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ABSTRACT 

In this paper, the design of dissipative 
linear-quadratic-Gaussian-type compensators for 
positive real plants is considered. It is shown that, 
if the noise Covariance matrices (used as weighting 
matrices) satisfy certain conditions, the compensator 
has a strictly positive real transfer function matrix. 
The stability of the resulting closed-loop system is 
guaranteed regardless of modeling errors as long as 
the plant remains positive real. 
property, the controller is expected to be useful for 
vibration suppression in large, flexible space 
structures. 

In view of this 

INTRODUCTION 

The linear-quadratic-Gaussian (LQG) controller 
has attained considerable maturity since its inception 
in the fifties and sixties, and has come to be 
generally regarded as one of the standard controller 
design methods. 
compensators is that, although they guarantee 
closed-loop stability, the compensator itself is not 
necessarily stable [l]. It would be of interest to 
characterize the class of stable LQG-type 
compensators. Going one step further, if the LQG 
compensator is restricted to be not only stable, but 
also dissipative, this would define an important 
subclass. Since we will be dealing with linear, 
time-invariant systems, we will consider that such 
systems are dissipative if, and only if, the 
corresponding transfer function is strictly positive 
real zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(SPR) (see Appendix). The importance of such 
compensators is that they would not only be 
dissipative, but would also be optimal with respect to 
an LQG performance function. One reason for 
considering dissipative compensators is that, when 
used to control positive-real (PR) plants, they offer 
excellent robustness to modeling errors. That is, the 
stability is guaranteed despite modeling errors as 
long as the plant is PR. An important application of 
dissipative compensators would be for vibration 
suppression in large, flexible space structures 
(LFSS), which are characterized by significant 
unmodeled dynamics and parameter errors. The 
linearized elastic-mode dynamics of LFSS with 
compatible collocated actuators and sensors are PR 
systems regardless of the unmodeled dynamics or 
parameter uncertainties [2,31, and can, therefore, be 
robustly stabilized by an SPR compensator. A method 
for designing a dissipative compensator for LFSS was 
given in [SI. However, the compensator obtained was 
not optimal. 

One attribute of LQG-type 

The objective of this paper is to investigate the 
conditions under which an LQG-type compensator is SPR, 
so that one can simultaneously have high performance 
and robustness to unmodeled dynamics. 

U.S. Government Work not Protected by U.S. Copyright 1645 

DISSIPATIVE OPTIMAL CONTROLLERS 

We consider a minimal realization of a PR system 
expressed as: 

x = A x + B u + v  (la) 

y = c x + w  (lb) 

where v and w are white, zero-mean Gaussian noises. 
Since the system (1) is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPR, we assume, without loss of 
generality (see Appendix), that the following 
equations hold for some matrix Q zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 0: 

and 

A + A T = - Q  S O  

B = CT 

(2) 

(3) 

Conditions (2) and (3) are equivalent to the 
Kalman-Yacubovich Positive Real Lemma [SI. The LQG 
compensator for the system in (1)-(3) is given by 
(see[61): 

( 4 )  = - U' 

= [ A - BR-lBTPc - PfBR;lB'li + PfBRil y ( 5 )  

where P = P' > 0 and Pf = P; > 0 are the LQ-regulator 

and the Kalman-Bucy filter Riccati matrices, which 
satisfy the algebraic Riccati equations: 

c c  

P ~ A  + A'P~ - P~BR-'B'P + Q = o 

P ~ A ~  + A P ~  - P BR-'B'P~ + Q~ = o 
f w  

(7) 

( 8 )  

where Q and R are the usual weighting matrices for the 
state and input, and Qv and R are the covariance 

matrices of v and w. It is assumed that Q > 0, and 

(A,Q:/2) is observable. 

The main result is stated as follows. 



Theorem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAConsider the PR system in (1)-(3) and the 
LQG-type controller in (4)-(8). If Q, R, Qv and Rw are 

such that 

Rw = R 

and 

(10) 

Q - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABR-'B' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp Q, > o zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(11) 

then the controller in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 5 ) - ( 6 )  (described by the 
transfer function from y to U') is SPR. 

Proof: 

Introducing equations (21, (9) and (10) into (8) 
it becomes clear that Pf = I is a solution to equation 

( 8 ) .  From equation (7) it follows 

pc ( A-BR-'B~P~-BR-~B~) + ( A-BR-'B~P~-BR-'B~) T ~ C  

= -Q - P ~ B R - ~ B ~ P ~  - P ~ B R - ~ B ~  - B R - ~ B ~ P ~  

= -Q - (P~+I)BR-'B~(P~+I) + BR-'B~ 

= -Q, - (P~+I)BR-'B~(P~+I) < o 

where QB is defined in (11). 

(31, (101, and the above, it follows that the 
controller in equations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 5 )  and ( 6 )  is strictly 
positive real (see [71).m 

In view of equations 

The above result states that, if the weighting 
matrices for the regulator and the filter are chosen 
in a certain manner, the resulting LQG-type 
compensator is SPR. However, it should be noted that 
this compensator would not be optimal with respect to 
actual noise covariance matrices. The noise 
covariance matrices are used herein merely as 
compensator design parameters, and have no statistical 
meaning. 

Condition (11) is equivalent to introducing an 

additional term yTR-'y in the LQ performance index 

(since Q = Q, + CR-'CT) and is not particularly 

restrictive. 

CONCLUDING REMARKS 

The problem of designing linear-quadratic- 
Gaussian type compensators for positive real systems 
was considered. ~ Sufficient conditions were obtained 
for the compensator to be strictly positive real. 
resulting feedback configuration is guaranteed to be 
stable despite modeled plant dynamics and parameter 
inaccuracies, as long as the plant is positive real. 
One application of such compensators would be for 
controlling elastic motion of large flexible space 
structures using collocated actuators and sensors. 
Further research is needed for extending these results 
for controlling rigid-body modes (in addition to the 
elastic modes) of flexible spacecraft. 

The 

APPENDIX 

following conditions: 

(i) H ( s )  has no poles in Re s > 0 and the poles 
of H(s) on the imaginary axis are simple and the 
associated residues are nonnegative definite. 

( i i )  For any real w for which Jw is not a pole 
of H(s), 

H(Jw) + HT(-Jo) 2 0 

H(s) is termed SPR if H(s-p) is PR for some real 
p > zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0. 

Consider a positive real system expressed as: 

z = Dz + Fu (A. 1) 

y = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGz (A.2) 

Then, there exist matrices P>O and L such that [51 

PD + DTP = -LLT (A. 3) 

PF = GT (A. 4) 

Define x = P'l2z , where P"' is a symmetric square 
root of P. Introducing this definition in (A.1) 

and (A.2) we obtain (1.a) and (1.b) with A=P'/%P-'/', 

B=P'/'F and C=GP-'/'. Multiplying (A.3) on the left 

and on the right by P-'/2 we obtain (2) with Q,= 

we obtain (3) (also see[61).m 
. Multiplying (A.4) on the left by P-" p-1/2,LTp-1/2 
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