
1

On the Design of Practical Fault-Tolerant

SDN Controllers
Fábio Botelho∗†, Alysson Bessani∗‡, Fernando M. V. Ramos∗‡ and Paulo Ferreira∗†

∗FCUL/LaSIGE, University of Lisbon – Portugal
†{fbotelho, pjferreira}@lasige.di.fc.ul.pt, ‡{bessani, fvramos}@di.fc.ul.pt

Abstract—The increase in the number of SDN-based deploy-
ments in production networks is triggering the need to consider
fault-tolerant designs of controller architectures. Commercial
SDN controller solutions incorporate fault tolerance, but there
has been little discussion in the SDN community on the design
of such systems and the tradeoffs involved. To fill this gap, we
present a by-construction design of a fault-tolerant controller,
and materialize it by proposing and formalizing a practical
architecture for small to medium-sized networks. A central
component of our design is a replicated shared database that
stores all network state. Contrary to the more common primary-
backup approaches, the proposed design guarantees a smooth
transition in case of failures and avoids the need of an additional
coordination service. Our preliminary results show that the
performance of our solution fulfills the demands of the target
networks. We hope this work to be a first step in what we
consider a necessary discussion on how to build robust SDNs.

I. INTRODUCTION

In the past few years we have seen a steady increase in the

number of SDN-based deployments in production networks.

This initial commercial success makes imperative the need to

consider scalability, availability, and resilience when building

SDNs. Fault tolerance, in particular, is an essential part of any

system in production, and this property is therefore typically

built-in by design. SDN fault tolerance covers different fault

domains [15]: the data plane (switch or link failures), the

control plane (failure of the switch-controller connection), and

the controller itself. The related literature on fault tolerance in

SDNs is still relatively scarce and has addressed mainly the

data plane. Kim et al’s CORONET [15] proposed an SDN

fault-tolerant system that recovers from multiple link failures

in the data plane. Reitblatt et al. recently proposed a new

language, FatTire [22], that facilitates the design of fault-

tolerant network programs. The proposed compiler targets

the in-network fast-failover mechanisms provided in recent

versions of OpenFlow, and therefore the concern is again the

data plane.

Failures of the control plane are of particular importance

since a faulty controller can wreak havoc on the entire net-

work. However, to date most SDN controllers are centralized,

leaving to its users the need to address the difficult challenge of

guaranteeing high availability. The first production-level SDN

control platform that addresses both scalability and availability

is Onix [16]. Koponen et al.’s design resort to a physically

distributed framework to achieve these goals. Their distributed,

closed-source control platform was developed for large-scale

production networks, being a core component of both Google’s

and VMware’s production systems. Onix handles state dis-

tribution, element discovery, and failure recovery, providing

a programmatic interface upon which network control planes

can be built.

Another SDN controller worth mentioning is OpenDaylight

(ODL) [4], an open, industry-initiated project that aims to de-

vise a distributed network controller framework. The work of

incorporating fault tolerance primitives in the ODL controller

is undergoing, with a preliminary working cluster based on

the use of Infinispan datastore [2] to tolerate faults. However,

its unsatisfactory performance have led to a rethinking of the

solution [3].

This paper intends to be a first discussion on the design and

implementation of practical fault-tolerant SDN architectures

and the tradeoffs involved thereof. Onix provided a first insight

into this problem, but being a complex platform targeting

large-scale environments it had to deal with issues that ranged

from availability and scalability to generality. The proposal we

make here is more modest, but simultaneously more focused

and detailed on the fault tolerance aspect. We intend with

this paper to cover ground on fault-tolerant protocols and

mechanisms that have received little attention, to the best of

our knowledge, in the context of SDN. We hope the discussion

ensued offers guidelines to the design of controllers (such as

ODL) that intend to incorporate fault tolerance mechanisms

into their architecture.

To this aim, we describe a by-construction design of a sim-

ple, fault-tolerant controller architecture for small to medium-

sized networks. In this architecture the network is managed by

a single controller, and other controllers are used as backups

that can take over its role in case the primary fails. In

case a failure occurs, and to ensure a smooth transition to

a new primary, in this particular instance of a fault-tolerant

architecture we make the controller store the network- and

application-related state in a shared data store [9]. This data

store is implemented as a Replicated State Machine (RSM) [7],

[19], [24], and is therefore also fault-tolerant. Importantly, the

protocol does not require strong synchrony assumptions and

ensures safety in any situation.

In previous work we have shown that such data store meets

the performance demands of small to medium SDNs [9].

We further demonstrated that the state-of-the-art distributed

systems techniques (e.g., [14], [23], [5], [7]) we used to

optimize throughput has resulted in a significant performance

improvement over the values reported in the Onix paper for

2

its consistent data store. To further increase the performance

and scalability of our solution, in this work we incorporate

a cache in the controllers to avoid accessing the shared data

store on reads.

In summary, the main contribution of this paper is the

discussion of a pragmatic design for a centralized, fault-

tolerant, SDN controller, and the precise description of the

required assumptions and properties for such design to hold.

Put in other words, we discuss the required building blocks to

cost-effectively transform a centralized SDN controller into a

fault-tolerant architecture.

II. FT CONTROLLER ARCHITECTURE

In this section we present a by-construction description

of a fault-tolerant controller. We start by considering an

SDN in which a single controller is used to manage all

network switches. This is still the most common setting and its

feasibility for medium-sized networks has been demonstrated

before [25]. To ensure the network is controlled despite faults

in this controller, we leverage the multi-controller capabilities

of OpenFlow 1.3 [21] and deploy the same applications in

several controller replicas. All switches therefore establish a

connection with all controllers.

With several controllers deployed, we use a single one to

manage the network (the primary) whereas the others are used

as backups that can take over the role of primary in case of its

failure. To enable this fault-tolerant solution it is fundamental

to have algorithms for fault detection and leader election [20].

This ensures that a crashed controller will be replaced by one

of its replicas.

An important limitation of this solution is the fact that the

new primary will have an empty state after it starts managing

the network. One way to solve this issue is to make the

controller replicas store the network- and application-related

state (the Network Information Base or NIB) in a shared

data store [9]. In this scenario, the primary controller always

updates the NIB before modifying the state of the network.

This ensures a smooth transition to a new primary. When the

old primary fails, the new primary takes over its role and its

first action is to read the current state from the data store. As

the network state in the data store is always up-to-date, the

new primary will have a consistent view of the network from

the outset.

The final problem that needs to be addressed is how to

implement such data store, to ensure that it is not a single

point of failure and that it provides sufficient performance

to be used in real networks. A possible solution relies on

the use of the Paxos algorithm [19] for implementing the

data store as a Replicated State Machine (RSM) [24]. The

use of a RSM guarantees that a data store update will be

reflected in successive reads by different processes, ensuring

thus that no update performed by the primary on a data store

will be lost after a failure (assuring the smooth transition). As

mentioned before, we have shown that such data store can be

efficiently implemented [5], [14] to the point of satisfying the

performance demands of small to medium-sized SDNs [9].

SMaRtLight architecture. In order to materialize the tech-

niques here described, we have designed and implemented

a fault-tolerant controller – SMaRtLight. The architecture

of SMaRtLight is presented in Fig. 1. We leverage on a

RSM shared data store [9] to avoid the empty state problem

explained before. The architecture includes two additional

aspects that we have not discussed thus far. First, we integrate

the fault detection and leader election algorithms using the data

store. An alternative solution would be to implement the data

store in the coordination service. However, using a pre-defined

service as a data store constrains control applications to use

the interface provided by this service. In our experience, this

constraint may have a cost in performance. With our solution

we have more freedom to implement the operations that best

fit the application. Second, the controllers keep a local cache

to avoid accessing the shared data store in the case of read

operations. This cache does not require synchronization since

there is only one active primary accessing the data store at

any one time.

C1#
#

C2#
#

L"

Data#Store#

PRIMARY#

L"

#"OpenFlow"1.3"switches"

""configured"with"master#

##and#slave#controllers"

#"One"controller"as"the"primary#

"""and"others"as"backups#

#""All"controllers"run"the"lease#

###management#algorithm"(L)"

#""The"primary"maintains"a"

"""cache#of#the#data#store"

#"Data"store"implemented"as"a"

""FT"Replicated#State#Machine#

#"Implements"storage#and#

""coordinaBon#operaBons#

Fig. 1: SMaRtLight architecture.

III. SYSTEM MODEL AND ASSUMPTIONS

In order to precisely define the control plane fault tolerance

capabilities of our system we first formalize the system model

and service properties.

We consider a system composed of three sets of processes.

There is a set S with an undefined number of switches, a set

C with |C| controllers and a set D with |D| data servers.

We assume that processes in S can communicate with

processes in C, but not with processes in D. Furthermore,

processes in C can communicate with processes in S and in

D, which themselves can communicate with processes in C
and in D. This communication is done through fair channels,

i.e., channels that can drop messages but that will eventually

deliver a message if it is retransmitted a sufficient number of

times [20]. We say a process p is connected with a process

q if a message sent by p is answered (or acknowledged) by

q within an application-defined time interval. In practice, the

notion of “connected” as defined above aims to capture the

processes that can establish a TCP connection.

3

We assume a partially synchronous (communication and

processors) system model [12] in which there are no time

bounds in either the communication or the local processing.

However, at a certain (unknown) instant GST (Global Sta-

bilization Time) the system becomes synchronous, starting

to respect some (unknown) processing and communication

time bounds. In practice, the system does not need to be

synchronous forever, but only during the execution of the

protocol of interest.

This model corresponds to the weakest synchrony assump-

tions required for implementing consensus, a fundamental

building block for implementing a consistent and responsive

fault-tolerant data repository [12], [11]. Furthermore, it is a

nice approximation for best-effort networks, which usually

present a stable and predictable behavior, but sometimes can be

subject to perturbations that make its behavior unpredictable.

Finally, we assume all processes are equipped with local

(non-synchronized) clocks with a drift bounded by δ. This

clock is used for running periodic tasks.

All processes in the system can crash and later recover. We

define the notion of correct process in the following way:

• A switch is correct if it is not crashed and is connected

with all correct processes in C;

• A controller is correct if it is not crashed and is connected

with all correct data servers.

• A data server is correct if it is not crashed or recovering

(i.e., running a recovering protocol [5]), and is connected

with all correct data servers.

A process that is not correct is said to be faulty. Our

definition of correct processes explicitly assumes that a correct

process is able to reliably communicate with other elements

of the system. In this way, a process that is not connected with

others is considered faulty according to our definition.1

Consequently, we assume that the network “works” as

long as there are at most fs faulty switches in the system.

Furthermore, we consider that at any moment during system

operation there are at most fc < |C| faulty controllers (at least

one must be correct) and fd <
|D|
2

faulty data servers. This

last threshold defines the need of a majority of correct data

servers. Together with the partially synchronous system model,

this is a requirement for ensuring safety and liveness of the

replicated data store [12], [11], [19].

IV. DESIGN AND IMPLEMENTATION

In the following sections we detail how the switch, con-

troller and data store functionality are integrated in the SMaRt-

Light architecture.

A. Switches

We consider that switches can be attached to multiple

controllers, as defined in OpenFlow 1.3 [21]. The basic idea

is for each switch to maintain an open connection to every

1To make our contribution clear in this respect, and according to the
taxonomy introduced in [15], our architecture supports only the failure of
the controller itself. Regarding data plane we assume this to be dealt by
SDN applications (e.g., [15], [22]) that identify faults and reconfigure routes
automatically. We also do not deal with switch-controller connection failures.

controller. Initially, all switches consider all controllers as

having the role OFPCR_ROLE_EQUAL. When the controller

replicas elect the primary (see next section), this controller

sets its role in each switch to OFPCR_ROLE_MASTER. This

causes the switches to change the role of all other controllers to

OFPCR_ROLE_SLAVE. With this configuration, the switches

accept commands and send event notifications exclusively

to the primary controller. In case of its failure, the backup

controllers elect a new primary.

B. Controller replicas

The controller replicas are common SDN controllers

(e.g., [1], [13]) deployed with the same applications in differ-

ent servers. To ensure their correct operation despite failures

and asynchrony, the controllers run a small coordination

module that enforces two properties:

• Safety: At any point in the execution, there is at most

one primary controller p ∈ C.

• Liveness: Eventually some correct p ∈ C will become a

primary.

This module, represented by the L box in Fig. 1, is deployed

in the controller as an application that does not interact with

the switches, only with the data store.

The module runs an algorithm that periodically calls an

acquireLease(id, L) operation on the data store. This oper-

ation receives the caller id and a requested lease time L as

parameters and returns the id of the current primary. Moreover,

if there is no primary defined or the lease is expired, the

operation returns the invoker id, making it the primary for the

requested lease time. Finally, if the invoker is the lease owner,

the operation returns the caller id and renews the lease for L

time units. The implementation of this operation in a replicated

state machine is described in the next section. Making use

of this operation, the coordination module implements both

leader election and fault detection by running Algorithm 1.

Algorithm 1: Lease management on a controller c.

1 Initialization of global variable at startup:
2 begin
3 primary ← null
4 my_lease← 0

5 Coordination task
6 begin
7 repeat
8 start← clock()

curr_primary ← datastore.acquireLease(c, L)
9 if curr_primary = c then

10 if primary 6= c then
11 foreach s ∈ S do
12 send 〈c,OFPCR_ROLE_MASTER〉 to s

13 my_lease← start+ L
14 if my_lease < clock() then
15 L← 2× L

16 primary ← curr_primary
17 sleep(∆− (clock()− start))
18 until shutdown

19 predicate iAmPrimary() ≡ my_lease > clock()

4

Periodically, every ∆ < L time units,2 each replica (primary

or backup) invokes acquireLease(). In the backup, if the

returned id corresponds to itself, the replica is the new leader

and must change its role to OFPCR_ROLE_MASTER in all

switches (lines 10-12). Otherwise, nothing happens. In the

primary, if the returned id corresponds to itself, the lease was

renewed, and my_lease is updated (line 13). Otherwise, the

controller lost the primary role (due to its lease being expired)

and should not interact with the switches or the data store.

Besides running this algorithm, the controller needs to be

modified to only interact with switches or the data store if

the predicate iAmPrimary(), which tests if the controller

has a non-expired lease, is true. Notice that my_lease is

defined based on start – the instant right before invoking

acquireLease() on the data store. This ensures the effective

lease time on the replica (the time it knows it is holding the

lease) to be smaller than the lease granted by the data store

(the time the lease will not be granted to any other replica),

as illustrated in Fig. 2. Safety is ensured since at any point in

the execution (even in periods of asynchrony), there will be

at most one primary controller. In the figure we illustrate this

by having a period in which no controller is primary.

L"

T"

O"

l$me"

T"

O"

l$me"

T"

O"

l$me"

T"

O"

l$me"

Δ"Δ"

T"

O"

l$me"

Effec%ve'Lease'

Lease'for'C1'

Δ" Δ"

Lease'for'C2'

C1"

C2"

D

start"

t1" my_lease"

lease_validity"

no4primary#

period#

Fig. 2: Lease and effective lease in SMaRtLight.

In order to ensure liveness, i.e., that eventually some con-

troller will be elected as primary, a controller increases its

requested lease time L every time it receives an expired lease

(line 14). This happens in periods in which accessing the data

store takes more than L time units, thus not being safe to use

the lease even if it is granted to the invoker.

In the extended version of this paper [8] we present proofs

for these two properties.

C. Data Store

In order to implement a performant fault-tolerant data store

we employ a Paxos-like protocol for building replicated state

machines [19]. In a nutshell, in a replicated state machine, all

replicas start on the same state and run the same deterministic

code [24]. The replication protocol delivers the same client

requests in the same order to all correct replicas.

For the purpose of this work, we consider the replication

protocol as a black box and specify the deterministic code

2During periods of synchrony, the fault detection time is bounded by L+∆.

that each replica must run. This code corresponds to the

acquireLease() operation and to all operations required by

the applications running in the controller (typically, key-value

store operations for manipulating the shared state).

An important feature required is that a timestamp ltime

should be delivered together with the acquireLease() requests

(also illustrated in Fig. 2). This timestamp is the real-time

clock value of the Paxos leader [19], which is read just after

receiving the client (i.e., controller) request, as is common

in similar replicated systems [7], [10] to ensure deterministic

timestamping. All replicas use this ltime instead of their clock

value to validate and calculate the granted lease times, which

ensures that they will reach the same decision regarding the

lease validity. The code for this operation in the replicas is

described in Algorithm 2.

Algorithm 2: acquireLease() on a data server.

1 initialization of global variable at startup:
2 begin
3 primary ← null
4 lease_validity ← 0

5 when 〈〈ACQUIRELEASE, id, L〉, ltime〉 is delivered
6 begin
7 if lease_validity > ltime then
8 if primary = id then
9 lease_validity ← ltime+ L

10 else
11 primary ← id
12 lease_validity ← ltime+ L

13 return primary

Besides the acquireLease() coordination primitive, the

data store needs to implement the shared storage for the

controllers. This storage is based on a key-value store interface

that supports operations such as put, get, remove, and list, and

the use of a main-memory cache at the client (controller) side.

Only the primary controller interacts with the data store,

reading from or writing to the application-required tables.

Simultaneously, it also updates its cache. A backup controller

has this cache empty (cold) until becoming the primary. When

a control application needs to read some information from the

data store it first tries on the cache and only when a cache

miss occurs is the data retrieved from the data store. Write

operations (i.e., operations that modify the data store state)

complete only after the cache and the application table(s) in

the data store are updated. Thus, the local cache and the data

store are consistent with one another.

We antecipate our architecture to make efficient use of the

cache for two main reasons. First, we expect the size of a

NIB not to be significant when compared with the amount of

main-memory available on controller machines. Therefore, in

most cases, the primary will have the whole copy of the data

store in its main-memory, absorbing all reads locally. Second,

the fact that we have a single process (the primary) updating

the cache allows its extensive use without requiring complex

and low-performant cache invalidation protocols.

5

D. Implementation

We implemented a prototype of this architecture by inte-

grating the Floodlight [1] centralized controller with a simple

extensible key-value data store built over BFT-SMaRt [7], a

state-of-the-art state machine replication library. When con-

figured for crash fault tolerance, this library runs a protocol

similar to Paxos.

The Floodlight controller was extended in five ways. First,

we implemented the lease management as an application

of the system. Second, our prototype maintains a one-to-

one mapping between switches and data store connections to

enhance the parallelism of the controller. Third, we modified

the controller-switch communication to allow interaction only

if the predicate iAmPrimary() is true (see Algorithm 1).

Fourth, since Floodlight only supports OpenFlow 1.0, we

extended the controller to be able to send (OF 1.3) change

role messages. Finally, we re-implemented the data store

interface for supporting our data store model with caching.

Each controller maintains tables in its local cache to keep the

most frequently accessed data.

V. PRELIMINARY EVALUATION

Our preliminary evaluation investigates two questions: How

does the introduction of a fault tolerant data store affect

the performance of a centralized controller? What is the

performance impact of controller faults?

We use CBench [25] to simulate a number of switches send-

ing packet-in messages to the controller. Since this tool

does not assume any application to be running on the controller

and our main bottleneck is expected to be data store access,

we developed a dummy application that processes requests

locally with a probability P (using the cache), accessing the

data store with probability 1−P . Every time the data store is

accessed a payload of 44 bytes is atomically written and read.

Different values of P can be used to represented different

application behaviors. For example, a topology manager is

accessed for each new flow but only updates the data store

when the topology changes, so it would extensively use its

cache (P ≥ 0.9). A load balancer, on the other hand, will have

to ensure the data store always contains up-to-date information

on the last server to whom flows were assigned (P = 0).

We used two controllers and three data store replicas in all

experiments, tolerating a single fault in each of these layers.

Each of these replicas runs on quad-core 2.27 GHz Intel Xeon

E5520 machines with 32 GB of RAM, and are interconnected

with a gigabit Ethernet. The software environment is composed

of Ubuntu 12.04.2 LTS and Java SE Runtime Environment for

64 bits (build 1.7.0 07-b10). We set the algorithm parameters

to ∆ = 0.5 s and L = 1 s.

Raw performance. We configured CBench to run 10 experi-

ments of 10 seconds each, with a varying number of switches

(1-64) and a fixed number of simulated hosts (1000) that

generate packet-in traffic against the primary controller

only. To achieve maximum performance, we deployed CBench

in the same machine as the primary controller, since the

generated traffic exceeded the NIC bandwidth.

Fig. 3a shows the throughput obtained for a varying number

of switches. We show results considering P = 0, 0.1, 0.5 and

0.9. The figure shows that with 90% of operations absorbed by

the cache, the system can process up to 367k Flows/sec. For

write-heavy applications the achieved throughput decreases to

96k Flows/sec (50%) and 55k Flows/sec (10%).

Even considering this preliminary version of SMaRtLight,

we found the results promising: SDN applications can be made

fault-tolerant while still securing a processing rate between

100k Flows/s to 350k Flows/s, as long as they provide cache

hits rates above 50%.

These values are still behind what can be obtained with

multi-threaded, centralized controllers (according to our mea-

surements, Floodlight can process up to 2.5M flows/s). Any-

way, there is still room for improvement in our implemen-

tation. For example, in the most demanding scenarios, we

imposed up to 48k (44 byte) updates/sec to the data store,

which corresponds to less than 70% of the expected capacity

of BFT-SMaRt for such workload [7].

More importantly, in SMaRtLight each update is performed

on the data store to guarantee that it survives the failures of

either the controller or a data store replica. To better illustrate

the impact of this difference, we measured the throughput

of a Learning Switch application modified to (synchronously)

append NIB updates to a disk log (for recovery after a failure).

This experience showed a performance of 200 flows/s for 32

switches, which is 250× worse than what is provided by our

data store without cache.

Effect of faults. In order to test the fault tolerance capabilities

of SMaRtLight we modified CBench to simulate the behavior

of a switch connected to multiple controllers. Initially the

switches generate load to the primary controller, but change

to the backup after receiving a role-change request from this

controller.

Fig. 3b shows the observed throughput of a setup with 10

switches and P = 0 (no cache) during an execution in which

the primary controller and one data store replica fail. Although

the backup replica takes over the role of primary in less than

1 second, it takes around 4 seconds for the system to return

to its normal throughput. This corresponds to the time for the

new primary to inform the 10 switches about the change and

for them to start generating load.3 Notice also that the crash

of a data store replica does not affect the performance of the

system.

VI. DISCUSSION

The general approach to building fault tolerant systems is

redundancy. To enable a Software-Defined Network to tolerate

the loss of a controller, we need to add extra equipment:

additional controller replicas. There are two fundamental ap-

proaches for replication: primary-backup (or passive) replica-

tion [6] and state machine (or active) replication [18]. In the

primary-backup replication model there is one primary replica

that executes all operations issued by clients and, periodically,

pushes state updates to the backup replicas. These replicas

keep monitoring the primary, to ensure one of them takes over

3This is also due to Java’s JIT compiler that makes the new primary
controller slower until it warms-up (this can also be seen at the beginning
of the experiment).

6

0 1 4 16 32 64
Number of Switches

0

50K

100K

150K

200K

250K

300K

350K

400K
Fl

ow
s/

s
0%
10%
50%
90%

(a) Throughput with different cache effectiveness. (b) Throughput with faults.

Fig. 3: Raw performance and fault injection evaluation.

in case it fails. In the state machine replication model clients

issue commands to all replicas that execute them in a coor-

dinated, deterministic way. The SMaRtLight design follows

a hybrid approach to get the best of both worlds. First, we

use the primary-backup approach for the controller replication,

preserving thus the familiar programming model of centralized

controllers and avoiding the pitfalls of deterministic execution

on replicas (a requirement for RSMs [24]). Second, we employ

modern state machine replication implementations (e.g., [23],

[5], [7]) in our consistent and fault-tolerant datastore, used to

store the critical state of the SDN applications. This removes

a well-known limitation of primary-backup systems: the large

reconfiguration time after a failure (which will be translated

in controller unavailability).

More specifically, to ensure that the network is unaffected

by a controller failure, there are two important issues that need

to be addressed. First, that every controller, primary or backup,

always have the same view of the network. Second, that in

the event of a controller failure all other replicas agree on

which to replace it. The first issue can be solved by imple-

menting a shared datastore, as we did. Although we chose

to develop a datastore on top of a state machine replication

library, an alternative datastore could have been used (e.g.,

Cassandra [17]). Regarding the second issue, a coordination

service such as ZooKeeper [14] could have been used to select

the next controller to act as primary. However, we have decided

to take advantage of BFT-SMaRt consistency semantics and

therefore embedded the coordination logic inside the data store

itself.

Another alternative would be to use a coordination service

like ZooKeeper as the data store, instead of implementing

the coordination primitive (acquireLease()) in a custom data

store, as we did. The widespread adoption of that service

and its proved robustness are valid arguments to opt for such

approach. We opted for having such service implemented on

top of our replication library because we found it simpler

to improve system performance by implementing specific

operations that best fit the network application. For example, to

implement a round-robin load balancer one first needs to read

the server that will respond to the next request and then update

this information to define the next server. This corresponds to

two operations in ZooKeeper but can be easily implemented

with a simple “read and increment” operation in our data store.

ACKNOWLEDGMENT

Thanks to Diego Kreutz, Regivaldo Costa, Paulo Verissimo

and EWSDN’14 reviewers for the comments that helped

improve the paper. This work was supported by the EC

FP7 through project BiobankCloud (ICT-317871) and by FCT

through the LaSIGE Strategic Project (PEst-OE/EEI/UI0408/

2014).

REFERENCES

[1] Floodlight Controller. http://goo.gl/ZlLXdO.
[2] Infinispan Datastore. http://goo.gl/0gHmld.
[3] Infinispan Proof of Concept on ODL. http://goo.gl/QXxyFr.
[4] OpenDayLight Controller. http://goo.gl/1uobC.
[5] A. Bessani et al. On the efficiency of durable state machine replication.

In USENIX ATC, 2013.
[6] P. Alsberg and J. Day. A principle for resilient sharing of distributed

resources. In ICSE, 1976.
[7] A. Bessani, J. Sousa, and E. Alchieri. State machine replication for the

masses with BFT-SMaRt. In IEEE/IFIP DSN, 2014.
[8] F. Botelho, A. Bessani, F. M. V. Ramos, and P. Ferreira. SMaRtLight:

A Practical Fault-Tolerant SDN Controller. ArXiv e-prints, July 2014.
[9] F. Botelho, F. Ramos, and A. Bessani. On the feasibility of a consistent

and fault-tolerant data store for SDNs. In EWSDN, Oct. 2013.
[10] M. Castro and B. Liskov. Practical Byzantine fault-tolerance and

proactive recovery. ACM Transactions on Computer Systems, 20(4):398–
461, Nov. 2002.

[11] T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable
distributed systems. Journal of the ACM, 43(2), Mar. 1996.

[12] C. Dwork, N. A. Lynch, and L. Stockmeyer. Consensus in the presence
of partial synchrony. Journal of the ACM, 35(2):288–322, Apr. 1988.

[13] Gude et al. Nox: Towards an operating system for networks. SIGCOMM

CCR, 38(3):105–110, July 2008.
[14] P. Hunt et al. Zookeeper: Wait-free coordination for Internet-scale

services. In USENIX ATC, 2010.
[15] H. Kim et al. CORONET: Fault tolerance for software defined networks.

In IEEE ICNP, 2012.
[16] Koponen et al. Onix: a distributed control platform for large-scale

production networks. In OSDI, 2010.
[17] A. Lakshman and P. Malik. Cassandra: A decentralized structured

storage system. SIGOPS Oper. Syst. Rev., 44(2), 2010.
[18] L. Lamport. The implementation of reliable distributed multiprocess

systems. Computer Network, 1(2), 1978.
[19] L. Lamport. The part-time parliament. ACM Trans. Computer Systems,

16(2):133–169, May 1998.
[20] N. A. Lynch. Distributed Algorithms. Morgan Kauffman, 1996.
[21] ONF. OF 1.3 Switch Spec. http://goo.gl/U687Gc.
[22] M. Reitblatt et al. Fattire: Declarative fault tolerance for software-defined

networks. In HotSDN ’13, 2013.
[23] N. Santos and A. Schiper. Achieving high-throughput State Machine

Replication in multi-core systems. In IEEE ICDCS, 2013.
[24] F. B. Schneider. Implementing fault-tolerant service using the state

machine aproach: A tutorial. ACM Comp. Surveys, 1990.
[25] A. Tootoonchian et al. On controller performance in software-defined

networks. In USENIX HotICE, 2012.

