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Abstract— Load factor based congestion control schemes have
shown to enhance network performance, in terms of utilization,
packet loss and delay. In these schemes, using more accurate
representation of network load levels is likely to lead to a more
efficient way of communicating congestion information to hosts.
Increasing the amount of congestion information, however,may
end up adversely affecting the performance of the network. This
paper focuses on this trade-off and addresses two importantand
challenging questions: (i) How many congestion levels should
be represented by the feedback signal to provide near-optimal
performance? and (ii) What window adjustment policies mustbe
in place to ensure robustness in the face of congestion and achieve
efficient and fair bandwidth allocations in high Bandwidth-Delay
Product (BDP) networks, while keeping low queues and negligible
packet drop rates?

Based on theoretical analysis and simulations, our results
show that 3-bit feedback is sufficient for achieving near-optimal
rate convergence to an efficient bandwidth allocation. While the
performance gap between 2-bit and 3-bit schemes is large, gains
follow the law of diminishing returns when more than 3 bits
are used. Further, we show that using multiple levels for the
multiplicative decrease policy enables the protocol to adjust its
rate of convergence to fairness, rate variations and responsiveness
to congestion based on the degree of congestion at the bottleneck.
Based on these fundamental insights, we design Multi-Level
feedback Congestion control Protocol (MLCP). In addition to
being efficient, MLCP converges to a fair bandwidth allocation
in the presence of diverse RTT flows while maintaining near-zero
packet drop rate and low persistent queue length. These features
coupled with MLCP’s smooth rate variations make it a viable
choice for many real-time applications. Using extensive packet-
level simulations we show that the protocol is stable acrossa
diverse range of network scenarios. A fluid model for the protocol
shows that MLCP remains globally stable for the case of a single
bottleneck link shared by identical round-trip time flows.

I. I NTRODUCTION

Future trends in technology (e.g., increases in link capacities
and incorporation of wireless WANs into the Internet), coupled
with the need to support diverse QoS requirements, bring
about challenges that are likely to become problematic for
TCP. This is because (1) TCP reacts adversely to increases
in bandwidth and delay and (2) TCP’s throughput and delay
variations makes it unsuitable for many real-time applications.
These limitations may lead to the undesirable situation where
most Internet traffic is not congestion-controlled; a condition
that is bound to impact Internet stability.

Pure end-to-end schemes typically rely on packet loss and/or
delay to infer congestion [1], [2], [3]. The heavy reliance on
these indicators to deal with congestion implies that actions
can only be taken after congestion occurs, which should be

avoided in the first place. Further, research studies have shown
that using only packet loss and/or delay as a signal of conges-
tion poses fundamental limitations in achieving high utilization
and fairness while maintaining low bottleneck queue and near-
zero packet drop rate on high BDP paths [2], [4]. The use
of explicit network feedbackhas been proposed to overcome
the limitations of end-to-end congestion control schemes.
Although, traditional congestion notification schemes such as
TCP+AQM/ECN proposals are able to reduce loss rate and
queue size, they still fall short in achieving efficient bandwidth
allocation in high BDP networks [5], [6], [7], [8], [9]. XCP
addresses this problem by having the routers estimate the fair
rate and send this back to the sources [10]. However, XCP is a
network-based solution, whereby fairness and congestion con-
trol are enforced inside the network. Therefore, it is likely to
introduce more overhead on routers than end-to-end or limited-
feedback based schemes. Moreover, schemes such as XCP
require considerable changes in the routers whereas congestion
notification schemes like TCP+AQM/ECN typically involve
modification at the end-hosts with incremental support from
the routers.

VCP uses load factor (the relative ratio of demand and
capacity) as a signal of congestion and sends two bits of
explicit feedback to the sources [11]. However, VCP’s rate of
convergence to an efficient bandwidth allocation is far from
optimal (see Section II). VCP’s usage of a single, fixed Multi-
plicative Decrease (MD) parameter causes slow convergenceto
fairness and reduces responsiveness to congestion. Further, in
the presence of diverse RTT flows, VCP becomes considerably
unfair as shown by simulation results in Section IV. A closer
look at the VCP analysis reveals that (1) more refined spectrum
of congestion levels is necessary to avoid inefficiencies onhigh
BDP paths, (2) The window adjustment policies in high load
regions should adapt to the degree of congestion, to provide
smooth rate variations and to ensure robustness in the face of
congestion and (3) mechanisms should be in place to improve
fairness while maintaining low queues. This, however, raises
few fundamental questions about load factor based congestion
control schemes: (i)What representation of the network load
provides the best trade-off between performance gains and the
adverse effects due to the larger amount of feedback?(ii) What
window increase/decrease policies must be in place to ensure
efficient and fair bandwidth allocations in high BDP networks
while keeping low queues and near-zero packet drop rate?
This paper addresses these issues and uses the insights gained



by the analysis to designMulti-Level FeedbackCongestion
Control Protocol

The theoretical analysis and simulations carried out as
part of this work show that using 3-bit representation of the
network load levels is sufficient for achieving near-optimal
rate of convergence to an efficient bandwidth allocation. While
the performance improvement of 3-bit over 2-bit schemes
is large, the improvement follows the “law of diminishing
returns” when more than three bits are used. Our results also
show that using multiple levels of MD enables the protocol
to adjust its rate of convergence to fairness, rate variations
and responsiveness to congestion according to the degree of
congestion at the bottleneck. Guided by these fundamental
insights, we design MLCP, in which each router classifies
the level of congestion in the network using 4-bits while
employing load factor as a signal of congestion [12]. In
addition, each router also computes themean RTTof flows
passing through it, to dynamically adjust its load measurement
interval. These two pieces of information are tagged onto each
outgoing packet usingonly7 bits. The receiver then echoes this
information back to the sources via acknowledgment packets.
Based on this feedback, each source applies one of the follow-
ing window adjustment policies: Multiplicative Increase (MI),
Additive Increase (AI), Inversely-proportional Increase(II) and
Multiplicative Decrease (MD). MLCP like XCP decouples
efficiency control and fairness control by applying MI to
converge exponentially to an efficient bandwidth allocation and
then employing AI-II-MD control law for providing fairness
among competing flows [10]. MLCP adjusts its aggressiveness
according to the spare bandwidth and the feedback delay
which prevents oscillations, provides stability in the face of
high bandwidth or large delay, and ensures efficient utilization
of network resources. Dynamic adaptation of the load factor
measurement interval allows MLCP to achieve high fairness
in the presence diverse RTT flows. In addition, MLCP decou-
ples loss recovery from congestion control which facilitates
distinguishing error losses from congestion-related losses, an
important consideration in wireless environments. MLCP has
low algorithmic complexity, similar to that of TCP and routers
maintain no per-flow state.

Using extensive packet-level ns2 [13] simulations, we show
that MLCP achieves high utilization, low persistent queue
length, negligible packet drop rate and good fairness. We use
a simple fluid model to show that the proposed protocol is
globally stable for any link capacity, feedback delay or number
of sources for the case of a single bottleneck link shared
by identical RTT flows. The model reinforces the stability
properties that we observe in our simulations and provides
a good theoretical grounding for MLCP.

The rest of the paper is organized as follows. In Section II,
we present the feedback analysis for determining the number
of congestion levels. We describe the components of the proto-
col in Section III. In Section IV, we evaluate the performance
of MLCP using extensive packet-level simulations. Section
V describes the stability conditions of MLCP using a fluid
model. Section VI discusses related work and Section VII
offers concluding thoughts and future work.

II. FEEDBACK ANALYSIS

Every protocol that uses load factor as a signal of congestion
must consider three important issues (1)How many bits to
use for carrying load-factor information?(2) What transition
points to choose for each symbol?(3) What actions should
end-hosts take based on the received signal?In this section,
we address these issues in detail.

The number of bits used in representing the feedback signal
impacts the preciseness of congestion-related information.
This, in turn, determines how conservative a source may need
to be in order to compensate for the loss of information.
However, having large number of bits in representing load-
factor information is not necessarily desirable. On one hand,
increasing the number of bits is likely to increase the overhead
caused by the need to process and respond to different levels
of congestion. On the other hand, increasing the number
of bits leads to a more precise estimation of the level of
congestion and, therefore, a more accurate response from the
sources. Hence, the goal is to determine the number congestion
levels that provide the best trade-off between performance
improvements and the number of bits used in the feedback.

The performance metrics likely to be affected by the pre-
ciseness of the feedback signal include (1) rate of convergence
to high utilization and (2) rate of convergence to fairness.The
analysis of these metrics is used to derive theoptimalnumber
of congestion levels.

A. Rate of Convergence to High Utilization

Window-based congestion control protocols often use MI
to converge exponentially to high utilization. However,stable
protocols often require the magnitude of the MI factor to
be proportional to the available bandwidth at the bottleneck
[10], [11]. In the context of load-factor based congestion
control protocols, this translates into requiring the MI factor
to be proportional to1−σ, whereσ is the load factor at the
bottleneck. We, therefore, define the MI gain function of the
ideal, stable, load factor based congestion control protocol as
follows.

ξ(σ) = κ · 1 − σ

σ
(1)

where κ=0.35 is a stability constant. The stability result
presented in Section V shows that congestion control protocols
whose MI gains are upper-bounded by the above function, are
indeed stable. It should be noted that the actual MI factor is
given by1+ξ(σ) [11].

Fig. 1 shows the MI factors used by the ideal protocol
along with 2-bit, 3-bit and 4-bit feedback schemes. The goal
of the protocol designer is to closely match the MI gain
curve of the ideal protocol using as few bits as possible. The
more congestion levels the feedback signal represents, more
aggressive can the sources be due to higher MI factors. If the
number of congestion levels is small, sources would have to
make a conservative assumption about the actual load factor
value at the bottleneck, forcing them to use small MI gains.
To compare the performance of schemes using different repre-
sentations of the network load levels, we examine their speed
of convergence for achieving efficient bandwidth allocations.
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Fig. 1. Comparison of MI factors of the ideal protocol with 2-bit, 3-bit
and 4-bit feedback schemes
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Fig. 2. Comparison of the time required to achieve 80% utilization for
2-bit, 3-bit, 4-bit and 15-bit feedback schemes. The RTT wasassumed to
be 80ms.

To quantify the speed of convergence, we compute the time
required to achieve a given target utilizationUt∈[0, 1] (80%
in our case). When the system utilization,Us, is less thanUt,
each flow applies MI with a factor that depends on (1)l, the
number of congestion levels used by the scheme and (2) the
load factor interval (or utilization region) in which the system
is operating. Suppose that a given scheme divides the target
utilization region (i.e., [0, Ut]) into l0, l1, l2, .., ll levels, where
l0=0, the size of each interval[li−1, li] (referred to as interval
i) is s=Ut/l and li=li−1+s. The MI factor applied during
interval i is given bymi=1+ξ(li). Note that the upper limit
of an interval determines the MI factor. The reason is when
Us∈[li−1, li], li is an upper-bound on system utilization and
sinceUs can lie anywhere in the interval, a flow must assume
it to be li to avoid using a larger MI factor than allowed by
Eq. 1.

Consider a single flow with an initial congestion window
size ofx0 KB. Suppose that the BDP of the path of the flow
is k=C·RTT and the system utilization isli−1. When the
system utilization becomesli, the congestion window of a
flow must be equal toxi=k·li, ∀i≥1. Therefore,

xi−1 · (mi)
ri = xi (2)

whereri is the number of RTTs required to achieve utilization
li given that the system started atli−1. This implies that the
amount of time required to complete intervali is

ri = logmi
(xi/xi−1) (3)

Thus, for a flow with an initial congestion window size ofx0

KB, it would take

r(l) =

l
∑

i=1

ri =

l
∑

i=1

logmi
(xi/xi−1) (4)

RTTs to attain a system utilization equal toUt, wherer(l)
is the total time required to achieve the target utilizationby
a scheme that usesl congestion levels. We assume that a
protocol usingn bits usesl=2n−3 levels for representing
the target utilization region. The rest of the symbols are used
for representing load factor values above the target utilization
region. Consider a single flow traversing a1Gbps link with
RTT=200ms and an initial congestion window size of1KB.
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Fig. 3. The figure shows the bottleneck utilization at t=10s as a function
of link capacity for the 2-bit and 3-bit feedback schemes.

The above analysis implies that in order to achieve a target
utilization of 80%, the 2-bit scheme would take roughly
r(1)=118 RTTs, the 3-bit scheme would taker(5)=15 RTTs,
the 4-bit scheme would taker(13)=11 RTTs and the 15-bit
scheme (an approximation to the ideal scheme with infinite
congestion levels) would take aboutr(32765)=8 RTTs. Fig.
2 shows the time taken by different schemes to achieve
Ut=80% as a function of the bottleneck capacity. Observe
the dramatic decline in time whenn is increased from2 to 3.
However, asn is increased beyond3, the gain in performance
is very little and remains largely unaffected by the bottleneck
capacity. Thus forn≥3, performance improvement follows the
law of diminishing returns. Intuitively, this happens because
increasing the number of bits beyond three helps a small
portion of the target utilization region (<10%, see Fig.1).
Since the time taken by a flow to attain 10% utilization is
a small component of the total time required by a flow to
achieve the target utilization, increasingn has little impact on
performance. To validate our results, we ran ns2 simulations.
Fig. 3 shows the bottleneck utilization at timet=10s for
protocols employing 2-bit and 3-bit feedback signals. The 3-bit
protocol is able to achieve 80% utilization within the first 10
seconds across link capacities ranging from1Mbps to1Gbps,
whereas, for the 2-bit protocol, utilization falls significantly as
link capacity is increased.

B. Rate of Convergence to a Fair Share

Once high utilization is achieved, the goal of the protocol is
to converge to a fair bandwidth allocation, often using control
laws such as AIMD, AI-II-MD etc. While achieving this end,
a protocol should aim to satisfy three requirements (a) high
convergence rate, (b) smooth rate variations, and (c) high
responsiveness to congestion. These requirements, however,
cannot be satisfied in all network scenarios. For instance, in
some cases, maintaining high responsiveness to congestion
may necessarily require significant variations in the ratesof
flows. However, one can isolate cases in which one or two of
the requirements are more desirable than the rest, allowingthe
protocol to focus on fewcomplimentarygoals. These cases are
as follows:

• When the system is in equilibrium (i.e., all flows have
achieved their fair rates), the goal is to ensure (b) while
(a) and (c) are not relevant.

• When new flows arrive, (a) and (c) are more important
than (b).

A load factor based congestion control protocol may not be
able to exactly discern between these cases, however, load
factor values in the overload region (>100%) can provide for
approximately identifying the above cases.
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Fig. 5. β values as a function of load factor for the 8-level MD scheme

1) Measuring rate of convergence to fairness and the
smoothness properties of a scheme: The definition of a metric
that captures the convergence and smoothness properties ofa
given scheme is complicated by the fact that protocols using
AIMD, IIMD, etc are inherently oscillatory and thus a notion
of the rate of convergence to fairness is rather difficult to
capture. On the other hand,eventualfairness is well captured
by indices such as Jain’s fairness index [14]. When defining
such a metric, it is important to observe thatslow convergence
andlarge rate variations, both cause a flow to spend time away
from its fair share. Slow convergence implies that an old flow
takes time to release bandwidth and a new flow takes time to
capture the bandwidth, whereas, large rate variations imply that
flows spend time away from their fair share due to oscillations.
Defining the metric as the fraction of bytes that a flow sends
(if it was above its fair share) or could have sent (if it was
below its fair share) is able to capture both these notions. Let
fi(t) andN(t) be the rate of flowi and the number of flows
in the system at timet, respectively. The fair share of each
flow is thenC/N(t). Suppose, flowi arrives at timeti. Then,
for flow i, the metric is defined as:

Fi =
1

C · T ·
T

∑

t=ti

|fi(t) −
C

N(t)
| · RTTi (5)

whereT is the total time,C is the link capacity, andRTTi is
the round-trip time of flowi.

2) Determining the MD levels: When the load factor at
the bottleneck exceeds 100%, each flow applies MD. The
MD parameter (i.e., β) value directly impacts (a), (b) and
(c). A high value ofβ≈1, leads to smooth rate variations
but causes slow convergence and reduces responsiveness to
congestion. A low value ofβ≈0.5, while improving the
convergence rate and responsiveness to congestion, makes the
protocol highly oscillatory, which is not desirable for real-time
applications. Recall, our goal is to be able to discern between
the two network scenarios. A single-level MD does not allow
a protocol to distinguish between the two cases since it causes
end-hosts to consider both the cases as being same. Another
possibility is to use two levels of MDi.e., a flow applies
βl for 100≤σ<d and βh for σ≥d, whered is the threshold
used for applying different values ofβ. A drawback of this
scheme is that since a load factor protocol cannot exactly
discern between the two network scenarios, picking a fixed
value for d is likely to lead to either slow convergence or
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highly oscillatory behaviour in many network scenarios. And
it is unclear howd can be varied dynamically to yield the right
response from sources. Another option is to use more levels
of MD (e.g., 8). This option allows the protocol to adjust
its smoothness and convergence properties depending on the
dynamic behaviour of the network.

In order to compare these schemes, we use the following
network scenario. Ten flows with heterogeneous RTTs are
generated with an inter-arrival time of 50s as shown in Fig.
4. This scenario is the most interesting one since it gives
each flow sufficient time to achieve its fair rate before new
flows arrive. For the 2-level scheme, we setd=120%, βl=0.5
and βh=0.95. Fig. 5 shows theβ values as a function ofσ
for the 8-level scheme. The 1-level schemes apply a single
value ofβ for σ≥100. Fig. 6 shows the comparison of these
schemes for different link capacities for the first flow. The 8-
level scheme performs better than all schemes across a large
range of link capacities. In comparison, the 1-level scheme
(β=0.5) has similar performance for30≤C≤150, however,
for C<30 and C>150, the 8-level scheme performs much
better. The reason is that for smallC, the 1-level scheme
is more aggressive, applying a smallβ for each congestion
signal, irrespective of the degree of congestion. ForC>150, its
performance degrades because asC increases, per-flow band-
width increases, therefore, the magnitude of the rate variations
goes up. The 2-level and the 1-level (β=0.95) schemes have
identical performance forC≥30 because they get to apply
the sameβ value. ForC=10, the 2-level scheme performs
slightly better because the load factor values exceed 120% in
some cases, allowing the 2-level scheme to be more aggressive
in those cases. The 8-level scheme performs best because it
provides gentle variations inβ values, thus allowing end-hosts
to adapt the aggressiveness of their response according to the
degree of congestion at the bottleneck.

3) Determining the Increase Policy: The increase policy
indirectly impacts (a) and (b). A large increase per RTT causes
(i) MD to be applied more often and (ii) a smallβ to be applied
by the end hosts, leading to fast convergence but increased
oscillations. On the other hand, small increase per RTT enables
existing flows to sustain their bandwidth for a longer time,
however, it may lead to slow convergence. In order to achieve
the benefits of these two strategies, we employ the AI-II-MD
control law. When80<σ≤95, AI is used and for95≤σ<100,
II is employed. AI ensures that flows quickly achieve high
sending rates especially on high BDP paths, whereas II helps
flows in sustaining their sending rates for a longer period
of time. Since, with II, flows increase inversely proportional
to the square root of their window sizes, they cause mild
increments inσ when in steady state and larger when new
flows arrive that have small congestion window sizes.



III. PROTOCOL

In this section, we describe the components of MLCP.

A. MLCP Sender: Control Laws

1) Homogeneous RTT flows: We first consider a link
shared by homogeneous flows whose RTTs are equal totp,
the load factor measurement interval. At any timet, a MLCP
sender applies either MI, AI, II or MD, based on the value of
the encoded load factor received from the network.

load factor region: 0-80%When the load factor at the
bottleneck is below 80%, each MLCP sender applies load-
factor guided MI. The MI factor applied at each transition
point (i.e., 16%, 32%, 48%, 64% and 80%) are shown in
Fig. 1. This translates into the following window adjustment
strategy:

MI : cwnd(t + rtt) = cwnd(t) × (1 + ξ(σ)) (6)

whereξ(σ)=κ · 1−σ
σ

, σ is the load factor andκ=0.35.
load factor region: >80% When the system has achieved

high utilization, senders use the AI-II-MD control law to
converge to a fair share. Each sender, applies AI untilσ
becomes 95%, after which II is applied. When the system
moves into the overload region (≥100%), each sender applies
MD. The following equations describe these control laws in
terms of congestion window adjustments:

AI : cwnd(t + rtt) = cwnd(t) + α (7)

II : cwnd(t + rtt) = cwnd(t) + α/(cwnd(t))
1
2 (8)

MD : cwnd(t + δt) = cwnd(t) × β(σ) (9)

wherertt=tp, δt→0, α=1.0 and 0<β(σ)<1. To avoid over
reaction to the congestion signal, MD is applied only once per
tp interval.

2) Parameter scaling for Heterogeneous RTT flows: So
far, we considered the case where the competing flows had
the same RTT, equal totp. We now consider the case of
heterogeneous RTTs. To offset the impact of heterogeneity,we
normalize the RTT of each flow with the commontp value.
This emulates the behaviour of all flows having an identical
RTT equal totp, thus making the rate increases independent of
the flows’ RTTs. During an intervaltp, a flow with RTT value
rtt increases by a factor of(1+ξs)

tp

rtt whereξs is the scaled
parameter. To make the MI amount independent of a flow’s
RTT, (1+ξs)

tp

rtt =(1+ξ), which yields Eq.10. Similarly, the
AI gain of a flow during a time intervaltp can be obtained by
solving1+α=1+

tp

rtt
αs. However, for II, we want the increase

policy to depend only on the current congestion window size,
while being independent of its RTT. Therefore, we apply the
same parameter scaling for II as used for AI.

For MI : ξs = (1 + ξ)
rtt
tp − 1, (10)

For AI and II: αs = α · (rtt/tp), (11)

Scaling for fair rate allocation: The above RTT-based
parameter scaling only ensures that the congestion windows
of flows with different RTT converge to the same value in
steady state. However, fairness cannot be guaranteed, since
rate (=cwnd/rtt) is still inversely proportional to the RTT.

We need an additional scaling of theα parameter to achieve
a fair share. To illustrate this, consider the AI-II-MD control
mechanism applied to two competing flows each where each
flow i(=1,2) uses a separateαi parameter, but a common MD
parameterβ. At the end of the M-th congestion epoch that
includesn>1 rounds of AI,m>1 rounds of II and one round
of MD, we have:

ci(M) = β · (ci(M − 1) + n · αi + m · αi
√

ci(M − 1)
) (12)

whereci(M) is the congestion window of flowi at the end of
the M-th congestion epoch. Eventually, each flowi achieves a
congestion window that is proportional toαi. Indeed, the ratio
of congestion window of the two flows approachesα1/α2 for
large values ofM , as shown next:

c1(M)
c2(M) =

c1(M−1)+α1(n+ m√
c1(M−1)

)

c2(M−1)+α2(n+ m√
c2(M−1)

)

=
βc1(M−2)+α1(n+βn+ m

k1
+ βm√

c1(M−2)
)

βc2(M−2)+α2(n+βn+ m
k2

+ βm√
c2(M−2)

)

whereki = (βci(M − 2) + αiβn√
ci(M−2)

+ αiβn)0.5

=
β2c1(M−3)+α1(n+βn+β2n+ m

a1
+ βm

b1
+ β2m

c1
)

β2c2(M−3)+α2(n+βn+β2n+ m
a2

+ βm

b2
+ β2m

c2
)

where ci=
√

ci(M − 3), bi=
√

ci(M − 2) and ai=ki with
ci(M − 2) expanded to the next level. ForM=k the ex-
pression takes the same form as the above equation, the left
operand of the addition operator becomesβk−1ci(M − k)
which approaches zero ask becomes large sinceβ<1. The
multiplicative factor of αi’s can then be eliminated since
they assume the same values. Hence, the above expression
approachesα1

α2
. Therefore, to allocate the bandwidth fairly

among two flows, we scale theα parameter of each flow by
its own RTT.

αf = αs · (rtt/tp) = α · (rtt/tp)
2 (13)

B. MLCP Router

A MLCP router performs two main functions. It computes
the load factor and the mean RTT of flows passing through it.

1) Estimating the load factor: Load factor is estimated
over an intervaltp. However, there are two conflicting re-
quirements that a value oftp should satisfy. First, it should
be larger than the RTTs of most flows to factor out the
burstiness induced by flows’ responses. Second, it should be
small enough to allow for robust responses to congestion and
hence avoid queue buildup. A single value fortp may not be
suitable for meeting both the requirements since they depend
highly on the RTT of flows, which varies significantly across
Internet links. For example, in [11], a fixed value oftp is
used, which results in significant queue buildup due to the MI
gains of large RTT flows. To keep low queues, they bound the
MI gains of such flows, which in turn results in considerable
unfairness as shown Section IV-D. Indeed, as the Internet
incorporates more satellite links and wireless WANs, the RTT
variation is going to increase. At the same time, RTT variation
could be small in other cases. To meet these requirements, we
dynamically adapttp according to the mean RTT of flows



passing through the router. Each router computes the load
factorσ during everytp interval of time for each of its output
links l as [15], [5], [6], [12], [11]:

σ =
λl + κq · ql

γl · Cl · tp
(14)

whereλl is the amount of traffic during the periodtp, ql is
the persistent queue length during this period,κq controls how
fast the persistent queue length drains and is set to 0.75.γl is
the target utilization, andCl is the capacity of the link.λl is
measured using a packet counter whereasql is measured using
exponentially weighted moving average. The queue sample
time is set at 10ms.

2) Adaptingtp according to the mean RTT of flows: Every
packet passing through a router carries the source’s estimate
of its RTT. The router uses this to update the moving average,
m̃, as follows:

m̃ = a · rttpkt + (1 − a) · m̃ (15)

wherea=0.02. The running average gives an estimate of the
average RTT across all the packets passing through the router.
This skews the RTT estimate towards flows which have large
number of packets. This is desired since the flows with a large
number of packets will last for many RTTs. The value oftp
is then chosen as follows:

tp =

{

min∀i∈|S|{si : si ∈ S, si ≥ m̃ − 1}, if m̃ < 1400
1400, if m̃ ≥ 1400

where S={80,200,400,600,800,1000,1200,1400}. There are
three reasons for choosing the setS. First, we do not need
precise values oftp because rigorous experimentation has
shown that if the RTT of a flow is within 2.0-2.5 timestp, there
is hardly any queue buildup. Second, the mean RTT of flows
must change significantly fortp to get changed, ensuring that
tp doesn’t fluctuate due to minor variations in the mean RTT.
Third, these values can be communicated to the sources using
only 3 bits. The value oftp that is sent back to the sources is
the one being used by the bottleneck router (the initial value
for tp was set at 200ms). Using network scenarios with diverse
RTTs, we show in Section IV-D that settingtp to the mean
RTT of flows improves fairness significantly.

C. MLCP Receiver

The MLCP receiver is similar to a TCP receiver except that
when acknowledging a packet, it copies the header information
from the data packet to its acknowledgment.

IV. PERFORMANCE EVALUATION

Our simulations use the packet-level simulator ns2 [13],
which we have extended with an MLCP module. We evaluate
the performance of MLCP for a wide range of network
scenarios including varying the link capacities in the range
[100Kbps,10Gbps], round-trip times in the range [1ms,5s],
number of long-lived, FTP-like flows in the range [1,1000],
and arrival rates of short-lived, web like flows in the range
[1s−1,2000s−1]. We always usetwo-way traffic. For TCP
SACK, we always use RED with ECN enabled at the routers.
The bottleneck buffer size is set to the bandwidth-delay

product, or two packets per-flow, whichever is larger. The data
packet size is 1000 bytes, while the ACK packet size is 40
bytes. All simulations are run for atleast 100s unless specified
otherwise. The statistics neglect the first 5s of the simulation
time.

A. Single Bottleneck Topology

We first evaluate the performance of MLCP for the case
of a single bottleneck link shared by multiple MLCP flows.
The basic setting is a 200Mbps link with 80ms RTT where
the forward and reverse path each has 10 FTP flows. This
corresponds to an average per-flow bandwidth of 20Mbps. We
evaluate the impact of each network parameter in isolation
while retaining the others as the basic setting.

1) Impact of Bottleneck Capacity: MLCP achieves high
utilization across a wide range of link capacities as shown in
Fig. 7. VCP, on the other hand, becomes inefficient at high link
capacities. The utilization gap between MLCP and VCP starts
widening when link capacities are increased beyond 10Mbps.
This difference becomes more than 60% on a 10Gbps link.
VCP’s performance degrades because it uses a fixed MI factor
of value 1.0625, which is too conservative for high link capac-
ities. On the contrary, MLCP adapts its MI factor, increasing
far more aggressively in low utilization regions, allowingit
to remain efficient on high capacity links. Utilization with
TCP SACK remains considerably lower than that of MLCP
and VCP. This happens because TCP uses a conservative
increase policy of one packet/RTT and an aggressive decrease
policy of halving the window on every congestion indication,
leading to inefficiency on high BDP paths. The average queue
length for MLCP remains close to zero as we scale the link
capacities. However, for very low capacities (e.g.,100Kbps),
MLCP results in an average queue length of about 20% despite
keeping zero loss rate. This happens because the value ofα is
high for such capacities which leads to queue buildup. Packet
loss with VCP also remains close to zero whereas SACK
results in packet loss rates that are as high as 12% for low
capacities.

2) Impact of Feedback Delay: We fix the bottleneck
capacity to 200Mbps and vary the round-trip propagation delay
from 1ms to 5s. As shown in Fig. 8, MLCP scales better than
VCP and SACK. For delays larger than 100ms, the utilization
gap between MLCP and VCP increases from roughly 5%
to more than 40%. With TCP SACK, utilization drops more
rapidly as delays are increased. The difference between MLCP
and SACK increases from 20% for 100ms to more than 60%
for 5s. It should be noted that the average queue length remains
less than 15% for MLCP across the entire RTT range. These
results indicate that MLCP could be effectively used in long-
delay satellite networks.

3) Impact of Number of Long-lived Flows: Fig. 9 shows
that as we increase the number of long-lived flows (in either
direction), MLCP is able to maintain high utilization (≥90%),
with negligible average queue length and near-zero packet
drop rate. For small flow aggregates [1-50], TCP SACK’s
utilization remains lower than that of MLCP and VCP (due to
larger available per-flow bandwidth), whereas the difference
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Fig. 7. One bottleneck with capacity varying from 100Kbps to 10Gbps(Note the logarithmic scale on the x-axis).
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Fig. 8. One bottleneck with round-trip propagation delay ranging from 1ms to 5s (Note the logarithmic scale on the x-axis).
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Fig. 9. One bottleneck with the number of long-lived, FTP-like flowsincreasing from 1 to 1000 (Note the logarithmic scale on the x-axis).
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Fig. 10. One bottleneck with short-lived, web-like flows arriving/departing at a rate from 1/s to 2000/s

between them grows to as large as 20%. SACK results in
higher average queue length than MLCP and VCP. Loss rate
for SACK, however, increases to only as high as 6%. This
relatively low loss rate for SACK is a consequence of using
RED with ECN enabled at the routers.

4) Impact of Short-lived, Web-like Traffic: To study the
performance of MLCP in the presence of variability and
burstiness in flow arrivals, we add web traffic into the network.
These flows arrive according to a Poisson process, with an
average arrival rate varying from 1/s to 2000/s. Their transfer
size obeys the Pareto distribution with an average of 30
packets. This setting is consistent with the real-world web
traffic model [16]. Fig. 10 illustrates the performance of MLCP
in comparison to VCP and TCP SACK. When the arrival
rate is less than 1000/s, the performance of MLCP and VCP
is quite similar. However, when the arrival rate is increased
beyond 1000/s, VCP’s loss rate increases almost linearly to
20% for 2000 flows/s and the average queue length rises to
almost 100% of the buffer size. This illustrates VCP’s low
responsiveness to high congestion; a consequence of using a
single, high value ofβ=0.875. MLCP, on the hand, is able
to maintain almost 100% utilization, with negligible average
queue length and near zero packet drop rate even under heavy
congestion. Using multiple levels of MD allows MLCP to be
more aggressive in its decrease policy than VCP, resulting in
high responsiveness to congestion. Moreover, the AI parameter
setting in VCP is too large when the link is heavily congested.
MLCP, on the hand, applies II after the load factor exceeds
95%, which tends to lower the rate at which flows increase
their rates. TCP SACK results in low link utilization when the
arrival rate is smaller than 500/s. However, as the arrival rate

increases, the traffic becomes more bursty due to many flows
being in slow-start which causes packet losses to increase.

B. Multiple Bottleneck Topology

Next, we study the performance of MLCP with a more
complex topology of multiple bottlenecks. For this purpose,
we use a typical parking-lot topology with 10 bottlenecks,
where each router-router link has capacity 100Mbps and the
propagation delay of each link is set at 20ms. There are 30 long
FTP flows traversing all the links in the forward direction, and
30 FTP flows in the reverse direction. In addition, each link has
5 cross FTP flows traversing the forward direction. The round-
trip propagation delay for the 30 long-lived, FTP flows is setat
440ms, whereas for the cross flows, it is 60ms. Fig. 11 shows
that compared with VCP and TCP SACK, MLCP achieves
≥15% utilization on all the 10 bottleneck links. Moreover,
MLCP maintains low average queue length and zero packet
loss rate on all links.

C. Dynamics

All the previous simulations focus on the steady-state be-
haviour of MLCP. Now, we investigate its short-term dynam-
ics.

Sudden Demand Changes:To study the bevahiour of
MLCP when the demand at the bottleneck link changes
suddenly, we used the following network settings. We consider
10 forward FTP flows (in either direction) with varying RTTs
(uniformly chosen in the range [44ms,116ms]) sharing a 150
Mbps bottleneck link. Att=80s, 100 new forward FTP flows
are made active; they leave att=140s. Fig. 12 clearly shows
that MLCP can quickly adapt to sudden fluctuations in the
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Fig. 11. Multiple congested bottlenecks with capacity 100Mbps
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Fig. 12. MLCP is robust against and responsive to sudden, traffic demand changes.
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traffic demand. (The left figure draws the congestion window
dynamics for four randomly chosen flows.) When the new
flows enter the system, the flows adjust their rates to the new
fair share while maintaining the link at high utilization. At
t=140s, when 100 flows depart creating a sudden drop in the
utilization, the system quickly discovers this and ramps up
to almost 100% utilization within a couple of seconds. Notice
that during the adjustment period the bottleneck queue remains
low. The result shows that MLCP is very responsive to sudden
variations in the available bandwidth.

D. Fairness

Here, we compare the fairness properties of MLCP, VCP
and TCP SACK. We have 30 FTP flows (in both direc-
tions) sharing a single 90Mbps bottleneck link. Each forward
flow j′s RTT is chosen according torttj=40+j∗4∗δ ms
for j=1, .., 30, where δ is the one-way propagation delay
for a non-bottleneck link. We perform simulations withδ
varying from 0.75ms to 40ms. Whenδ is 0.75ms, RTTs
are in the range [43ms,130ms]. Whenδ=40, the RTTs are
in the range [200ms,4840ms]. MLCP achieves high level of
fairness (≥0.95) across a large range of RTT variations while
maintaining<15% average queue length as shown in Figures
13 and 14. With VCP, fairness decreases considerably as the
network incorporates more diverse RTT flows. TCP SACK
outperforms VCP forδ≥7.5. This occurs due to the fact that
with TCP, flows receive RTT-proportional throughput whereas
in VCP, large RTT flows receive considerably less than that
amount.

V. STABILITY ANALYSIS

We use a fluid model of the traffic to analyze the stability of
MLCP. Our analysis considers a single link shared by multiple
MLCP flows. We show byreductionthat the analytic model in
[11] can be used to describe the stability properties of MLCP.
The following differential equation can be used to approximate
the behaviour of MLCP as defined by (6), (7), (8) and (9).

ẇi(t) =
1

RTT
· [ξ(σ(t)) + α +

α

wi(t)
] (16)

wherewi(t) is the congestion window of flowi at timet and
ξ(σ(t)) and α are the MI and AI parameters, respectively.
However, the above differential equation assumes that the
protocol uses MI, AI and II factor terms together at any
given time. Since this is not true and given thatα≥ α

wi(t)

∀wi(t)≥1, the following differential equation would describe
the behaviour of MLCP more closely:

ẇi(t) =
1

RTT
· [ξ(σ(t)) + α] (17)

The above model is the same as used by [11]. Therefore, we
state the stability conditions without going into further details.
We refer the reader to [11] for the proofs of the model.

Theorem 1: Under the above model where a single bot-
tleneck is shared by a set of synchronous flows with the
same RTT, ifκ ≤ 1

2 , then the delayed differential equation
described in [11] is globally asymptotically stable with a
unique equilibriumw∗ = γC · RTT + N α

κ
, and all the flows

have the same steady-state rater∗i = γC
N

+ α
κRTT

VI. RELATED WORK

In this section, we discuss and relate MLCP to two cate-
gories of congestion control schemes.

Explicit rate based/Congestion notification schemes:In
RCP, each router assigns a single rate to all flows passing
through it. Determining a single rate, however, requires an
accurate estimate of the number of ongoing flows, a difficult
task considering the dynamic nature of the Internet [17]. XCP
regulates the sending rate by making routers send precise
window increment/decrements in feedback to each flow [10].
ATM ABR service, previously, also proposed explicit rate
control, however, ABR protocols usually maintain per-flow
state at the switches and are essentially rate-based whereas
MLCP is a window-based protocol and maintains no per-flow
state in the routers [18]. VCP, like MLCP, uses load factor



as a signal of congestion, however, it differs from MLCP in
three ways: (1) MLCP uses 4-bits for feedback instead of 2,
which allows it to obtain near-optimal performance in terms
of rate of convergence to efficiency and fairness. (2) VCP
uses a fixedtp, which presents a trade-off between fairness
and low queues, VCP chose the latter. MLCP, on the other
hand, adaptstp, which allows it to remain fair in the presence
of diverse RTT flows while maintaining low queues and (3)
VCP uses AIMD in steady-state, whereas MLCP employs AI-
II-MD. This has two benefits. First, II enables smooth rate
variations while improving fairness. Second, it considerably
increases robustness to congestion [11].

Pure end-to-end schemes:PCP chooses the sending rate for
a flow by using a sequence of packets to determine the rate
that the network can support. However, this requires accurate
timers and small jitter for determining the available bandwidth
correctly. While, PCP performs well in lightly loaded links,
it is unclear how PCP’s performance and stability properties
vary under high load [19]. HighSpeed TCP adaptively sets
the increase/decrease parameters according to the congestion
window size [2]. FAST TCP uses queuing delay as a signal of
congestion and improves on TCP Vegas’s AIAD policy with
a proportional controller [1], [20]. LTCP layers congestion
control of two scales for high speed, large RTT networks
[21]. BIC adds a binary search phase into the standard TCP
for probing the available bandwidth in a logarithmic manner
[3]. DCCP provides a framework for implementing congestion
control protocols without reliability [22]. Since, MLCP builds
on TCP in terms of reliability features, it would be a relatively
simple task to incorporate it into the DCCP framework. How-
ever, since MLCP maintains low packet loss rate, real-time
applications are likely to benefit from its reliability features
too. Pure end-to-end schemes do not require explicit feedback.
Therefore, it is hard for them to remain efficient and fair while
keeping low queues and low loss rate. MLCP requiresonly
four bits of congestion-related feedback and is able to achieve
these goals in all likely network scenarios.

VII. CONCLUSION

In this paper, we analyzed the trade-off between increasing
the amount of feedback information and the resulting perfor-
mance improvements for load factor based congestion control
protocols. We showed that while 2-bit scheme is far from
optimal, using 3 bits is sufficient for achieving near-optimal
performance in terms of rate of convergence to efficiency. We
also showed that introducing multiple levels of MD allows a
load factor based congestion protocols to achieve high rateof
convergence to fairness, smooth rate variations and increased
robustness to congestion. Using these fundamental insights
we designed a low-complexity protocol that achieves efficient
and fair bandwidth allocations, minimizes packet loss and
maintains low average queue size in high BDP networks. A
fluid model of the protocol showed that the protocol remains
globally stable for the case of single bottleneck link shared by
identical RTT flows.

As part of our ongoing work, we are investigating the effi-
cacy of packet marking schemes in providing high resolution

link price estimates using the two ECN bits available in the IP
header. Moreover, we plan to evaluate MLCP’s performance
using a real implementation which will allow us to assess its
strengths and limitations in more practical settings.
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