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Abstract—We consider the design of linear transceivers for
multiuser communication systems in the presence of uncertain
channel state information (CSI), with an emphasis on downlink
systems with a single antenna at each receiver. For systems with
uplink-downlink reciprocity, we consider a stochastic model for
the channel uncertainty, and we propose an efficient algorithm
for the joint design of the linear precoding matrix at the
base station and the equalizing gains at the receivers so as
to minimize the average mean-square-error (MSE) over the
channel uncertainty. The design is based on a generalization,
derived herein, of the MSE duality between the broadcast and
multiple access channels (MAC) to scenarios with uncertain
CSI, and on a convex formulation for the design of robust
transceivers for the dual MAC. For systems in which quantized
channel feedback is employed, we consider a deterministically-
bounded model for the channel uncertainty, and we study the
design of robust downlink transceivers that minimize the worst-
case MSE over all admissible channels. While we show that
the design problem is NP-hard, we also propose an iterative
local optimization algorithm that is based on efficiently-solvable
convex conic formulations. Our framework is quite flexible, and
can incorporate different bounded uncertainty models as well
as a variety of power constraints. In particular, we study a
“system-wide” uncertainty model, and although the resulting
design problem is still NP hard, it does result in a significantly
simpler iterative local design algorithm than the “per-user”
uncertainty model. Our approaches to the minimax design for the
downlink can be extended to the uplink, and we provide explicit
formulations for the resulting uplink designs. Simulation results
indicate that the proposed approaches to robust linear transceiver
design can significantly reduce the sensitivity of the downlink to
uncertain CSI, and can provide improved performance over that
of existing robust designs.

Index Terms—multiuser transceiver design; broadcast chan-
nel; multiple access channel; channel uncertainty; MSE duality;
statistical robustness; minimax robustness; bilinear matrix in-
equality.

I. INTRODUCTION

THE PROVISION OF multiple antennas at the base station
facilitates the transmission of independent messages to

different users on the downlink of a multiuser system; e.g.,
[1]. For these broadcast channels, the availability of accurate
channel state information (CSI) at the transmitter is required
in order to spatially multiplex the messages for different users
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by precoding them in a way that mitigates the effects of
multiuser interference. Assuming that perfect CSI is available,
several precoding techniques have been proposed, including
the class of schemes that apply linear precoding at the
transmitter jointly with linear equalization at each receiver.
Those schemes offer a desirable trade-off between perfor-
mance and transmitter complexity, and examples include zero-
forcing techniques for channel inversion [2], [3], regularized
channel inversion [4], minimum mean square error (MMSE)
techniques [5], [6], and beamforming with a prespecified
signal to interference plus noise ratio (SINR) at the receivers
[1], [7].

Many precoding schemes assume that the transmitter has
perfect channel knowledge of all the users’ channels, but in
practice the CSI at the transmitter suffers from inaccuracies
caused by errors in channel estimation and/or limited, delayed
or erroneous feedback, and the performance of downlink
linear precoding systems is rather sensitive to these channel
uncertainties. For example, it was recently shown [8] that
imperfect channel knowledge at the transmitter can result in
the downlink becoming interference limited; i.e., the growth
of SINR of each user with the transmitted power saturates.

Due to the inevitability of imperfect channel information,
robust communication schemes that take into account the
channel uncertainty are of interest in practice; e.g., [9], [10].
The goal of the work herein is to propose robust linear
transceivers for the downlink that explicitly take into account
the uncertainties in the channel model, with an emphasis on
systems with a single antenna at each receiver. In systems
with reciprocity between the uplink and the downlink (e.g.,
time division duplex systems), the base station can estimate
the channel and the channel uncertainty is mainly due to
channel estimation errors. In that case, a stochastic model
for the uncertainty in the channel model is appropriate, and
possible design approaches include those based on average
performance measures, and those based on notions of outage.
For these systems, we consider the joint design of the linear
precoder matrix and the users’ equalizing gains so as to
minimize the average, over the channel uncertainty, of the
sum of the MSEs of each user. Since this design objective
is not a jointly convex function of the precoding matrix and
the equalizing gains, previous robust approaches considered
a simpler design problem that restricts the equalizing gains
to be equal (e.g., [11] [12]), or used a simpler detection
model [13], [14]. The proposed approach for solving the
general design problem (without restricting the equalizing
gains), involves the generalization of the MSE duality between
the broadcast channel and multiuser access channel (MAC)
[15], [16] to scenarios with uncertain CSI. Using this duality,
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we obtain a closed-form expression that relates the desired
robust broadcast transceivers to the corresponding transceivers
that optimize the same performance metric for the dual MAC.
The solution to the robust transceiver design problem for the
dual MAC results in a closed-form expression for the optimal
equalizer, and a convex conic formulation for the dual MAC
optimal transmitters. Hence, by exploiting the MSE duality
between BC and MAC in scenarios with uncertain CSI, we
are able to transform the non-convex design problem for the
BC into a convex and efficiently-solvable equivalent design
problem. (See, e.g., [17], [18] for an introduction to convex
conic optimization.)
For systems in which the channel is estimated and quantized

at the receiver and then fed back to the transmitter (e.g., [8],
[19], [20], [21]), one has a bound on the (quantization) error
and hence an appropriate approach to robust design would be
to optimize the worst-case performance over errors of that size.
For these systems, we study the design of robust downlink
transceivers that minimize the worst-case MSE over a bounded
uncertainty model of each user’s channel. While we show
that that design problem is NP-hard, we propose an iterative
local optimization algorithm that is based on efficiently-
solvable convex conic formulations. The problem formulation
and proposed algorithms can incorporate different bounded
uncertainty models, and they can be applied to systems with
per-antenna, per cell, and spatial-shaping power constraints,
as well as the standard constraint on the total transmitted
power. In particular, we study a “system-wide” uncertainty
model as an alternative to the “per-user” model that is suitable
for large cells and for multi-cell designs. While the resulting
design problem is still NP hard, it results in a significantly
simpler iterative local design algorithm than the “per-user”
uncertainty model. Our approaches to the minimax design for
the downlink can be extended to the uplink, and we provide
explicit formulations for the resulting uplink designs. Our
simulation results demonstrate that the proposed approaches
to robust linear transceiver design can significantly reduce the
sensitivity of the downlink to uncertain CSI, and can provide
improved performance over that of existing robust designs.
Our notation is as follows: Boldface type is used to denote

matrices and vectors; PH denotes the conjugate transpose of
the matrix P. The notation ‖p‖ refers to the Euclidean norm
of vector p, while ‖E‖ denotes the spectral norm (maximum
singular value) of the matrix E, [22]. The term tr(A) denotes
the trace of matrix A, and for symmetric matrices A and B,
A ≥ B denotes the fact that A − B is positive semidefinite.
The notation Diag(x) denotes the diagonal matrix whose non-
zero elements are the elements of x.

II. SYSTEM MODEL

We consider broadcast channels with Nt antennas at the
transmitter and K receivers, each with a single antenna. Let
s ∈ CK be the vector of data symbols intended for the
receivers. The transmitter linearly precodes the vector s to
form x ∈ CNt ,

x = Ps =
K∑

j=1

pjsj, (1)

where pj is the jth column of the precoding matrix P; i.e.,
the beamforming weights for the jth user. Without loss of
generality, we will assume that E{ssH} = I, and hence, the
total transmitted power constraint E{xHx} ≤ Ptotal reduces to
tr{PHP} ≤ Ptotal.

The signal yk received by the kth user is given by

yk = hkx + nk, (2)

where hk ∈ C1×Nt is a row vector1 representing the channel
gains from the transmitting antennas to the kth receiver, and
nk is the additive zero-mean white noise at the kth receiver
whose variance is σ2

n. Collecting the received signals in the
vector y, we will find it convenient to use the vector notation
y = Hx+n, where H is the broadcast channel matrix whose
kth row is hk, and the covariance matrix of the noise vector
n is E{nnH} = σ2

nI. Due to the decentralized nature of
the receivers, joint processing of the received vector y is not
possible. Instead, each receiver will process its received signal
yk independently using a single equalizing gain gk to obtain
an estimate of its intended symbol

ŝk = gkyk. (3)

Using (3), the mean square error MSEk associated with the
kth symbol can be written as:

MSEk = E{|ŝk − sk|2}

=
K∑

j=1

|gk|2pH
j (hH

k hk)pj + σ2
n|gk|2

− gkhkpk − gH
k pH

k hH
k + 1

= ‖gkhkP − mk‖2 + σ2
n|gk|2, (4)

where mk is the ith row of I. Similarly, the total MSE can be
written as:

MSE = E{‖ŝ− s‖2} =
K∑

k=1

MSEk

= tr{(GHP− I)H(GHP − I)} + σ2
n‖g‖2, (5)

where g = (g1, . . . , gK) and G = Diag(g).

The purpose of this paper is to determine efficient algo-
rithms for the joint design of P and g with the goal of
minimizing the MSE, in the presence of channel uncertainty.
We will adopt the common implementation (e.g., [4], [11],
[12], [14], [15], [16]) in which P and g are jointly designed at
the base station (using the available CSI), and the base station
informs each receiver of the equalizing gain, gk, that it is to
use. Actually, from (4) it can be seen that the phase component
of each gk can be absorbed into pk without affecting MSEk,
and hence only the magnitude of gk needs to be sent to
receiver k; e.g., [15], [16]. We will point out below that this
observation also applies to the robust transceiver designs for
scenarios with uncertain CSI that we will develop herein.

1Although treating hk as a row vector is a mild abuse of notation, it is
common practice.
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A. Channel Uncertainty Models

We consider additive uncertainty models for the CSI avail-
able at the transmitter:

hk = ĥk + ek, (6)

where ĥk is the transmitter’s estimate of hk, and ek is the
corresponding error. This can be equivalently written as H =
Ĥ+E, where ek is the kth row of E. We will develop design
formulations for robust transceivers under two broad models
for the channel uncertainty.
The first model is suitable for communication schemes with

reciprocity between the uplink and the downlink, which allows
the transmitter to estimate the users’ channels on the uplink.
We will adopt a model in which the estimation errors are
modelled by zero-mean random variables with covariances
E{eH

k ek} = σ2
ek

I, where σ2
ek
depends on the uplink SNR

of user k. This model is appropriate for scenarios in which
the elements of hk have zero mean and are uncorrelated with
each other and those of other users, and linear minimum
mean-square error estimation is used to estimate the channels
on the uplink.2 For this stochastic uncertainty model, robust
transceivers based on the average MSE will be presented in
Section III.
In the second model, the error ek is assumed to be deter-

ministically bounded, ‖ek‖ ≤ δk, for some given δk. This
model is a convenient one for systems in which the channel
state information is quantized at the receivers and fed back
to the transmitter; e.g., [8], [20], [19], [21]. In particular, if
the quantizer is (almost) uniform, then the quantization cells
in the interior of the quantization region can be “covered” by
balls of size δk. Using this model, the channel uncertainty
set of each user can be described by the following (spherical)
region:

Uk(δk) = {hk | hk = ĥk + ek, ‖ek‖ ≤ δk}. (7)

For this “per-user” bounded uncertainty model, minimax ro-
bust downlink transceivers based on the worst-case MSE will
be presented in Section IV, for the uncertainty region in (7),
as well as other regions. As an alternative to this “per-user”
uncertainty model, the transmitter can consider a bounded
model for the error matrix ‖E‖ ≤ Δ, where an estimate of
‖E‖ is

‖E‖ ≤
√∑K

k=1 ‖ek‖2. (8)

For this “system-wide” uncertainty model, the channel uncer-
tainty set can be described by

U(Δ) = {H |H = Ĥ + E, ‖E‖ ≤ Δ}, (9)

and a minimax robust downlink transceiver will be presented
in Section V.

III. DOWNLINK STATISTICALLY ROBUST DESIGN VIA
BC-MAC DUALITY

For the stochastic uncertainty model, our objective is to
jointly design the precoding matrix P and the receivers’

2All our derivations extend directly to the case in which E{eH
k ek} is an

arbitrary symmetric positive definite matrix, but for simplicity we will focus
on the stated model.

equalizing gains gk so as to minimize the average, over the
channel estimation error, of the total MSE:

MSE =
K∑

k=1

MSEk, (10)

where each MSEk is given by:

MSEk =
K∑

j=1

|gk|2pH
j (ĥH

k ĥk + σ2
ek

I)pj + σ2
n|gk|2

− gkĥkpk − gkĥH
k pH

k + 1. (11)

It can be seen from (11), that each MSEk is not a jointly
convex function of P and gk.3 To overcome this problem,
previous approaches to the design of robust BC transceivers
have considered simplifying the design by restricting all gk to
be equal [11], [12], or by using a simpler detection model [13].
In our approach, we will obtain a computationally efficient
solution for the P and gk that jointly minimize (10) by
exploiting the duality between the broadcast channel (BC) and
the multiple access channel (MAC). We will start by briefly
reviewing (e.g., [15], [16], [23], [24], [25], [26], [27]) the dual
MAC for the BC presented in Section II.

A. Dual Multiple Access Channel

By switching the roles of the transmitter and the receiver in
the broadcast channel, we obtain the dual MAC that consists of
K transmitters, each with a single antenna, and a receiver with
Nt antennas. The channel matrix for the dual MAC is HH .
Similar to the MSE expressions obtained for the BC in (11),
we will be interested in obtaining corresponding expressions
of individual MSEs in the dual MAC with linear precoding
and linear multiuser reception. Because the transmitters in the
dual MAC are decentralized and each have only one transmit
antenna, linear precoding reduces to power loading:

xMACk = pMACk sMACk , (12)

where sMACk and xMACk are the data symbol and the transmit-
ted signal of the kth transmitter. Without loss of generality,
we will assume that E{sMACsMACH} = I. Hence, a total
power constraint on all the transmitters can be written as∑K

k=1 |pMACk |2 ≤ Ptotal.

The vector of received signals yMAC is given by

yMAC = HHxMAC + nMAC, (13)

where nMAC is the zero-mean receiver noise vector whose
covariance matrix is E{nMACnMACH} = σ2

nI. Using a linear
multiuser receiver, gMACk ∈ C1×Nt , the base station obtains an
estimate of the symbol transmitted by the kth user, ŝMACk =
gMACk yMAC.
Using the stochastic channel uncertainty model, the average

over the channel estimation errors of the MSE associated with

3It can also be seen from (11) that the phase component of gk can be
absorbed into pk without changing MSEk , and hence that the base station
need only send |gk| to receiver k.
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the estimation of ŝMACk can be written as

MSE
MAC
k =

K∑
j=1

|pMACj |2gMACk (ĥH
j ĥj + σ2

ej
I)gMACk

H

+ σ2
ngMACk gMACk

H − pMACk

H
ĥkgMACk

H

− pMACk gMACk ĥH
k + 1. (14)

B. BC-MAC Duality with Stochastic Channel Uncertainty

In this section, we will present the MSE duality result
for the BC and MAC channels under the stochastic channel
uncertainty model described in Section II-A. This duality
result generalizes the MSE duality between the BC and MAC
channels for the perfect channel knowledge case [15], [16],
[23], [24], [25], [26] to scenarios with uncertain CSI.4 The
duality relation will be useful in obtaining a robust BC
transceiver that minimizes the average MSE in terms of the
corresponding transceiver of the dual MAC that minimizes the
same objective.
Theorem 1: Under the same total transmitted power con-

straint, the sets of individual average MSEs for the BC,
{MSEk}, and for the dual MAC, {MSEMACk }, are equal when
one uses the following transceiver designs:

pk = ωkgMACk

H
, gk = ω−1

k pMACk

H
, (15)

where the vector of positive constants ω = (ω1, . . . , ωK) is
given by:

ω2 = M−1
[ |pMAC1 |2, . . . , |pMACK |2 ]T

, (16)

and the matrix M is given by:

[M]k,j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑K
i�=k

|pMACi |2
σ2

n
gMACk (ĥH

i ĥi + σ2
ei
I)gMACk

H

+gMACk gMACk

H
k = j,

− |pMACk |2
σ2

n
gMACj (ĥH

k ĥk + σ2
ek

I)gMACj
H

k �= j.
(17)

A sketch of the proof of this result is provided in the appendix.
It is a generalization of the proof in [16] to scenarios with
channel uncertainty.5 Using Theorem 1, the broadcast precoder
P and receiver gains gk that jointly minimize a general func-
tion of the users’ average MSEs under a total power constraint
can be obtained by first obtaining the MAC transceiver that
jointly minimizes the same objective and then applying the
transformation in (16) to obtain the optimal BC transceiver. In
the following section we will consider the sum of the average
MSEs as an example, and we will obtain an efficiently solvable
formulation for the jointly optimal transceivers for the dual
MAC that minimize that objective.

4Note that SINR duality does not extend to the statistical model of uncertain
CSI [28].
5In fact, the MSE duality result for the stochastic uncertainty model extends

directly to the case of multiple antennas at the receivers and multiple data
streams per user, analogous to the case of perfect channel knowledge in [16].

C. Statistically Robust Transceiver Design for the Dual MAC

Our objective here is to find the dual MAC transmitters
pMACk and receivers gMACk that jointly minimize the average

MSE, MSE
MAC

=
∑K

k=1MSE
MAC
k . First, we will obtain an

analytic expression for the optimal receiver gMACk for a given
set of transmitters pMACi . Using these expressions we will then
obtain a convex formulation for the optimal pMACk under a total
power constraint.
To design the gMACk , we observe from (14) that each

MSE
MAC
k is a convex function of gMACk and is independent

of the other gMACj , j �= k, and hence that it can be minimized

independently. Setting the derivative of MSE
MAC
k with respect

to gMACk to zero, we obtain the following expression for the
optimal gMACk :

gMACk = pMACk

H
ĥk

( K∑
i=1

|pMACi |2(ĥH
i ĥi + σ2

ei
I) + σ2

nI
)−1

.

(18)
Using this optimal value, the average total MSE reduces to

MSE
MAC

= K − Nt + σ2
ntr(B

−1), (19)

where B =
∑K

i=1 |pMACi |2(ĥH
i ĥi + σ2

ei
I) + σ2

nI.
The next step is to design the pMACk that minimize (19) sub-

ject to a total transmitted power constraint
∑K

k=1 |pMACk |2 ≤
Ptotal. By defining qk = |pMACk |2, that problem can be formu-
lated as:

min
qi

tr
( K∑

i=1

qi(ĥH
i ĥi + σ2

ei
I) + σ2

nI
)−1

(20a)

s. t. qi ≥ 0, i = 1, . . . , K,
∑K

i=1 qi ≤ Ptotal. (20b)

Using techniques similar to those in [29], this problem can be
transformed into the following (convex) Semidefinite Program
(SDP):

min
qi,S

tr(S) (21a)

s. t.

[
S I
I

(∑K
i=1 qi(ĥH

i ĥi + σ2
ei
I) + σ2

nI
)

]
≥ 0, (21b)

qi ≥ 0, i = 1, . . . , K,
∑K

i=1 qi ≤ Ptotal. (21c)

This SDP can be efficiently solved using self-dual interior
point methods; e.g., [30].6

IV. DOWNLINK MINIMAX ROBUST DESIGN WITH

INDIVIDUAL CHANNEL UNCERTAINTIES

In this section we present a robust transceiver design that
does not rely on a statistical model of channel uncertainty,
but merely assumes that the each user’s channel lies within a
given uncertainty set Uk(δk); c.f. (7). As mentioned in Section
II-A, this uncertainty model is a convenient one for systems in
which a channel estimate is quantized at the receiver and fed
back to the transmitter. For this type of channel uncertainty,
our goal is to jointly design the precoder P and equalization
gains gk so as to minimize the worst-case MSE over all

6Without loss of generality, we can choose each pMACk to be the positive
square root of qk . Since ωk in (15) is then real, each optimal gk will be real.
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admissible channels hk ∈ Uk(δk), subject to a total power
constraint. That is,

min
P, g

max
hk∈Uk(δk)

K∑
k=1

‖gkhkP − mk‖2 + σ2
n‖g‖2 (22a)

s. t. ‖vec(P)‖2 ≤ Ptotal. (22b)

By introducing the auxiliary variables tk, 0 ≤ k ≤ K , this
minimax problem can be written as the following minimiza-
tion problem:

min
P, g,t

K∑
k=0

t2k (23a)

s. t. ‖gkhkP− mk‖ ≤ tk ∀ 1 ≤ k ≤ K, hk ∈ Uk(δk),
(23b)

σn‖g‖ ≤ t0, (23c)

along with (22b).7 The constraint in (23b) representsK infinite
sets of second order cone (SOC) constraints (e.g., [18], [17]),
with one constraint for each hk ∈ Uk(δk). However, these
infinite sets of constraints can be precisely characterized by
the following set of 2K inequalities [31]:

⎡
⎢⎣

λk − μk 0 (gkĥkP − mk)
0 μk I δk(gkP)

(gkĥkP − mk)
H

δk(gkP)H λkI

⎤
⎥⎦ ≥ 0,

tk − λk ≥ 0, 1 ≤ k ≤ K. (24)

Using the characterization in (24), the robust transceiver
design can be formulated as:

min
P, g,

λ, μ, α

α (25a)

s. t.
∥∥[

λ
σng

]∥∥2 ≤ α, (25b)⎡
⎢⎣

λk − μk 0 (gkĥkP − mk)
0 μk I δk(gkP)

(gkĥkP − mk)
H

δk(gkP)H λkI

⎤
⎥⎦

≥ 0 1 ≤ k ≤ K, (25c)

‖vec(P)‖2 ≤ Ptotal, (25d)

where we have used the fact that the optimal value for t0
is σn‖g‖, and that for tk is λk. The constraint in (25c)
represents a set of K bilinear matrix inequalities and hence
the optimization problem in (25) is NP hard [32]. However,
given initial values for P and g, one can find a locally optimal
solution by iteratively optimizing over P for fixed g, and over
g for fixed P. Each of those problems is implicit in (25) and
is a convex conic program that can be efficiently solved; e.g.,
[30]. One natural choice of the starting point for this iterative
design would be the transceiver designed for the case in which
the estimates ĥk are assumed to be the actual channels; e.g.,
[15], [4].

7As was the case in the previous section, the formulation in (23)
shows that phase component of gk can be absorbed into pk . Indeed, if
{|gk| ejθk} and P form an optimal solution of (23), then {|gk|} and
PDiag(ejθ1 , . . . , ejθK ) are also optimal.

A. Other power constraints

The formulation in (22) employs a simple constraint on the
transmitted power. However, other types of power constraints
can be incorporated into the design without compromising
the convex conic nature of the steps in the proposed iterative
algorithm. In particular, one can incorporate:

• Per-antenna power constraints: In practice, each antenna
at the base station has its own power amplifier and hence
a constraint on the average power transmitted by each
individual antenna, E{|xn|2} ≤ Pn, 1 ≤ n ≤ Nt, is
of practical importance [33]. These constraints can be
formulated as the second order cone (SOC) constraints
‖mnP‖2 ≤ Pn, 1 ≤ n ≤ Nt.

• Per-cell power constraints: These constraints arise nat-
urally in the design of multi-cell downlinks, in which
neighboring base stations cooperate in the downlink
transmission by acting as a sparse antenna array; e.g.,
[34]. Similar to per-antenna constraints, per-cell power
constraints can be formulated as SOC constraints.

• Spatial masking constraints: These constraints arise from
the imposition of a spatially-shaped bound (e.g., [35])
on the transmitted power, E{xHQ(θ)x} ≤ Pshape(θ)
for all θ ∈ Θ, where Q(θ) = v(θ)vH (θ), with v(θ)
being the “steering vector” (e.g., [36]) of the transmitter’s
antenna array in the direction θ, Pshape(θ) is the maximum
allowable power in the direction of θ, and Θ is the set
of angles of interest. Such constraints are of interest
in cellular systems in which interference to neighboring
cells needs to be controlled; e.g., [34]. A convenient way
in which this constraint can be incorporated into (25)
is through the following set of (weighted) second order
cone constraints:

‖vec(Q(θ)1/2P
)‖ ≤

√
Pshape(θ) ∀ θ ∈ Θ. (26)

B. Other uncertainty regions

The formulation in (22) is based on the simple spherical un-
certainty region in (7). In some applications, other uncertainty
regions might be more appropriate, but many such regions
lead to design problems that are at least as hard as that in
(25). As an example, in some applications the quantization
regions may be better covered by ellipses of the form

Ũk(δk) =
{
hk | hk = ĥk +

J∑
j=1

ajuj , ‖u‖ ≤ δk

}
(27)

rather than the spheres in (7). For uncertainties in this form,
the robust transceiver design problem takes a form similar to
(25), but with each constraint in (25c) replaced by⎡
⎢⎣

λk − μk 0 (gkĥkP − mk)
0 μk I δkgkAP

(gkĥkP − mk)
H

δk(gkAP)H λkI

⎤
⎥⎦ ≥ 0,

(28)

whereA is the matrix whose rows are aj . Hence, this problem
is also NP-hard.
In other applications, uncertainty regions with box-like

constraints on the elements of hk may be more appropriate.
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However, that model, which is the intersection of a set of
ellipsoidal regions of the form in (27), is more difficult to
deal with because there is no known tractable characterization
of the corresponding infinite set of constraints of the form in
(23b), [31].

V. DOWNLINK MINIMAX ROBUST DESIGN WITH OVERALL
CHANNEL UNCERTAINTY

The robust minimax design in (25) for the “per-user”
channel uncertainty model contains K bilinear matrix in-
equalities, one for each user. In this section, we consider the
alternative “system-wide” channel uncertainty model in (9),
namely ‖E‖ ≤ Δ, and we will show that the resulting robust
minimax design involves only one nonlinear matrix inequality.
Therefore, the computational cost of the conic programs used
in the iterative algorithm is reduced. This approach may
be suitable for downlink systems involving cells with large
number of users or for multi-cell designs.
As in the previous section, our goal is to jointly design the

precoder P and the equalization gains gk so as to minimize
the worst-case MSE over all admissible channels, subject to
a total power constraint. The design problem can be formally
stated as:

min
P,

G=Diag(g)

max
‖E‖≤Δ

tr{(I − GHP)H(I − GHP)} + σ2
n‖g‖2

(29a)

s. t. ‖vec(P)‖2 ≤ Ptotal, (29b)

and using the auxiliary variables w0 and w1, that minimax
problem can be precisely transformed into the following
minimization problem:

min
P, w0,w1

G=Diag(g)

w0 + w1 (30a)

s. t. tr(I− G(Ĥ + E)P)H(I − G(Ĥ + E)P) ≤ w1

∀ ‖E‖ ≤ Δ, (30b)

σ2
n‖g‖2 ≤ w0, (30c)

‖vec(P)‖2 ≤ Ptotal. (30d)

Like (23), this problem has an infinite set of constraints,
namely (30b). (Furthermore, we can also choose g to be
a real vector, without loss of generality.) The first step in
the transformation of (30b) into a single constraint is the
application of the following lemma.
Lemma 1 ([37]): Let M ∈ CK×K be a Hermitian matrix.

Then there exists a scalar s and a matrix Z ≥ 0 such
that the constraint tr(M) ≤ t is equivalent to the following
representation:

t − Ks − tr(Z) ≥ 0, (31)

M ≤ Z + sI. (32)

While Lemma 1 considers a single matrix M, it can be
directly extended to a set of matrices by applying the lemma
to an element of that set of matrices with the largest trace.
Applying that extension to (30b) yields a single constraint
of the form in (31) and the set of constraints (I − G(Ĥ +
E)P)H(I − G(Ĥ + E)P) ≤ Z + sI, ∀ ‖E‖ ≤ Δ. Using

the Schur Complement Theorem [22], that set of quadratic
matrix inequalities can be transformed into the following set
of bilinear matrix inequalities:

[
Z + sI (I − G(Ĥ + E)P)H

(I − G(Ĥ + E)P) I

]
≥ 0

∀ ‖E‖ ≤ Δ. (33)

By moving terms containing E to the right-hand side of the
inequality, we can re-write (33) as:

[
Z + sI (I − GĤP)H

(I − GĤP) I

]

≥
[

0
G

]
E

[
P 0

]
+

[
PH

0

]
EH

[
0 GH

]
∀‖E‖ ≤ Δ. (34)

To cast (34) as a single matrix inequality we use the following
lemma:

Lemma 2 ([38]): Let A be a Hermitian matrix. Then A ≥
CHXHB + BHXC for all ‖X‖ ≤ Δ if and only if there
exists a λ ≥ 0 such that[

A − λCHC −ΔBH

−ΔB λI

]
≥ 0.

Applying Lemma 2 with B = [P 0], and C = [0 GH ],
the robust minimax design in (29) can be formulated as

min
P,G=Diag(g),
s,λ,w0,w1,Z

w0 + w1 (35a)

s. t.

⎡
⎣ Z + sI (I − GĤP)H −ΔPH

(I − GĤP) I − λGGH 0
−ΔP 0 λI

⎤
⎦

≥ 0, (35b)

w1 − Ks − tr(Z) ≥ 0, (35c)

s ≥ 0, (35d)

σ2
n‖g‖2 ≤ w0, (35e)

‖vec(P)‖2 ≤ Ptotal. (35f)

Although this problem has a finite number of inequalities,
like (25), the presence of the non-linear matrix inequality
in (35b) renders (35) NP-hard. However, one can use an
iterative algorithm to obtain a locally optimal solution. For
the iterations with fixed g, the problem in (35) represents a
convex conic optimization problem that can be solved more
efficiently than the corresponding problem in the case of “per-
user” channel uncertainty model, c.f., (25). For the iterations
with fixed P, one can interchange the choices of B and C in
the application of Lemma 2 to obtain an equivalent inequality
to (35b) that is linear in g. The resulting problem is also an
efficiently-solvable convex conic optimization problem.

As was the case with the results in Section III-B, the results
in this section extend directly to the case of multiple antennas
at the receivers and multiple data streams per user. For such
scenarios, G is a block diagonal matrix (with rectangular
blocks).
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VI. UPLINK MINIMAX ROBUST DESIGNS

The proposed design framework for minimax robust
transceivers for the downlink is quite general and can be
applied to uplink systems as well. In this section we will
provide explicit formulations of the minimax robust designs
for the dual MAC. As mentioned in Section III, the chan-
nel matrix for the dual MAC is HH , and we will define
pMAC = (pMAC1 , . . . , pMACK ) and GMAC to be the matrix whose
rows are gMACk .

To derive the robust “per-user” minimax design, we first
observe that MSE expression for the kth user in the uplink
is function is function of all channels, not just its own.
While these multiple sources of uncertainty can complicate
the design, one can write the total MSE as

MSEMAC =
K∑

k=1

‖GMAChH
k pMACk − mT

k ‖2

+ σ2
ntr((G

MAC)HGMAC), (36)

where each term of the summation is subject to uncertainty
from one source only. Using (36) and the analysis in Sec-
tion IV, the uplink robust minimax design with the “per-user”
uncertainty model can be formulated as

min
GMAC,pMAC,λ,μ, β

β (37a)

s. t.∥∥∥[
λ

σnvec(G
MAC)

]∥∥∥2

≤ β, (37b)⎡
⎣ λk − μk 0 φH

k

0 μk I δk(GMACpMACk )H

φk δk(GMACpMACk ) λkI

⎤
⎦ ≥ 0

1 ≤ k ≤ K, (37c)

‖pMAC‖2 ≤ Ptotal, (37d)

where φk is used as placeholder for GMACĥH
k pMACk − mT

k .
Similarly, the uplink robust minimax design with the “system-
wide” model of uncertainty can be formulated as

min
GMAC,Z,s,λ,w0,w1,

PMAC=Diag(pMAC)

w0 + w1 (38a)

s. t.

w1 − Ks − tr(Z) ≥ 0, (38b)⎡
⎣ Z + sI ΦH −Δ(PMAC)H

Φ I − λGMAC(GMAC)H 0
−ΔPMAC 0 λI

⎤
⎦ ≥ 0

1 ≤ k ≤ K, (38c)

s ≥ 0, (38d)

σ2
n‖vec(GMAC)‖2 ≤ w0, (38e)

‖pMAC‖2 ≤ Ptotal, (38f)

where Φ is used as placeholder for I − GMACĤHPMAC. As
with the case with the downlink, both problems are NP hard,
but one can employ a local iterative algorithm in which a
convex conic program is solved at each iteration.

VII. SIMULATION STUDIES

In order to compare the performance of the proposed
robust designs with existing approaches, we have simulated
these methods for the cases of uncoded QPSK and 16-QAM
transmission over independent block fading Rayleigh channels
(without shadowing). We considered downlink scenarios with
Nt = 4 and 5 antennas, andK = 4 users, at different distances
from the base station. The first two users are assumed to be
far from the base station and their channels coefficients are
modeled as being independent circularly symmetric complex
Gaussian random variables with zero mean and unit variance.
The other two users are assumed to be closer to the base station
and their channel coefficients are generated using the above
model but with variances equal to 10.8 We will plot the average
bit error rate (BER) over all users against the signal-to-noise-
ratio, which is defined as SNR = Ptotal/(Kσ2

n). We will also
plot the average BER over each pair of near and far users. The
BERs are averaged over 500 channel realizations,H. For each
realization, we construct 100 channel estimates, Ĥ, using (6).
For each channel estimate, we compute the robust precoder
P and the equalizing gains g, inform each receiver of the
equalizing gain gk that it is to use, and transmit a block of 200
uncoded vector symbols s. (The channel H is held constant
over that block, as are the transmitter’s estimate Ĥ and the
transceiver design (P,g).) Using (1)–(3), the inputs to the
decision device of receiver k can be written as

ŝk = gkhkpksk +
∑
j �=k

gkhkpjsj + gknk. (39)

Since P and g are designed using the transmitter’s estimate of
the channel, Ĥ, it can be seen from (39) that the uncertainty
in Ĥ affects the scaling of the desired symbol, the interference
from signals transmitted to other users, and the scaling of the
additive noise.

A. Statistically robust transceiver design

The channel estimation error ek = hk − ĥk was modelled
by generating ek from a zero-mean Gaussian distribution with
E{eH

k ek} = σ2
ek

I, where we will use the same σ2
ek
for all

users. This model is appropriate for a scenario in which the
uplink power is controlled so that the received SNRs on the
uplink are equal and independent from the downlink SNR. For
convenience, we define ε2 = E{ekeH

k } = Ntσ
2
ek
.

In Fig. 1 we compare the performance of the statistically
robust transceiver proposed in Section III with that of the
regularized channel inversion approach in [4], [39], and that
of the channel inversion approach in [2], [3], for a system with
4 transmit antennas, 4 users, QPSK signalling, and ε2 = 0.01.
It can be seen that the performance of a linear transceiver
in the broadcast channel is rather sensitive to the mismatch
between the actual CSI and the transmitter’s estimate of CSI;
see also [8]. It can be also seen that while the effect of noise
is dominant at low SNR, the channel uncertainty dominates
at high SNR, where the proposed robust transceiver design
performs significantly better than the other two approaches.

8In practice, a scheduler may select the users to which data is transmitted,
but in order to focus on the impact of the proposed designs, no scheduling
will be considered in the simulations.
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Fig. 1. Comparison between the performance of the proposed statistically
robust transceiver, the channel inversion approach in [2], [3], and regularized
channel inversion [4], [39] for values of channel uncertainty ε2 = 0.01 for
a system with Nt = 4 and K = 4 using QPSK signalling. The curves with
(+) markers and no markers represent the average BER of the two near and
the two far users, respectively.

0 5 10 15 20 25 30
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR in dB

 B
E

R
 

 

 

Robust Stat. design− Avg all users

Reg. Channel. Inv. − Avg. all users

Channel. Inv. − Avg. all users

Fig. 2. Comparison between the performance of the transceivers considered
in Figure 1 for a system with Nt = 5 and ε2 = 0.1. The legend is the same
as that in Figure 1.

Fig. 1 also shows that in the presence of channel uncertainty,
both the regularized channel inversion and channel inversion
designs have the same performance limit at high SNR. This
is due to the fact that the regularized method involves the
addition of a regularization term whose value is inversely
proportional to Ptotal/(Kσ2

n); see [4]. In Fig. 2 we compare
the performance of the statistically robust transceiver with
that of channel inversion approach in [2], [3], and regularized
channel inversion approach in [4], [39], for a system with 5
transmit antennas, 4 users, QPSK signalling, and uncertainty
value ε2 = 0.1. The impact of the robust design is apparent in
the average performance of the two near users for the whole
SNR range, and in the average performance of all users at
high SNRs.
For Fig. 3 we consider a system with 16-QAM signalling,

5 transmit antennas and 4 users, and we compare the per-
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Fig. 3. Comparison between the performance of the proposed statistically
robust transceiver and the robust regularized channel inversion approach in
[12] for values of channel uncertainty ε2 = 0.03 for a system with Nt = 5
and K = 4 using 16-QAM signalling. The curves with (+) markers and no
markers represent the average BER of the two near and the two far users,
respectively.

formance of the proposed statistically robust transceiver with
that of the robust regularized channel inversion approach in
[12], which restricts all the receiver gains gk to be equal. It
can be seen from Fig. 3 that significant improvement in the
performance of the near users can be achieved by the proposed
robust design, as it offers more degrees of freedom in the
choice of the gains gk.

B. Robust minimax transceiver designs

In systems that use feedback to provide the transmitter with
quantized version of the CSI, the information available to the
transmitter will include the designed quantization codebooks
and the statistics of the error resulting from the use of these
codebooks; e.g., E{(hk − ĥk)(hk − ĥk)H} = ε2. Since we
assume each user’s channel is independent from the others, the
transmitter can model the error matrix E as being zero mean
with independent rows and second order statistics given by
E{EEH} = ε2I. Thus, we have ‖E{EEH}‖ = ε2. To simu-
late quantization errors, we will generate matrices E such that
the real and imaginary parts of each element Eij are drawn in-

dependently from uniform distribution U
(
−

√
3

2Nt
ε,

√
3

2Nt
ε
)
,

and hence E{EEH} = ε2I. Given that the transmitter will
have access to ε, and since Δ2 = ‖EHE‖, an appropriate
choice for Δ, for the “system-wide” uncertainty model, is ε.
For the “per-user” uncertainty model, when all users are using
the same codebooks, all δk are equal and one can use equation
(8) to set δk = ε/

√
K.

In Fig. 4 the performance of the proposed robust minimax
approaches with “per-user” and “system-wide” uncertainty
models is compared to that of the regularized channel in-
version approach in [4], [39] in the presence of uniformly
distributed quantization errors with ε2 = 0.03 for a system
with Nt = 5, K = 4 and 16-QAM signalling. It can be seen
that performance of the minimax approach with the “system-
wide” uncertainty model is reasonably close to the minimax
approach with “per-user” uncertainty, especially in terms of
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Fig. 4. Comparison between the performance of the proposed robust
minimax approaches with “per-user” and “system-wide” uncertainty models,
and the regularized channel inversion approach in [4], [39] in the presence of
uniformly distributed quantization errors with ε2 = 0.03 for a system with
Nt = 5 and K = 4 using 16-QAM signalling. The curves with (+) markers
and no markers represent the average BER of the two near and the two far
users, respectively.

the average performance of all users. Both approaches provide
improved performance over the non-robust approach in terms
of the average BER and significantly improved performance
in terms of the BER of the near users. In Fig. 5, a comparison
is made with the non-robust of channel inversion approach
in [2], [3], for a similar system with ε2 = 0.05, and similar
performance advantages are observed.

VIII. CONCLUSION

We have considered statistical and minimax robust joint
designs for linear transceivers for multiuser communication
systems. For the statistical approach, we have presented a
robust design for the broadcast channel transceivers that jointly
minimize the average, over the channel estimation errors,
of the sum of the MSEs of each user. By generalizing
the MSE duality between the broadcast channel (BC) and
multiple access channel (MAC) to schemes with channel
estimation errors, we have shown that the robust design for the
broadcast channel can be obtained from an efficiently-solvable
conic programming formulation for the robust transceivers
for the dual MAC. For the minimax approach, we have
provided a formulation for the robust downlink transceivers
that maximize the worst-case performance for “per-user” and
“system-wide” channel uncertainty models. We also proposed
computationally-tractable iterative algorithms for obtaining
locally optimal solutions to these two design problems. The
problem formulation and proposed algorithms can be applied
to systems with per-antenna, per-cell, and spatial-shaping
power constraints, as well as a constraint on the total trans-
mitted power. We showed that proposed minimax downlink
transceiver designs can be applied to the design of uplink
transceivers as well. Our simulation results demonstrated that
the proposed approaches to the robust linear transceiver design
can significantly reduce the sensitivity of the downlink to
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Fig. 5. Comparison between the performance of the proposed robust minimax
approaches with “per-user” and “system-wide” uncertainty models, and the
channel inversion approach in [2], [3] in the presence of uniformly distributed
quantization errors with ε2 = 0.05 for a system with Nt = 5 and K =
4 using 16-QAM signalling. The curves with (+) markers and no markers
represent the average BER of the two near and the two far users, respectively.

uncertain CSI, and can provide improved performance over
that of existing robust designs.

APPENDIX
PROOF OF THEOREM 1

We start by considering linearly related transceivers for BC
and dual MAC:

pk = ωkgMACk

H
, gk = χkpMACk

H
, (40)

and we find the necessary conditions for ωk and χk such
that set of MSEs in BC and dual MSE are equal. By setting
MSEk = MSE

MAC
k and substituting the values pk and gk from

(40), we obtain a set of K equations. From the equality of
coefficients the term in pMACk gMACk ĥH

k (or pMACk

H
ĥkgMACk

H
)

on both sides we have χk = 1/ωk. Using this relation, the set
of K equations reduces to the following linear system in ω2:

M ω2 =
[ |pMAC1 |2, . . . , |pMACK |2 ]T

, (41)

where M was defined in (17). We observe that M has
strictly dominant diagonal elements and negative off-diagonal
elements, hence it is non-singular and the elements of M−1

are non-negative. Adding all equations in the linear system in
(41) results in

∑K
k=1 ω2

kg
MAC
k gMACk

H =
∑K

k=1 |pMACk |2, i.e.,
total transmitted power in BC and dual MAC are the same.
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