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On the Design of Early Generation Variety
Trials With Correlated Data

B. R. CULLIS, A. B. SMITH, and N. E. COOMBES

This article considers the design of early generation variety trials with a prespecified
spatial correlation structure and introduces a new class of partially replicated designs
called p-rep designs in which the plots of standard varieties are replaced by additional
plots of test lines. We show how efficient p-rep designs can be readily generated using
the modified Reactive TABU search algorithm. The expected and realized genetic gain
of p-rep and grid plot designs is compared in a simulation study.

Key Words: Genetic gain; Grid plot design; REML; Spatial correlation.

1. INTRODUCTION

Early generation variety trials (EGVTs) are an integral part of all plant improvement
programs. These trials present the first opportunity for breeders to undertake selection for
key quantitative traits such as grain yield. In an excellent review article Kempton (1984)
suggested that the usual paradigms which underpin experimental design such as estimation
of treatment comparisons with minimum error and provision of a valid estimate of that
error, may not be relevant to EGVTs. The aim of EGVTs is to maximize the genetic gain
from selection of a subset of superior breeding lines (hereafter referred to as test lines).
Selection is usually undertaken with respect to a range of traits. In this article we focus on
the key trait of grain yield.

In EGVTs there may be insufficient seed to replicate all test lines and so the most widely
adopted designs are so-called grid-plot designs. These designs are formed by interposing a
(regular) grid of plots containing a standard (or several standard) variety(ies) among plots of
unreplicated test lines. Historically, in grid-plot designs local control of heterogeneity was
achieved by subtraction of a “fertility index” based on the yields of the standard varieties.
Cullis, Lill, Fisher, and Read (1989) proposed a spatial analysis approach for EGVTs which
is readily extended to two dimensions or modeling extraneous variation (Gilmour, Cullis,
and Verbyla 1997).
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Adoption of spatial methods for the analysis of variety trials has led to interest in
the design of experiments when the data are correlated (see, e.g., Martin 1996). Limited
theoretical results are available for replicated designs with smaller numbers of treatments,
though these are not applicable to EGVTs. This has led to an algorithmic approach for
the construction of efficient designs for these trials (Coombes 2002; Chan 1999; Martin
and Eccleston 1997) that requires numerical optimization of an objective function. Most
approaches use the A-optimality criterion as the objective function. Chan (1999); Martin
and Eccleston (1997) used simulated annealing (Kirkpatrick, Gelatt, and Vecchi 1983) to
obtain optimal or near optimal designs for a range of correlation models. Coombes (2002)
used a modified TABU (Glover 1989, 1990) search algorithm and found it often produced
better designs than simulated annealing, but required more processing time. Chauhan (2000)
and Chan (1999) considered the design of unreplicated trials with a prespecified spatial
correlation structure. They suggested that the overall A-optimality which minimizes the
average variance of all elementary contrasts between all treatments (i.e., test lines and
standard varieties) may not be the most relevant criterion for EGVTs.

This article considers the design of early generation variety trials with a prespecified
correlation structure that reflects the spatial analysis model of Gilmour et al. (1997). In
developing these designs we consider a new class of designs in which the plots of standard
varieties are replaced by additional plots of test lines, whenever resources allow. It has long
been recognized that the use of systematically located check plots is not as efficient as the
use of an appropriate incomplete block design (Atiqullah and Cox 1962). This principle can
be applied to the design of EGVTs, in that the use of additional plots of test lines in place
of plots of standard varieties should result in a greater response to selection.

The structure of the article is as follows. Section 2 describes methods of analysis for data
from early generation field trials. Section 3 discusses issues associated with the generation
of trial designs, including the choice of optimality criteria. Section 4 introduces the new
designs. The efficiency of these designs compared with grid-plot designs is examined via
a simulation study, the methodology and results of which are presented and discussed in
Section 5. Finally, some concluding remarks are given in Section 6.

2. MIXED MODEL FOR EARLY GENERATION VARIETY
TRIALS

We consider the general framework proposed by Gilmour et al. (1997) and assume
that the trial has a two-dimensional layout indexed by field rows (1, . . . , r) and columns
(1, . . . , c) so that the total number of observations is n = rc. Our model for the n×1 vector
of yields, y (assumed ordered as rows within columns) is given by

y = Xτττ + Zvuv + Zbub + e

= Xτττ + Zsus + Ztut + Zbub + e, (2.1)

where τττ is the p×1 vector of fixed effects with associated n×p design matrix X (assumed
to have full column rank), uv is the v × 1 vector of random variety effects with associated
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n×v design matrix Zv , ub is the b×1 vector of random block effects with associated n×b

design matrix Zb, and e is the vector of residual effects. As discussed previously EGVTs
usually comprise both test lines and standard varieties so let uv = (u′

s , u′
t )

′, where us and
ut are vectors of standard and test variety effects, respectively (with length s and t such that
v = s+ t). Similarly let Zv = [Zs Zt ], where Zs and Zt are the design matrices for standard
and test varieties (with dimension n× s and n× t). The vector of block effects corresponds
to effects associated with experimental design or extraneous sources of variation. Note that
the assumption of random (rather than fixed) variety effects is consistent with the aim of
EGVTs, namely selection (also see Smith, Cullis, and Thompson 2005).

We assume that the joint distribution of (u′
v, u′

b, e′)′ is Gaussian with zero mean and
variance matrix

V = σ 2

⎡⎢⎣ Gv(γγγ v) 0 0
0 Gb(γγγ b) 0
0 0 R(φφφ)

⎤⎥⎦ ,

where γγγ v , γγγ b, and φφφ are vectors of unknown variance parameters and σ 2 is the (unknown)
scale parameter. The matrix Gv is often a scaled identity matrix, that is, Gv = γvIv or
possibly Gv = γvA where A is a known relationship matrix. At present pedigrees are not
generally used in routine analyses of EGVTs.

The matrix Gb is typically a direct sum of scaled identity matrices, each component
corresponding to different terms within ub.

Here we assume that R = Rc(φφφc) ⊗ Rr (φφφr), where Rr and Rc are correlation matrices
for the row and column processes, respectively. A commonly used correlation model is an
autoregressive process of order one. A nugget effect may also be included but for simplicity
we do not consider this here.

Estimation of the mixed model in (2.1) consists of two linked processes, namely the
estimation of fixed and random effects and the estimation of variance parameters. The
BLUEs of fixed and BLUPs of random effects are obtained as solutions to the mixed model
equations, which, for the model in (2.1) are given by⎡⎢⎣ Z′

vR−1Zv + G−1
v ·· ··

X′R−1Zv X′R−1X ··
Z′

bR−1Zv Z′
bR−1X Z′

bR−1Zb + G−1
b

⎤⎥⎦
⎡⎢⎣ ũv

τ̂ττ

ũb

⎤⎥⎦ =
⎡⎢⎣ Z′

vR−1y
X′R−1y
Z′

bR−1y

⎤⎥⎦ ,

where the symbol ·· is used to indicate the symmetry of the matrix. Variance parameters are
estimated using residual maximum likelihood (Patterson and Thompson 1971), resulting in
E-BLUEs and E-BLUPs. Thus, henceforth we use the notation τ̂ττ to represent the E-BLUE
of τττ and, for example, ũv to represent the E-BLUP of uv .

Absorption of the equations for τττ and ub leads to a reduced set of equations for uv given
by (

Z′
vSZv + G−1

v

)
ũv = Z′

vSy, (2.2)

where S is given by

S = R−1 − R−1[X Zb]
[

X′R−1X ··
Z′

bR−1X Z′
bR−1Zb + G−1

b

]−1 [
X′
Z′

b

]
R−1.
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The coefficient matrix in (2.2) plays a key role in design efficiency since the scaled
inverse of this matrix is the matrix of (asymptotic) prediction error variances for the variety
effects. That is, var

(
ũv − uv

) 	 σ 2
(
Z′

vSZv + G−1
v

)−1
. This is the random effects analogue

of the variance matrix for fixed variety effects. This link will be explored in greater detail
in Section 3.1.

3. DESIGN GENERATION

3.1 OPTIMALITY MEASURES

A number of different optimality criteria have been proposed for EGVTs. Several authors
have suggested using contrasts between standard varieties and test lines, among standard
varieties only, between standard varieties and test lines or between the average of standard
varieties and test lines. Motivated by the aim of EGVTs we seek an optimality measure
which will maximize the expected genetic gain (EGG). Kempton (1984) also used EGG as
the measure for comparing the effectiveness of different methods of analysis of EGVTs.
For simplicity we assume that Gv = γvIv . In the case of EGVTs, selection is made on the
basis of the E-BLUPs of the test line effects. Thus, expected genetic gain depends upon
the distribution of these E-BLUPs. The bias and precision of predictions of random effects
when the variance parameters are unknown and must be estimated was discussed by several
authors including Kackar and Harville (1981). In the literature on experimental design for
correlated data there appears to be no consideration of the effect on design construction of
using estimated variance parameters. Thus, authors compute optimality measures assuming
that variance parameters are known. We proceed in the same manner but use an optimality
measure based on random rather than fixed variety effects. Consequently we assume that the
distribution of the E-BLUPs of the test line effects can be approximated by the distribution
of the BLUPs so that

ũt ∼ N (0, σ 2(γvIt − Ct t )), (3.1)

where Ct t is the (scaled) prediction error variance matrix for the test line effects and is given
by the partition of

(
Z′

vSZv + G−1
v

)−1
corresponding to ut . We could then calculate EGG

as the mean of the top m% of values from the distribution in (3.1). One of the aims of the
simulation study in Section 5.2.5 is to show that EGG computed in this way, that is, based
on the approximation to the distribution of the E-BLUPs as given in (3.1) correlates well
with realized genetic gain (RGG).

A computationally simpler method of calculation for EGG is obtained by using a further
approximation, namely, to replace the full prediction error variance matrix in (3.1) with a
scaled identity matrix. A good approximation can be obtained using the concept of “effective
error variance” (see, e.g., Cochran and Cox 1957). Thus, we approximate Ct t by Att It /2
where σ 2Att is the average pairwise prediction error variance of test line effects, that is,

Att = 2

t − 1

(
tr
(
Ct t
)− 1

t
1′
tC

t t1t

)
. (3.2)
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Then we can calculate EGG as

EGG = i

√
σ 2(γv − Att/2)

= iσvhg, (3.3)

where i is the selection intensity corresponding to m (i.e., the mean of the top m% of
order statistics from a standard normal distribution of size t) and hg is the square root of
a generalized measure of heritability with h2

g = 1 − Att/(2γv). Note that the equation for
EGG in (3.3) is analogous to the standard quantitative genetics formula (see, e.g., Falconer
and Mackay 1996). The difference is that we propose the use of the generalized measure
of heritability rather than the standard measure that is calculated as the ratio of genetic
variance to total (genetic plus error) variance. In the simplest case of balanced data and a
model with no fixed effects other than an overall mean and no random effects other than
those associated with variety and residual error (both with simple scaled identity variance
matrices) the generalized and standard heritability measures are identical. In all other cases
they will differ and importantly, the standard heritability measure will not relate to response
to selection.

Note that we have found that values of EGG based on the full distribution of (3.1) and the
approximate method of (3.3) are very similar (see, e.g., Section 5.2.5). Given the simplicity
of calculation of (3.3) and the analogy with the standard formula we therefore choose to
use (3.3).

Thus it is clear that, for a given selection intensity and genetic variance, EGG is max-
imized if the average of the prediction error variances of all elementary contrasts between
test lines is minimized. Thus we choose Att as our design optimality measure.

It is interesting to explore the link between our optimality measure and the standard
A-optimality measure used in the fixed effects setting. With the assumption of fixed variety
effects the analogous mixed model to (2.1) could be written as

y = Xτττ + Zvτττ v + Zbub + e,

where τττv is the v × 1 vector of fixed variety effects. The A-optimality measure, namely the
average pairwise variance for fixed test line effects, can be written as

A∗
t t = 2

t − 1

(
tr
(
C∗t t

)− 1

t
1′
tC

∗t t1t

)
,

where C∗t t is the partition of
(
Z′

vSZv

)− corresponding to the test line effects. Thus, for
large values of γv , the values of Att and A∗

t t will be very similar, and, in the limit, identical.

3.2 SEARCH ALGORITHM

We seek to optimize Att for the model in (2.1) with prespecified design matrices for
effects not associated with varieties (e.g., fixed covariate effects and random block effects)
and prespecified variance parameters for the random and residual effects. This requires a
search algorithm. The fundamental concept is the permutation of rows of Zv to achieve a



386 B. R. CULLIS, A. B. SMITH, AND N. E. COOMBES

design with minimum value of Att . Formally we define a design as a permutation vector
p of length n representing the allocation of varieties to plots through the ordering of the
rows of Zv . We then define the n × n matrix P as the row permutation of In corresponding
to p. Given a design matrix Zv and permutation matrix P a new design is obtained as
Z∗

v = PZv . We also define a perturbation function g() that operates on p to produce a new
permutation p∗, that is, p∗ = g(p). In the simplest case, and in our algorithm, g() is the
function performing a two plot interchange subject to constraints such as resolvability (i.e.,
restricting interchanges to swaps within resolvable blocks).

The algorithm minimizes the objective function for either fixed or random variety effects
(that is using A∗

t t or Att ) by repeated application of g() to p supervised by an optimisation
strategy. The strategy we use is the Reactive TABU Search (RTS) [as adapted by Coombes
(2002) for use in experimental design].

4. A NEW CLASS OF DESIGNS

The proposed designs involve the use of replicated plots for a percentage, p, of the test
lines. They are henceforth referred to as “p-rep” designs. The original motivation was as
an alternative to grid-plot designs so that the total trial size (number of plots) is maintained
but grid plots are replaced by replicated plots of test lines. Typically the ratio of grid plots
to test plots in EGVTs is 1:4 so we base our designs on p = 25% and use two plots of
each replicated line. Other values of p and levels of replication may be used and the basic
design is easily modified to suit specific requirements. For example, standard varieties may
be included with higher levels of replication than test lines. The choice of test lines to be
replicated may be made completely at random or may be influenced by the availability of
seed or interest to the breeder.

As an example we consider a field trial in which 120 lines are to be tested. One possible
grid-plot design based on a grid frequency of 1:4 involves 15 plots of each of two standard
varieties making a total of 150 plots. We assume these are laid out in a rectangular array of
5 columns by 30 rows. A p-rep design for this scenario involves the use of two replicates of
each of 30 test lines (so that p = 25%) and single plots of the remaining 90 lines. Example
randomizations for this setting are shown in Figure 1. These randomizations were obtained
using the optimization strategy described in Section 3.2 with three different scenarios for
the variety effects, namely fixed effects (so the standard A-optimality criteria, A∗

t t , was
used) and random effects with values of γvdes of 0.5 and 0.1. Note that the subscript in γvdes

denotes that this is the value of the genetic variance ratio used to construct the design. The
nongenetic part of the model used to generate the design was the same in all cases, namely
a model with random row and column effects (each with a variance component ratio of
0.1) and an AR1×AR1 spatial process with row and column autocorrelation parameters of
0.6 and 0.4, respectively. The designs were constructed to be resolvable by restricting the
search to ensure that all 30 replicated lines occurred once in the top half of each design
(i.e., rows 1 to 15) and then again in the bottom half (rows 16 to 30). It is clear that there
are marked differences between designs generated using the standard optimality measure
compared with the measure based on expected genetic gain, particularly when γvdes is small.
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Figure 1. p-rep designs for 120 test lines with p = 25% replicated in a trial laid out as 5 columns by 30 rows.
Designs are based on (a) fixed variety effects (b) random variety effects with γvdes = 0.5 and (c) random variety
effects with γvdes = 0.1. Plots with replicated lines are shaded. Resolvable blocks comprise 5 columns by 15 rows.

We reiterate that extensions to the basic design are easily obtained. As a real example we
cite the recent case of an EGVT that required a design for 193 test lines and 5 check varieties
with a layout of 40 rows by 10 columns. The generated design involved two replicates for
150 of the test lines, single plots for the remaining 43 lines, 12 plots each for two of the
check varieties and 11 plots each for the remaining three check varieties (see Coombes 2002
for an optimal randomization).

5. RELATIVE EFFICIENCY OF P-REP DESIGNS

5.1 METHODOLOGY

The performance of the new designs was compared against grid-plot designs using a
simulation study. We assessed six designs for the case of 120 lines being tested in a field
trial with a total of 150 plots (laid out as 5 columns by 30 rows). The designs comprised
the three p-rep designs described in Section 4 together with three grid-plot designs based
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on the same scenarios for variety effects (i.e., fixed variety effects or random variety effects
with γvdes = 0.5, 0.1). The grid-plot designs involved 2 standard varieties with 15 plots of
each. All designs were generated using the model for nongenetic effects as given in Section
4.

Data for each design were generated according to 12 different models that were chosen
as being typical of data models found in EGVTs. The models comprised the factorial
combinations of three values for γvdat , namely, 0.1, 0.5, and 1 and 4 models for nongenetic
effects labeled (a) γrdat = γcdat = 0.1, φr = 0.6, φc = 0.4; (b) γrdat = γcdat = 0, φr =
0.6, φc = 0.4; (c) γrdat = γcdat = 0.1, φr = 0.4, φc = 0.6; (d) γrdat = γcdat = 0, φr =
0.4, φc = 0.6. Note that the subscript in γ·dat denotes that this is the value of the genetic
variance ratio used to generate the data (as distinct from constructing the design). The scale
parameter, σ 2, was set at a value of 1.0. Note that the nongenetic data model “a” corresponds
to the model used to generate the designs. Simulated data were analysed using models that
matched the data generation model. For example, data generated using model “a” (for any
of the six designs) were analyzed using a mixed model with random row and column effects
and an AR1×AR1 spatial process for the residual effects. We note that for the p-rep designs
we would, in practice, also include random effects for resolvable blocks since this reflects
the randomization employed in the design. However, since resolvable blocks are not part
of the design model but are accommodated using a restriction of the search algorithm we
have chosen to exclude them from the data (and thence analysis) error models. This does
not compromise the generality of the results. All analyses were conducted using the samm
(Butler, Cullis, Gilmour, and Gogel 2003) suite of functions. A total of 1,000 simulations
was conducted for each of the 72 scenarios (6 designs by 12 data models). Note that for
an individual simulation only three sets of genetic effects were generated (corresponding
to the three values of γvdat ). These were then applied or subsetted across all designs and
nongenetic data models in order to improve the accuracy of the associated comparisons.

5.2 RESULTS AND DISCUSSION

5.2.1 Frequency of Zero Values for Estimated Genetic Variance

Table 1 gives the percentage of analyses in which the genetic variance ratio was esti-
mated as zero. As expected, this percentage is higher for smaller data values of γvdat . The
percentages for the lowest true value, that is, γvdat = 0.1, are significantly (p < 0.001)
higher for data generated from the grid-plot designs (ranging from 16.5 to 18.9% for av-
erages across nongenetic models) compared with the p-rep designs (ranging from 13.4 to
14.9%). This has important consequences since an estimated genetic variance of zero im-
plies that the predicted genetic effects for all lines are zero. Thus, the data cannot be used
to make selections. In terms of the p-rep designs this only appears to be an issue for lowest
data value of γvdat = 0.1. Table 1(a) reveals a pattern among the nongenetic models for
this value, with the frequency of zero estimates of genetic variance being higher for data
models that include random row and column effects compared with those that do not (i.e.,
models “a” versus “b” and “c” versus “d”). This is particularly so for the design based on
γvdes = 0.1. This is not surprising given the appearance of such designs (see, e.g., Figure
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Table 1. Percentage of Analyses With Genetic Variance Estimated as Zero (that is, γ̂vdat = 0).

 Grid-plot designs  p-rep designs

Nongenetic Random effects Fixed  Random effects Fixed
data model  γvdes = 0.1 γvdes =0.5 effects γvdes = 0.1 γvdes = 0.5 effects

(a) Genetic data model: γvdat = 0.1. Standard errors of means for
individual data models: min = 1.02; max = 1.33; mean = 1.14

a 17.6 16.8 16.8 15.4 14.8 14.0
b 17.5 14.3 16.9 12.4 12.6 12.5
c 22.9 18.7 18.2 18.5 13.8 15.4
d 17.5 16.2 15.7 13.3 12.8 11.8

average 18.9 16.5 16.9 14.9 13.5 13.4

(b) Genetic data model: γvdat = 0.5. Standard errors of means for
individual data models: min = 0.10; max = 0.62; mean = 0.36

a 3.7 4.0 3.3 0.3 0.8 0.4
b 2.3 2.5 1.7 0.1 0.1 0.7
c 3.1 3.6 3.3 0.6 0.2 0.4
d 2.6 3.5 2.5 0.3 0.2 0.1

average 2.9 3.4 2.7 0.3 0.3 0.4

(c) Genetic data model: γvdat = 1.0. Standard errors of means for
individual data models: min = 0; max = 0.30; mean = 0.12

a 0.4 0.7 0.8 0 0.1 0
b 0.5 0.4 0.4 0 0 0
c 0.4 0.6 0.8 0 0 0
d 0.4 0.9 0.1 0 0 0

average 0.4 0.7 0.5 0 0 0

1(c)) which are characterized by replicated varieties appearing in edge rows and columns so
that the varietal contrasts of replicated versus unreplicated lines are confounded with row
and column effects.

5.2.2 Realized Genetic Gain

Table 2 gives the realized genetic gain as a percentage of the true genetic gain for
selection of the top 20% of lines. The realized gain was calculated for each simulation as
the mean of the largest 24 test line E-BLUPs. The true genetic gain was calculated in the
same manner but using the true test line effects as generated for that simulation. As discussed
in Section 5.2.1, when the genetic variance is estimated as zero the realized genetic gain
is also zero. The figures in Table 2 are means over those simulations where the estimated
genetic variance was positive. The relative genetic gains for the p-rep designs (averaged
over nongenetic models) are significantly higher (p < 0.0001) than the corresponding
grid-plot values. In terms of individual data models there is a similar pattern as observed
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Table 2. Realized Genetic Gain (RGG) Expressed as Percentage of True Genetic Gain for Selection
of 20% of Test Lines. Means over simulations where genetic variance estimated as positive.
Standard errors of means for individual data models: min = 0.44; max = 0.49; mean = 0.46.

 Grid-plot designs  p-rep designs

Nongenetic Random effects Fixed  Random effects Fixed
data model  γvdes = 0.1 γvdes =0.5 effects γvdes = 0.1 γvdes = 0.5 effects

(a) Genetic data model: γvdat = 0.1.
a 43.9 44.7 44.0 46.9 47.3 47.0
b 44.2 43.7 43.9 48.5 47.8 48.0
c 43.8 43.7 43.5 47.4 46.4 46.7
d 44.1 44.1 43.7 48.2 47.8 47.4

average 44.0 44.1 43.8 47.7 47.4 47.3

(b) Genetic data model: γvdat = 0.5
a 69.7 69.7 70.0 72.1 72.6 72.4
b 71.1 71.3 71.3 73.8 73.4 73.2
c 68.8 69.2 69.2 71.9 72.1 71.9
d 70.4 70.6 70.5 72.9 73.1 73.1

average 70.0 70.2 70.3 72.7 72.8 72.7

(c) Genetic data model: γvdat = 1.0
a 78.8 78.9 78.7 80.9 81.4 80.9
b 80.4 80.5 80.6 82.1 82.6 82.9
c 78.8 79.2 78.9 80.8 81.2 81.1
d 79.5 80.0 80.0 82.1 82.3 82.3

average 79.4 79.6 79.6 81.5 81.9 81.8

in Table 1, namely that the genetic gain is lower for models that include random row and
column effects compared with those that do not.

Table 3 gives the realized genetic gains averaged over all simulations, that is, includ-
ing those simulations in which the genetic variance was estimated as zero. These figures
therefore reflect a combination of the information contained in Tables 1 and 2. Thus, the
superiority of p-rep over grid-plot designs shown in Table 3 is even greater than that of
Table 2.

5.2.3 SELECTION OF REPLICATED LINES

It is important to investigate whether there is any bias towards selection of replicated
lines in the p-rep designs. Thus in each simulation we recorded the number of replicated
lines in the top 20% of lines as selected on the basis of the E-BLUPs. The number of
replicated lines in the corresponding true top 20% was also recorded. These values were
transformed to the logit scale then averaged across simulations. To reduce bias and avoid
problems of infinite values we added 0.5 to both the numerator and denominator in the logit
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Table 3. Realized Genetic Gain Expressed as Percentage of True Genetic Gain for Selection of 20%
of Test Lines. Means over all simulations including those where genetic variance estimated
as zero. Figures are averages over the four nongenetic data models.

Grid-plot designs p-rep designs

Data Random effects Fixed Random effects Fixed
model γvdat γvdes =0.1 γvdes =0.5 effects γvdes = 0.1 γvdes = 0.5 effects

0.1 35.7 36.8 36.4 40.6 41.0 40.9
0.5 68.0 67.8 68.4 72.4 72.6 72.4
1.0 79.1 79.1 79.1 81.5 81.9 81.8

transformation. Table 4 gives the results (back-transformed to percentages) for selection
based on the E-BLUPs. These values must be compared with the value of 20% which was
the analogous figure for selection based on the true test line effects. Table 4 shows that for
the smaller data model values of γv there is a slight bias towards selection of replicated
lines.

5.2.4 Matching Designs to Data

There is some evidence to suggest that, for the p-rep designs, realized genetic gain for a
given true value of γvdat is highest for a design based on a similar value of γvdes (see Table 2).
However, one would be reluctant to recommend use of designs based on very low values of
γvdes (e.g., γvdes = 0.1) since they have some undesirable features. In particular the frequency
of zero estimates of genetic variance is high (Table 1). When this is factored into realized
genetic gain then for true γvdat = 0.1 this design performs worse than the other two designs
(Table 3). Also the designs have a very unusual appearance with replicated plots grouped
around the edges of the resolvable blocks (Figure 1(c)). As a general recommendation it
appears that designs based on the “moderate” value of γvdes = 0.5 provide a reasonable
solution for true values of γvdat in the range of 0.1 to 1.0. These designs perform relatively
well both in terms of the frequency of zero estimates of genetic variance and realized genetic
gain so that they have the highest values in Table 3.

Table 4. Percentage of Replicated Lines in Observed Top 20% of Lines. Percentage of replicated lines
in true top 20% is 20%.

Data Random effects Fixed
model γvdat γvdes = 0.1 γvdes = 0.5 effects

0.1 22.6 22.9 22.9
0.5 21.8 21.9 21.7
1.0 21.7 21.0 21.0
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5.2.5 Performance of Optimality Measure

It is instructive to compare the basis of the design optimality measure, that is, EGG
calculated using equation (3.3), with the realized genetic gain. Correlations were calculated
between the RGG values from Table 2 and the corresponding EGG values calculated using
Equation (3.3) for the p-rep designs only and separately for the three data model values
of γvdat (so correlations were based on n = 12 data points). All correlations were high
(r = 0.802, 0.932, and 0.940 for γvdat = 0.1, 0.5, and 1.0, respectively) with the strongest
association for the larger data values of γvdat . Additionally we considered the relationship
between the two measures of EGG, namely, based on the full (approximate) distribution
of the predicted test line effects (Equation (3.1)) and based on Att (Equation (3.3)). The
correlations (for the p-rep designs only) were very high (r = 0.998, 0.997, and 0.995
for γvdat = 0.1, 0.5, and 1.0, respectively). This suggests that there is little loss in using
Att compared with the full distribution. Finally, the strength of association observed here
between EGG (calculated using Att ) and realized genetic gain gives confidence in the use
of our design optimality criteria, since it suggests that designs chosen as superior on the
basis of Att are likely to also be superior in terms of realized genetic gain.

6. CONCLUDING REMARKS

In this article we have described a new class of designs, so-called p-rep designs, that
provide an alternative to grid-plot designs for EGVTs. The basic premise is to replicate
a percentage, p, of test lines and use single plots of the remainder. A simulation study
showed that, for a fixed trial size, p-rep designs resulted in higher genetic gains than grid-
plot designs. The use of these designs should therefore have a positive impact on industry.
As examples, we consider the Australian wheat and barley industries. The average price
paid to farmers for these crops over the last five years is $187/ha for wheat and $154/ha for
barley. Based on these figures the average benefit of p-rep designs over grid-plot designs
observed in this study was $1.63/ha for wheat and $1.34/ha for barley.

We have proposed a new optimality measure for EGVTs, namely the average pairwise
prediction error variance of test line effects (Att ). This reflects the aim which is to maximize
the response to selection (or genetic gain). The simulation study showed that this optimality
measure performed well in the sense that designs identified as superior in terms of Att were,
in general, also superior in terms of realised genetic gain. The assumption implicit with Att

is that variety effects are random. This is in contrast to standard approaches to design in
which treatment effects are regarded as fixed. In terms of design generation the use of
random variety effects requires specification of a value for the genetic variance component
ratio (γvdes ). The simulation study showed that the use of a value of γvdes = 0.5 provided
designs that performed well over the range of data values of γvdat under consideration (and
typical of EGVTs).

An important issue is that EGVTs are often conducted and analyzed as series of trials,
known as multi-environment trials. The proposed designs are ideally suited to this setting
since there is potential to balance test line replication across trials. For example, consider
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the trial used in this study in which 120 test lines were assessed using 150 plots. If four such
trials were grown as a series, then replication of p = 25% (i.e., 30 lines) in each would
allow a total of five plots for each test line. The issue of how best to allocate test lines to
plots across trials is complex and is the subject of current research.
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