Of course, there is not an optimal and unique choice for the best prediction technique, but this

depends on the design problem at hand as well as on the selection of the remaining SbD blocks.

Indeed, exactly performing like high-fidelity FW simulators when processing previously-explored

solutions may be a desirable feature since the I/O relationship, Υ {Ω}, is purely determin-

istic. However, the SM should not be regarded in the SbD framework as a highly-reliable

computationally-efficient alternative to FW solvers, but rather as a sufficiently-accurate esti-

mator of the behavior of the cost function to guide the solution-space sampling/exploration

towards the attraction basin of Ω(opt). In order to better understand this latter concept, let

us consider some simple yet intuitive examples on well-known 1D (K = 1) benchmark cost

functions, Φ {Ω} , Φ {Ω1}. Figure 4(a) shows the 1D Levy’s cost function within the range

Ω1 ∈ [−10, 10] [38] along with the predictions made by the RBFN and the SVR surrogates start-

ing from S = 6 randomly-chosen training samples. As it can be observed, the SVR correctly

identifies the presence of a valley centered at the global minimum of the actual cost function,

Ω
(opt)
Levy = 1, while a significantly worse prediction of the cost function behavior is given by the

RBFN even though this latter perfectly fits all training observations. However, the SVR may

lead to an over-smoothed surrogate of Φ failing to “understand” the overall trend of the ac-

tual cost function as shown in Fig. 4(b) for the Schwefel’s function [38] (Ω ∈ [−500, 500],

Ω
(opt)
Schwefel = 420.9687). The two surrogates perform similarly when dealing with the Ackley’s

function [38] [Ω ∈ [−5, 5], Ω
(opt)
Ackley = 0 - Fig. 4 (c)].

Another widely-used LBE method is the Ordinary Kriging (OK) whose remarkable advantage
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over the RBFN and the SVR is the straightforward capability of providing a measure, Ψ {Ω}, of

the degree of reliability/confidence associated to any prediction Φ̃ {Ω} [37][40]. As it will be

explained in the next Sections, such an additional output is a powerful source of information to

be profitably exploited to enhance the effectiveness of the whole SbD synthesis. More in detail,

the surrogate model generated by the OK is given by [39][40]

Φ̃ {Ω} = µ+ ηTR−1 (Φ− Iµ) (8)

where µ is a real constant, Φ =
[
Φ(s); s = 1, ..., S

]T
, .T being the transpose operator, I is the

(S × 1) unit vector,R = {Rpq; p, q = 1, ..., S} is the (S × S) training correlation matrix, and

η = {ηs; s = 1, ..., S} is the correlation vector of Ω [40]. As for the prediction reliability metric,

its meaning is quite intuitive since it is defined as the weighted distance between Ω and the S

training samples (i.e., Ψ {Ω} ∝
∑S

s=1‖Ω−Ω(s)‖
2

S
) being Ψ {Ω} = 0 and Φ̃ {Ω} = Φ {Ω} only if

Ω = Ω(s) (s = 1, ..., S) (Fig. 5). More specifically, the OK uncertainty is modeled starting from

the assumption that the cost function value Φ {Ω} is the realization of a normally-distributed

random variable with mean Φ̃ {Ω} and standard deviation equal to Ψ {Ω} [39][40] (Fig. 5).

For the sake of completeness, the predictions made by the OK for the Levy’s, Schwefel’s, and

Ackley’s functions are reported in Fig. 4.

- SbD-Driven Training Set Generation

In order to yield a reliable SM, the training set must be properly built. Hypothetically, only a

very large (ideally infinite) number, S, of I/O pairs would allow to exactly predict the cost func-

tion value Φ {Ω} (i.e., Φ̃ {Ω} → Φ {Ω} when S →∞). Practically, strategies for the selection

of the minimum number of representative samples guaranteeing the SM prediction error is be-

low a desired threshold are needed. Towards this aim, the SbD toolkit deals with LBE strategies

from a different perspective and in terms of a three-step approach where only the last one is

finalized at defining the SM [41]. More in detail, the first step is concerned with the reduc-

tion of the dimension of the input (solution) space ℜ{Ω} to mitigate the negative effects of the

curse of dimensionality [42]. It is worth pointing out that such a task is partially/preliminarily

addressed by the PF block when choosing the smallest set of the most representative DoFs that
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guarantees the existence of a physically-admissible solution (Sect. 3.1). However, whether K

is still high (e.g., K > 20) lower-cardinality yet highly-informative training sets can be built

by means of space reduction techniques. These latter determine a reduced set of K ′ (K ′ ≪ K)

DoFs, called reduced features, χ(s) =
{
χ
(s)
k ; k = 1, ..., K ′

}
by means of a linear/non-linear

transformation operator Λ so that a reduced database, D̂S =
{(
χ(s), Φ(s)

)
; s = 1, ..., S

}
(Fig.

3), is built. The Λ-based mapping can be function-independent (i.e., χ(s) = Λ
{
Ω(s)

}
), as in

the Principal Component Analysis (PCA) [41] and in the Sammon Mapping (SAM) [23], or

function-dependent (i.e., χ(s) = Λ
{
Ω(s), Φ(s)

}
) as for the Partial Least Squares (PLS) [41].

The second step is aimed at an “exhaustive” representation of the input space ℜ{Ω} by prop-

erly selecting the S I/O pairs. The available sampling strategies can be classified into two main

categories: (i) one-shot/non-iterative and (ii) adaptive strategies [43][44][45][46][47]. The uni-

form grid sampling belongs to the first class (i) and it performs a full-factorial exploration of

the input space by uniformly sampling each k-th (k = 1, ..., K ′) dimension and considering

all existing combinations. Clearly, it becomes rapidly unfeasible when increasing the solution

space dimensionality K ′ and/or the number of quantization levels, Q (e.g., S = QK ′

= 105

when K ′ = 5 and Q = 10). To overcome such a drawback, other strategies such as the Latin

Hypercube Sampling (LHS) [46] and the Orthogonal Arrays (OAs) method [16][30] can be ex-

ploited. These approaches, which belong to the class (ii), are based on the iterative selection of

the S training samples to reach a profitable balancing between exploration (i.e., new samples in

the regions of ℜ
{
χ
}

where the sampling rate is low) and exploitation [i.e., new samples where

the cost function Φ is more nonlinear as it can be inferred from the cuts-analysis (4)] [46];

- SbD Time Saving

When using a SM instead of the FW solver, the total cost of the SbD-based synthesis turns out

to be

∆tSbD = ∆tSM (S) + (P × I)×∆ttest (9)

where ∆ttest is the CPU time to yield a single Φ-prediction and ∆tSM (S) = (S ×∆tFW ) +

∆ttrain is the CPU time to perform the S training simulations and to generate the SM (4). Ac-

(4)It should be noticed that also the training/test times are functions of S [i.e., ∆ttrain/test = ∆ttrain/test (S)].
However, S is kept quite small (S ≪ 103) in practical applications to guarantee a significant time saving. There-
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cordingly, the SbD becomes profitable and very competitive when ∆tSbD ≪ ∆tStD being

∆tStD = (P × I)×∆tFW . (10)

To provide a simple, although rigorous, indication of the overall time saving of the SbD with

respect to a trivial integration of a FW solver within an optimization loop, let us consider that

in practical situations (∆ttrain, ∆ttest) ≪ ∆tFW , thus the following approximation generally

holds true: ∆tSbD ≈ S × ∆tFW . Accordingly, the time saving percentage thanks to the SbD

(i.e., ∆tsav ,
∆tStD−∆tSbD(S)

∆tStD
) is equal to

∆tsav ≈
(P × I)− S

(P × I)
× 100, (11)

thus the rule-of-thumb applicability condition for the SbD is S < (P × I).

The percentage saving in (11) can be even higher in case of massive parallel computing. With

reference to the computational scenario where O (O ≥ P ) processors are available, while

the effects of multiple and parallel computational capabilities can be exploited by a standard

approach only to reduce the optimization time

∆t
‖
StD =

∆tStD
P

(12)

by sharing among theO CPUs the evaluation of the cost function of the P multiple-agents/trial-

solutions at each i-th (i = 1, ..., I) iteration(5), the SbD benefits of this computational over-boost

also for reducing the training time

∆t
‖
SbD =

∆tSM (S)

O
+

(P × I)×∆ttest
P

. (13)

Therefore, the percentage time saving is roughly around

∆t‖sav ≈

(
1−

S

O × I

)
× 100 (14)

fore, the dependence on the training set size S can be neglected since ∆ttrain/test (S)≪ (S ×∆tFW ).
(5)Indeed, the number of CPUs that can be used in parallel in standard optimization algorithms is bounded by

the number of trial solutions P since the generation of new solutions depends on the outcomes of the previous

iteration.
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[i.e., ∆t
‖
sav > 0 if S < (O × I)] and it further reduces to ∆t

‖
sav ≈

(
1− 1

I

)
×100 [i.e., ∆t

‖
sav > 0

always since I > 1 by definition of iterative optimization loop], if O ≥ S since ∆t
‖
SM (S) ≈

∆tFW .

3.3 Solution Space Exploration (SSE)

Many global optimization methods exist and the choice of the most effective algorithm for the

synthesis problem under study is a key issue and not trivial task at all. From a theoretical

viewpoint, the “no free-lunch theorem” (NFL) of optimization [48] states that (i) “the average

performance of any pair of algorithms across all problems is identical” and (ii) “no matter what

the cost function, by simply observing how well the algorithm has done so far tells us nothing

about how well it would do if we continue to use it on the same cost function”. This implies

that “whether an optimization algorithm performs better than random search on some class of

problems, then it must perform worse than random search on another class” [48]. Therefore,

the application of an arbitrary algorithm to an optimization problem without understanding

the nature and the properties/features of the cost function Φ as well as of Ω is on average

equivalent to perform a random search. Indeed, it is well proven that each optimizer has its own

“optimal niche” of application where it outperforms other alternatives or vice-versa a suitable

reformulation of the synthesis problem at hand allows one to use a particular optimization tool.

By extension, the NFL principles hold true for the SbD, as well, since this latter formulates

a synthesis problem as an optimization one. More specifically, the NFL rules apply to the

SbD framework as follows “it is not possible to a-priori identify the best combination of the

functional blocks of the SbD able to perform well on every possible problem”.

To give some insights on this concept and its consequences, let us focus our attention to the

integration of two representative blocks, namely the SM and the optimization tool. Towards

this end, let us consider the optimization of the three benchmark functions in Fig. 4, but with

K = 6, performed with the “bare” integration of the RBFN, the SVR, and the OK models with

two state-of-the-art evolutionary optimizers, namely the Particle Swarm Optimizer (PSO) and

the Differential Evolution (DE) [13][14]. Given the stochastic nature of both the SMs (i.e., the

LHS) and the optimizers, the median realization over R = 20 executions with P = 10 agents
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for I = 200 iterations is reported to yield statistically-meaningful results. Figure 6 reports the

cost function values at the last iteration (i = I) of the different BARE-SbD algorithms versus the

S
K

ratio. Dealing with the Levy’s function [Fig. 6(a)], the choice of the SVR to generate the SM

turns out to be successful for the arising SbD implementation since both the PSO-SVR and the

DE-SVR integrations yield the best results provided that a sufficient number of training samples

is available (i.e., S
K
≥ 20 → S ≥ 120 being K = 6). Otherwise, the SVR-based methods

are the worse ones for the minimization of the Schwefel’s function [Fig. 6(b)] because of the

over-smoothing in approximating the actual cost function [Fig. 4(b)]. On the contrary, the OK

enables a proper exploration of the solution space when integrated with the PSO [Fig. 6(b)].

This latter choice is sub-optimal when dealing with the Ackley’s function, while both SVR-

based strategies perform very well whatever the cardinality S of the training set [Fig. 6(c)].

4 Advanced SbD Strategies

Totally replacing the FW solver with a SM, as done in BARE-SbD approaches (Sect.3.3), may

lead to sub-optimal designs [49]. This holds true especially when non-negligible time savings

are required to permit the synthesis of high-complexity and computationally demanding de-

vices/systems, thus setting a low size, S, for the training set because of the very limited number

of affordable simulations within a reasonable amount of time. As a matter of fact, treating the

SM as a “magic black box” could produce undesired effects such as (i) the convergence towards

false solutions/local minima and/or (ii) the prediction of unfeasible cost function values (e.g.,

negative values, Φ̃ {Ω} < 0). Moreover, simply increasing S to globally improve the prediction

accuracy could be not enough to prevent such issues and advanced SbD strategies are necessary.

They are mainly based on the following basic recipes: (i) the local refinement of the SM within

the attraction basin of Ω(opt) and/or (ii) the interactive collaboration between the optimizer and

the predictor. By following those guidelines, two advanced SbD implementations are described

in the following.
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4.1 Optimization-Driven “Smart” SM Generation

Unlike state-of-the-art adaptive sampling strategies (Sect. 3.2), the accuracy of the SM is locally

enhanced in the neighborhood of Ω(opt). Towards this end, an optimization-driven adaptive

sampling strategy can be adopted to build the training set DS by iteratively adding new samples

to an initial dataset D0 with S0 (S0 < S) I/O pairs. Such a strategy belongs to the class of

the “output space filling” (OSF) techniques [50] and it is aimed at uniformly exploring the

output/cost function space for which Φ {Ω} < Φth, Φth being a user-specified threshold. It is

performed within the CFC block (Fig. 1) and it consists of the following procedural steps:

1. Initialization - Generate D0 =
[(

Ω(s); Φ(s)
)
; s = 1, ..., S0

]
by sampling the input space

via LHS and initialize the loop index (j = 1);

2. SbD-OSF Loop [j = 1, ..., (S − S0)]

(a) Train a SM using the Sj−1 samples of the dataset Dj−1;

(b) Sample the input space via LHS to generate C candidates, {Ω(c); c = 1, ..., C}(6),

and predict the corresponding cost function values, {Φ̃(c) , Φ̃
{
Ω(c)

}
; c = 1, ..., C};

(c) Select the “best” candidate Ω∗ as Ω∗ = arg
{
maxc=1, ...,C

[
mins=1, ..., Sj−1

(dc, s)
]}

subject to Φ̃(c) ≤ Φth being dc, s ,
∣∣∣Φ̃(c) − Φ(s)

∣∣∣;

(d) Compute the actual cost function value of Ω∗, Φ∗ , Φ {Ω∗}, and update the training

size, Sj ← (Sj−1 + 1), and dataset, Dj ← Dj−1

⋃
(Ω∗, Φ∗) along with the loop

index, j ← (j + 1). Stop the procedure if Sj = S or go to Step 2(a).

Figure 7 illustrates the results of such a procedure when applied to the 1-D Ackley’s function.

More specifically, the SbD-OSF has been run by settingS0 = 5 and S = 50, while the OK-based

SM model has been chosen to predict C = 200 candidates at each j-th [j = 1, ..., (S − S0)]

loop. As it can be observed, there is an adaptive exploration of the region where Φ {Ω} < Φth

[Φth = 6.0 - Fig. 7(a)] and, as a by-product, the accuracy of the OK has been enhanced only

close to Ω(opt) [Fig. 7(b)].

(6)According to the reference literature [47], the number of candidates is set to a value in the range C ∈
[50, 200]×K .
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4.2 “Confidence-Enhanced” SbD Optimization

Another strategy to improve the effectiveness of the SbD is to implement a more interactive

framework by enforcing a bilateral exchange of information between the CFC and the SSE

blocks (Fig. 1). Let us first notice that, on the one hand, the SM is a computationally-cheap

alternative to the FW solver, on the other hand, the optimizer progressively localizes “promis-

ing” regions of the search space (i.e., the attraction basins of the landscape of the cost func-

tion) where the prediction accuracy should be enhanced to facilitate the convergence towards

the global minimum, Ω(opt). In order to fully exploit these features, a novel SbD strategy is

proposed hereinafter by profitably combining the global search/hill-climbing features of the

PSO [13] with the capability of the OK to provide a reliability index (Sect. 3.2) of the SM

predictions. The arising “confidence-enhanced” PSO-OK (PSO-OK/C) method is based on a

“reinforced learning” (RL) strategy that updates the SM during the optimization by adaptively

selecting trial solutions to be evaluated with the FW solver. It works as follows:

1. Initialization (i = 0) - Train an OK-based SM starting from an initial training set of S0

I/O pairs, DS0 . Compute the best cost function value of the solutions in DS0,Φ
train
best =

mins=1,...,S0

[
Φ(s)

]
. Given the desired time saving ∆tsav , set the maximum number of

affordable simulations, S, accordingly [i.e., S = P × I ×
(
1− ∆tsav

100

)
]. Define an initial

swarm of P particles with random positions {Ω
(p)
0 ; p = 1, ..., P} and velocities {v

(p)
0 ;

p = 1, ..., P};

2. PSO-OK/C Optimization Loop (i = 0, ..., I)

(a) For each p-th (p = 1, ..., P ) particle, predict the cost function value, Φ̃
(p)
i (Φ̃

(p)
i ,

Φ̃
{
Ω

(p)
i

}
), and compute the associated confidence index, Ψ

(p)
i (Ψ

(p)
i , Ψ

{
Ω

(p)
i

}
).

If Si < S then go to Step 2(b), otherwise go to Step 2(c);

(b) Select the “most promising” particle as Ω∗
i = arg

[
minp=1, ..., P

(
F−
{
Ω

(p)
i

})]
,

where F−
{
Ω

(p)
i

}
= Φ̃

(p)
i − ζΨ

(p)
i is the “lower confidence bound“ (LCB) of the

p-th (p = 1, ..., P ) trial solution, 1 ≤ ζ ≤ 3 being a real coefficient [23]. If

F−
{
Ω

(p)
i

}
> Φtrain

best then jump to Step 2(c), otherwise perform the following RL

operations:
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i. Use the FW solver to compute the actual cost function of Ω∗
i , Φ

∗
i (Φ∗

i , Φ {Ω∗
i });

ii. Update the training set,DSi
← DSi−1

⋃
(Ω∗, Φ∗

i ), and its size, Si ← (Si−1 + 1).

If Φ∗
i < Φtrain

best , then update Φtrain
best (Φtrain

best ← Φ∗
i );

iii. Re-train the OK model with DSi
;

(c) Update the personal best position of each p-th (p = 1, ..., P ) particle, b
(p)
i (b

(p)
i =

arg
{
minj=1,...,i

[
Φ

(p)
j

]}
), according to the rules summarized in Tab. I and sketched

in Fig. 8. Such an updating process is based on the degree of reliability of each p-th

(p = 1, ..., P ) trial solution, Ψ
(p)
i , and of its previous best position, Ψ

{
b
(p)
i−1

}
. For

instance, let us consider the case illustrated in Fig. 8(d) where the cost function value

assigned to Ω
(p)
i , Φ̃

(p)
i , and b

(p)
i−1, Φ̃

{
b
(p)
i−1

}
, is affected by some uncertainty, both

being predicted. Although Φ̃
(p)
i > Φ̃

{
b
(p)
i−1

}
, it is profitable to update the p-th (p =

1, ..., P ) personal best (i.e., b
(p)
i ← Ω

(p)
i ) since Ω

(p)
i has a higher probability to have

a smaller cost function value than b
(p)
i−1 [i.e., F−

{
Ω

(p)
i

}
< F−

{
b
(p)
i−1

}
- Tab I and

Fig. 8(d)]. Otherwise, whether the previous personal best has been simulated [i.e.,

it is 100% reliable - Fig. 8(b)], it can be updated with the current particle position

only if this latter has no chance to have a worse/higher cost function value (i.e.,

F+
{
Ω

(p)
i

}
< Φ

{
b
(p)
i−1

}
, F+

{
Ω

(p)
i

}
being the “upper confidence level” (UCB)

associated to Ω
(p)
i given by F+

{
Ω

(p)
i

}
, Φ̃

(p)
i + ζΨ

(p)
i [Tab. I - Fig. 8(b)];

(d) Update the global best position, g
i

(g
i
≡ Ωbest

i ) according to the confidence-based

rules in Tab. II and illustrated in Fig. 9.

(e) If i = I , then stop the optimization and output g
I

as the final design (i.e., Ω(end) =

g
I
), else go to Step 2(f );

(f) Use the standard PSO governing equations [13] to generate a new set of particles

positions and velocities, update the iteration index, i← (i+ 1), and go to Step 2(a).

As it can be inferred, the PSO-OK/C SbD method implements a surrogate-assisted evolutionary

optimization by exploiting an “individual-based” model management strategy [49], but unlike

state-of-the-art techniques, it gives the user a full control of the time saving ∆tsav by letting him

specify the total amount S of feasible FW simulations [i.e., S = P × I ×
(
1− ∆tsav

100

)
] in order
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to comply with specific computational/time constraints for the synthesis problem at hand.

5 SbD as Applied to the Synthesis of Complex EM Systems

This Section is aimed at assessing the effectiveness, the potentialities, and the current limi-

tations of the SbD as applied to the design of complex EM systems. Towards this end, two

representative benchmarks, concerned with the synthesis of (i) time modulated arrays (TMAs)

(Sect. 5.1) and of (ii) microstrip patch arrays for 5G applications (Sect. 5.2), will be discussed.

5.1 Benchmark 1 - Synthesis of TMAs

The first benchmark problem deals with the synthesis of TMAs comprising real radiators and

non-linear switching beam-forming networks (BFNs). To model the mutual coupling effects

among the N antennas as well as the complex nonlinear/dynamic behavior of the BFN, the

Harmonic-Balance (HB) technique [51][52] has been used. The goal is to determine the op-

timal setup of the switch-on instants, ton = {tonn ; n = 1, ..., N}, tonn being the T -normalized

rise time of the n-th (n = 1, ..., N) element subject to the physical-admissibility constraint

0 ≤ tonn < 1 (RCD Block), that minimizes the fluctuations of the instantaneous directivity D

within the modulation period T [51]. Following the guidelines in Sect. 3.1 (PF Block), the

cardinality of the solution space (i.e., the number of DoFs) has been reduced to K = N
2

by

considering symmetric excitation sequences [i.e., tonn = ton(N−n+1); n =
(
N
2
+ 1
)
, ...., N] so that

Ω =
{
tonn ; n = 1, ..., N

2

}
, while the cost function has been defined as

Φ {Ω} =
1

D {Ω} T

∫ T

0

∣∣D {Ω} −D {Ω, tp}
∣∣ dtp (15)

D being the average value of the instantaneous directivity over T .

As a representative numerical test, a TMA with N = 16 monopoles resonating at f0 = 2.45

[GHz] printed over a RF60-A Taconic substrate with relative permittivity εr = 6.15, loss tangent

tan δ = 0.0028, and thickness h = 0.635 [mm] [51] has been considered. Moreover, the

duration of the modulation period has been set to T = 10 [µsec], while the durations of the

driving pulses, τ = {τn; n = 1, ..., N}, have been chosen to afford a Dolph-Chebyshev pattern
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with a side-lobe level of SLL = −30 [dB] at f0.

In order to define the most suitable implementation of the CFC and SSE blocks, a preliminary

study has been carried out to (i) estimate the nature of the cost function (15) as well as to (ii)

assess the accuracy of different SMs. More specifically, the plots of the 1-D cuts of Φ (4)

have been evaluated and an example is reported in Fig. 10(a). In this latter, the trial solution

Ω = Ω(1) (t = 0) corresponds to a randomly-chosen position within the search space ℜ{Ω},

while Ω = Ω(2) (t = 1) is the solution found by a state-of-the-art StD approach based on a PSO

run of I = 200 iterations with P = 10 particles [51] [ΦStD = 3.2× 10−2 (ΦStD , Φ
{
Ω

(end)
StD

}
)

- Fig. 10(a)]. As it can be observed, the cost function (15) has a highly-oscillating multi-modal

behavior with the occurrence of many local minima and the presence of steep/non-symmetric

valleys [Fig. 10(a)]. Those features imply that the SSE block cannot be a deterministic opti-

mizer, but a stochastic hill-climbing techniques is mandatory.

Next, the accuracy of different SMs (namely, the RBFN, the SVR, and the OK models) has been

preliminary analyzed by checking the dependence of the prediction accuracy on the number

of training samples, S. Towards this aim, a set of U = (P × I) = 2000 HB-FW simulations

has been performed by LHS-sampling the solution space, then the SMs have been trained with a

subset of S < U samples and their accuracy has been evaluated on the remainingM = (U − S)

samples. Figure 10(b) reports the values of the SM error

Ξ (S) =

∑M=(U−S)
m=1

∣∣∣Φ̃
{
Ω(m)

∣∣∣S
}
− Φ

{
Ω(m)

}∣∣∣
2

∑M=(U−S)
m=1

∣∣∣Φ
{
Ω(m)

}∣∣∣
2 (16)

versus S along with the time saving ∆tsav of the SbD [Fig. 10(b)]. As expected, ∆tsav (lin-

early) decreases with S independently on the adopted SM, while the OK-based surrogate always

outperforms the other SMs in terms of prediction performance, the SVR generally providing the

worse values of Ξ [Fig. 10(b)]. It is also worth pointing out that, no matter what the training

set size within the range 0.1 ≤ S
U
≤ 0.75, the value of Ξ of each method is almost constant and

smaller than 10−1.

Moving to the solution of the TMA design problem with standard SbD approaches using LHS

training sets of different sizes, let us analyze the case of very high time saving (i.e., ∆tsav ≥

20



90% → S ≤ 200). By computing the “design quality index”, ∆Φ ,
(ΦSbD−ΦStD)

ΦStD
, as the

normalized difference between the cost function of the StD solution, ΦStD, and that from the

SbD, ΦSbD , Φ
{
Ω

(end)
SbD

}
, it turns out that both the DE-OK and the PSO-OK always yield the

best results [Fig. 10(c)]. The performance of the advanced SbD approaches presented in Sect. 4

have been assessed, as well. They allows one remarkable improvements with respect to all bare

SbD implementations. Indeed, Figure 11 indicates that the “smart” sampling performed by the

SbD-OSF technique (here initialized with S0 = 40 samples) results in a significant reduction

of ∆Φ when applying, later on, the PSO-OK. Even more significant is the positive effect of

the PSO-OK/C (still initialized with S0 = 40 samples). For instance, the PSO-OK/C obtains

a solution very close to that of the StD approach when S = 100 (i.e., ∆Φ|S=100
PSO−OK/C = 6.2%

- Fig. 11), but with an impressive time saving of ∆tsav = 95%. In order to better appreciate

such an outcome, let us consider that ∆tFW = 13 [sec] on a desktop PC with 3.6 GHz CPU

and 32 GB of RAM memory, thus the time required by the StD approach and the PSO-OK/C to

complete the optimization (i = I) was ∆tStD = 7.2 [hours] and ∆t|S=100
PSO−OK/C = 21.2 [min],

respectively.

The effectiveness of the PSO-OK/C in exploring the solution space are confirmed by the evo-

lution of the optimal value of the cost function during the iterative optimization process (i =

1, ..., I) [Φbest
i - Fig. 12(a)] as well as by the behavior of the optimized instantaneous directiv-

ities [Fig. 12(b)], which appears very similar to that of the StD approach in both plots. It is

also interesting to note the progressive refinement of the OK surrogate during the PSO-OK/C

optimization as it can be inferred from the plot of the functional cut passing through the global

best solutions at i = 0 (i.e., g
i=0

- t = 0) and i = I (g
i=I

- t = 1) (Fig. 13). As a matter of

fact, there is a non-negligible improvement of the SM accuracy in mapping the actual behavior

of the cost function from the initial (i = 0) to the final iteration (i = I) thanks to the adaptive

selection, during the optimization, of new training samples (Fig. 13).

As for the improvement of the PSO-OK/C over the PSO-OK, Figure 14 compares the predicted

values of the cost function, Φ̃
{
g
j

}
, with the corresponding actual ones, Φ

{
g
j

}
, at some in-

termediate “control-points” (j = 1, ..., J ; J being the maximum number of selected iterations).

Unlike the PSO-OK (although the same number of S = 100 FW simulations has been used),
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there is a perfect matching between the PSO-OK/C predictions and the actual cost function val-

ues thanks to the adaptive addition of training samples during the minimization. Quantitatively,

it turns out that ΦSbD (PSO−OK) = 9.4× 10−2 vs. ΦSbD (PSO−OK/C) = 3.4× 10−2 (Fig. 14).

Finally, the SbD has been compared with competitive state-of-the-art approaches. First, the

surrogate-assisted DE (SADE) algorithm [23] has been taken into account and Figure 11 proves

that the PSO-OK/C positively compares with such an optimization approach always providing

good trade-offs between design-quality and time saving. Moreover, a comparison between

the PSO-OK/C performance and those from a space mapping technique [25] has been carried

out, as well. Towards this end, the additive-input/multiplicative-output (AIMO) space mapping

approach [26] has been implemented by considering an analytic model for the TMA composed

by isotropic radiators and ideal switches (∆tcoarse = 0.02 [sec]). It turns out that, despite a

lightly better time saving with just S = 6 HB-FW simulations and Scoarse = 2200 coarse-model

evaluations (i.e., ∆tsav|AIMO = 97.9%), the final solution is slightly less accurate than the

PSO-OK/C one (i.e., ΦAIMO = 5.9× 10−2).

5.2 Benchmark 2 - Design of a Microstrip Array for 5G Applications

This second test case is devoted to further assess the advantages of the SbD when dealing with

high-complexity EM design problems. Let us consider the synthesis of a planar microstrip array

for 5G applications working at f0 = 3.5 [GHz] (Fig. 15). The antenna has been supposed to lie

on the (y, z)-plane and composed byN = (4× 6) cavity-backed slot-fed square patches of side

Lp = 2.73×10−1 λ. To enable±45 [deg] dual-polarization operation (J = 2 being the number

of operating modes), each element has been rotated by 45 [deg] and fed by two rectangular slots

of dimensions (Wh, Lh) = (2.65× 10−2, 1.31× 10−1) λ [Fig. 15(b)]. The dimensions of the

feeding lines have been set to (Wf , Lf ) = (1.69× 10−2, 1.17× 10−1) λ, with an additional

stub of lengthLs = 5.25×10−2 λ to reach a proper impedance matching. The following material

and dielectric properties have been assumed: Arlon DiClad527 (εr = 2.5, tan δ = 0.0018) with

a total thickness of H = (h1 + h2 + hc) = 1.24 × 10−1 λ [Fig. 15(a)], h1 = 1.77 × 10−2 λ,

h2 = 5.93 × 10−3 λ, and hc = 1.0 × 10−1 λ being the height of the patch substrate, of the

feeding substrate, and of the cavity, respectively. Starting from this reference setup, the set of
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DoFs Ω = {dy, dz, l1, l2} (K = 4), dy and dz being the inter-element spacing along y and z,

respectively, while l1 and l2 locate the position of the feeding slot and microstrip line associated

to polarization/port j = 2 [Fig. 15(b)], have been optimized to maximize the realized gain

along the main beam direction (θo, ϕo), Gj,o (θo, ϕo), for both polarizations and also towards

O = 5 steering angles (o = 1, ..., O) within the visible cone of the array (7). Mathematically,

such a synthesis problem has been coded (PF Block) into the following cost function

Φ {Ω} =

(
1

2× O

J∑

j=1

O∑

o=1

Gj,o (θo, ϕo|Ω5G)

)
.−2 (17)

As for the computation of the actual value of the cost function Φ, the FW problem at hand

has been solved with the Ansys HFSS EM simulator [53] by considering exactly the finite

structure of the antenna (i.e., no periodic-infinite hypotheses) to take into account both the

mutual coupling effects among the array elements as well as the fringing effects, the average

simulation time being equal to ∆tFW = 5.64× 103 [sec].

Figure 16 shows the evolution of the optimal value of the cost function for a StD optimization

based on the PSO executed with P = 4 agents for I = 50 iterations (P × I = 200→ ∆tStD =

1.13 × 106 [sec] ∼ 13 [days]), Φ
{
g
i

}
(i = 1, ..., I), as well as the predicted curve outputted

by the PSO-OK/C, Φi, along with the intermediate “control points”. The SbD converges to a

solution whose cost function value is only ∆Φ = 2.64% greater than that of the StD, but with a

remarkable advantage in terms of computational efficiency. As a matter of fact, the PSO-OK/C

performed only S = 40 FW simulations (comprising S0 = 20 initial training samples before the

optimization) enabling a time saving of ∆tsav = 80%. For completeness, the plot of the arising

realized gain patterns are shown in Fig. 17 when steering the main beam towards (θo, ϕo) =

(90, 0) [deg] [Fig. 17(a)] and (θo, ϕo) = (105, 60) [deg] [Fig. 17(b)]. For completeness,

the average realized gains along the steering direction are very close [i.e., DStD

⌋
j=1

= 15.43

[dB] vs. DSbD

⌋
j=1

= 15.22 [dB] and DStD

⌋
j=2

= 15.53 [dB] vs. DSbD

⌋
j=2

= 15.36 [dB],

beingDj ,
1

2×O

∑O
o=1Gj,o (θo, ϕo|Ω)], further confirming the similarity of the solutions at the

convergence.

(7)More in detail, the following steering directions have been considered: (θ1, ϕ1) = (90, 0) [deg], (θ2, ϕ2) =
(−60, 75) [deg], (θ3, ϕ3) = (60, 75) [deg], (θ4, ϕ4) = (−60, 105) [deg], and (θ5, ϕ5) = (60, 105) [deg].
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6 Conclusions, Final Remarks, and Future Trends

The SbD is an innovative paradigm for the computationally-efficient solution of complex EM

synthesis problems mainly devoted to properly deal with the “high complexity” curse. Towards

this purpose, the synthesis problems at hand are addressed through a suitable problem-driven

selection and interconnection of functional blocks, each one implementing a rather “simple”

and well-identified task, but all integrated to jointly fit, in an easier fashion, the required system

functionality/performance. From a theoretical point of view, after summarizing the key-features

and the building blocks of the SbD-based synthesis framework, two innovative SbD implemen-

tations have been presented and applied to two challenging problems concerned with the design

of realistic TMAs (Sect. 5.1) and the synthesis of planar dual-polarization microstrip arrays for

5G applications (Sect. 5.2).

The main outcomes from these analyses are as follows:

• the SbD enables the design of complex EM devices/systems in a suitable time-frame

thanks to the possibility to select the best (i.e., problem-oriented) trade-off between time

saving and prediction accuracy;

• the accurate selection of the solution descriptors (i.e., the DoFs) allows one to reduce

the number of required training samples and therefore the computational burden of the

training phase;

• the role of the SMs in the SbD is not only that of a reliable (i.e., accurate prediction of the

cost function values) and computationally-cheap alternative to the FW solver, but they

mainly devoted to map the landscape of the cost function to reliably drive the search for

the global optimum of the SSE algorithm.

Future activities, out of the scope of this work, will be aimed at customizing and applying

the SbD to further challenging and high-complexity designs including unconventional phased

arrays with real elements [54], and innovative meta-materials for smart EM environments ap-

plications [55]. Moreover, the development of SbD strategies, which exploit deep learning [56]

and/or multi-objective optimization algorithms [57], is under investigation. Finally, innovative
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optimization-driven methodologies based on the Compressive Sensing (CS) paradigm will be

studied to build optimal training sets overcoming the Nyquist’s theoretical limit so that it would

possible to faithfully predict the cost function values using far fewer samples than traditional

approaches [58].
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FIGURE CAPTIONS

• Figure 1. SbD Paradigm - Functional scheme of the SbD.

• Figure 2. Problem Formulation - Sketch of the (a) pixel-based and (b) spline-based

representation of the TO contour γ (x, y) [27].

• Figure 3. Training Set Generation - Pictorial representation of the DoFs, reduced fea-

tures, and cost function spaces and their interconnections for the generation of the training

sets DS =
{(

Ω(s); Φ(s)
)
; s = 1, ..., S

}
and/or D̂S =

{(
χ(s); Φ(s)

)
; s = 1, ..., S

}
.

• Figure 4. Cost Function Computation - Actual function value and predictions made by

the RBFN, SVR, and OK surrogate models for the (a) Levy’s, (b) the Schwefel’s, and (c)

the Ackley’s 1-D (K = 1) benchmark functions when using S = 6 training samples.

• Figure 5. Cost Function Computation - Actual, Φ {Ω}, predicted, Φ̃ {Ω}, and confidence

bounds, Φ̃ {Ω} ±Ψ {Ω}, of the OK surrogate model.

• Figure 6. Solution Space Exploration - Values of the cost function at the convergence,

ΦStD, for different “bare” SbD algorithms versus the ratio between the training cardinality

and the number of variables, S/K: (a) Levy’s, (b) Schwefel’s, and (c) Ackley’s functions

with K = 6.

• Figure 7. Advanced SbD Strategies (SbD-OSF; Ackley’s function) - (a) Training samples

generated by the initial LHS sampling (S0 = 5) along with those iteratively added by the

SbD-OSF (S = 50); (b) OK predictions with the initial (LHS) or the SbD-OSF training

set.

• Figure 8. Advanced SbD Strategies (SbD PSO-OK/C) - Pictorial sketch of the updating

rules at the i-th (i = 1, ..., I) iteration for the personal best position of each p-th (p =

1, ..., P ) particle, b
(p)
i (b

(p)
i = arg

{
minj=1,...,i

[
Φ

(p)
j

]}
).

• Figure 9. Advanced SbD Strategies (SbD PSO-OK/C) - Pictorial sketch of the confidence-

based updating rules at the i-th (i = 1, ..., I) iteration for the global best position, g
i

(g
i
≡ Ωbest

i ).
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• Figure 10. SbD-Synthesis (Benchmark 1: K = 8, P = 10, I = 200) - (a) 1D cut of Φ;

(b) prediction error, Ξ, and time saving, ∆tsav, versus the size of the training set, S; (c)

performance indexes (i.e., ∆Φ and ∆tsav) versus S.

• Figure 11. SbD-Synthesis (Benchmark 1: K = 8, P = 10, I = 200) - Design quality

index, ∆Φ, and SbD time saving, ∆tsav , versus S.

• Figure 12. SbD-Synthesis (Benchmark 1: K = 8, P = 10, I = 200, S0 = 40, S = 100)

- (a) Evolution of the best value of the cost function, Φbest
i , versus the iteration index, i

(i = 1, ..., I) and (b) plot of the instantaneous directivity over one modulation period T .

• Figure 13. SbD-Synthesis (Benchmark 1: K = 8, P = 10, I = 200, S0 = 40, S = 100)

- One-dimensional cut of Φ {Ω} and OK predictions when applying the PSO-OK/C.

• Figure 14. SbD-Synthesis (Benchmark 1: K = 8, P = 10, I = 200, S0 = 40, S = 100)

- Evolution of Φ̃
{
g
j

}
versus the iteration index, i (i = 1, ..., I) and cost function values

at the J control-iterations, {Φ
{
g
j

}
; j = 1, ..., J}.

• Figure 15. SbD-Synthesis (Benchmark 2: K = 4) - Geometry of (a) the complete antenna

array system modeled with HFSS and (b) details of the elementary radiator, namely a

cavity-backed slot-fed square patch.

• Figure 16 SbD-Synthesis (Benchmark 2: K = 4, P = 4, I = 50, S0 = 20, S = 40)

- Evolution of the best value of the cost function, Φbest
i , versus the iteration index, i

(i = 1, ..., I).

• Figure 17. SbD-Synthesis (Benchmark 2: K = 4, P = 4, I = 50, S0 = 20, S = 40)

- Optimized realized gain patterns for the j-th (j = 1, 2) polarization when steering the

main beam towards (a) (θ0, ϕ0) = (90, 0) [deg] and (b) (θ0, ϕ0) = (105, 60) [deg].

TABLE CAPTIONS

• Table I. Advanced SbD Strategies (SbD PSO-OK/C) - Personal best update rules.

• Table II. Advanced SbD Strategies (SbD PSO-OK/C) - Global best update rules.
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