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Abstract. We study the possibility of the detection of the low amplitude long (P′) period perturbative effect of a distant third
companion on the motion of a close binary. We give a new, more accurate analytical formula for this kind of perturbation affect-
ing the moments of the times of minima in eclipsing binaries. The accuracy of this formula is tested by numerical integrations
carried out for several initial configurations. We also describe a numerical method based on a non-linear Levenberg-Marquardt
algorithm which makes it possible to separate this dynamical effect from the pure geometrical light-time effect in the eclipsing
O−C diagram. The capabilities of this new method are demonstrated by the analysis of numerically simulated O−Cs for test
systems having physical parameters very similar to Algol and IU Aur. The results show that the above mentioned effect would
be detectable in these systems nowadays, observing almost each minima events in a 1–2 year-long interval.
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1. Introduction

Several close binary stars have third, distant companion. Due
to the presence of this further component, the motion of the
binary no longer will be purely Keplerian, but different types of
periodic and non-periodic (secular) perturbations would occur.
According to the classification of Brown (1936) the periodic
perturbations can be divided into the following three groups:

– Short period perturbations. The typical period is equal to
the orbital period P of the close binary, while the amplitude
has the order (P/P′)2 (where P′ denotes the period of the
wide orbit);

– Long period perturbations. This group has a typical period
of P′, and magnitude of the order (P/P′);

– Apse-node terms. In this group the typical period is
about P′2/P, and the order of the amplitude reaches unity.

(We have to note that this classification differs from what is
used in the classical planetary perturbation theories. There the
first two of our groups called together as “short period” per-
turbations, while the “apse-node terms” are called as “long pe-
riod” ones. In the stellar three-body problem this latter clas-
sification was used by Harrington 1968, 1969.) These effects
can be most easily detected in those triple systems, where
the close binary happens to be an eclipsing one. This follows

Send offprint requests to: T. Borkovits,
e-mail: borko@electra.bajaobs.hu
? On summer training at Baja Astronomical Observatory.

from different reasons. First, the usual orbital periods of the
eclipsing binaries are several days, so in favourable cases even
the apse-node terms appear in a time-scale of some decades or
centuries, which for nowadays almost can be covered at least
for a few systems. Furthermore, the variation of the orbital ele-
ments may produce very spectacular effects in the character-
istics of the eclipses. Here we refer to the variable eclipse-
depth at some eclipsing binaries in a time-scale of decades.
The well-known examples are SS Lac (Torres 2001, and fur-
ther references therein), V907 Sco (Lacy et al. 1999), SV Gem
(Guilbault et al. 2001)1, where the eclipses disappeared in
the last decades, furthermore, the yet-eclipsing binary IU Aur
also shows fast inclination variations (Drechsel et al. 1994).
Another important effect in eccentric binaries is the precession
of the line of the apsides caused by the third star. Nevertheless,
this phenomenon is not so easily observable in triple systems,
since the main sources of the apsidal motion in the known
cases are the tidal forces arising from the close proximity
of the members of such binaries. In the cases of some sys-
tems with abnormally slow apsidal motion the superposition
of the tide-generated and the third body-forced apsidal mo-
tion might explain the discrepancies between the theory and the

1 We have to correct the statement of Guilbault et al. (2001), that “...
nodal regression ... require[s] that the orbit is eccentric”. The nodal re-
gression is clearly a consequence of the non-coplanarity of the orbital
planes of the close binary and the third companion, so it may occur
even if both orbits are circular.
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observations (see e.g. Khodykin & Vedeneyev 1997; Kozyreva
et al. 1999 for the binary AS Cam).

A further main advantage of dealing with eclipsing bina-
ries is that all of the aforementioned phenomena (as well as
further ones) affect the occurrence of eclipse events too. Apart
from several other physical mechanisms which can modify the
observable eclipsing minima times (e.g. mass flow in/from
the system, tidal forces etc.), the effect of the third body on
the eclipsing O−C diagram can be divided into a geometrical
and a dynamical part. The geometrical contribution is the well-
known light-time effect. This reflects the motion of the eclips-
ing pair around the centre of mass of the triple system. If its
quasi-sinusoidal pattern can be separated from the other dis-
tortions of the O−C curve, some of the orbital elements of the
wide orbit (P′, e′, ω′, τ′, a12 sin i′, where a12 denotes the semi-
major axis of the orbit of the eclipsing pair around the com-
mon centre of mass of the triple system) can be determined.
(Perhaps the easiest way of this calculation was introduced by
Kopal 1978.)

The dynamical contributions arise from the different per-
turbations. The typical amplitudes of these terms are listed
in Söderhjelm (1975). During an apse-node cycle the magni-
tude of the O−C variations can reach even the order of days.
Nevertheless, on a time-scale which is significantly shorter than
the apse-node period this variation can be manifested e.g. as a
parabolic pattern in the O−C curve, and its nature very easily
can be misinterpreted (for an extended discussion see Borkovits
et al. 2002).

Up to this moment we mainly concentrated only for the
largest amplitude apse-node terms. Nevertheless, the O−C di-
agram might give a unique possibility to detect some kinds of
long periodic perturbations. Of course, the O−C curve reflects
the long, and even the short periodic variations of the orbital
elements in the same way as in the case of the apse-node time-
scale perturbations, but the amplitude of such variations usually
much smaller than the limit of observability. The only excep-
tion (at least in some cases) arises from the direct (long period)
perturbation in the mean motion of the close binary, which due
to its cumulative effect on the O−C diagram may exceed the
limit of detectability.

In this paper we concentrate on this long period contribu-
tion of the O−C diagram. In Sect. 2 we give an analytical for-
mula for this term which is valid for arbitrary value of the mu-
tual inclination, although only for nearly circular close orbits.
We also compare our result with the outputs of direct numer-
ical integrations. In Sect. 3 we present a numerical process to
separate the dynamical and geometrical term of the O−C, and
we examine whether and how this dynamical term can be used
to determine the real mutual spatial orientation of the orbits.
We illustrate our results with numerically generated O−C data.
Finally in Sect. 4 we consider the chance of the separability in
real triple systems.

2. An analytical formula of the long period
perturbation of an O–C curve

By the use of the theory of Harrington (1968, 1969), based on
the von Zeipel averaging method of the canonical equations,

Söderhjelm (1975, 1982) derived analytical formulae for the
long period perturbations in the standard Delaunay variables.
Although these formulae are exact up to second order in the
(a/a′) ratio, their practical use is limited, at least in their orig-
inal forms. Mayer (1990) gave a simple, useful form with the
assumptions that the elements of the wide orbit are constant,
the close orbit is circular, and the relative orientation of the two
planes is invariant. Nevertheless, as it will be shown, the ex-
pression of Mayer (1990) maybe somewhat inaccurate. More
explanation will come later.

In the following we present a corrected new formula, which
is valid for the same assumptions. Such a solution could be get
easily from the original formulae of Söderhjelm as it was done
by Mayer. Despite this fact we follow a different way. Instead
of the perturbing potential we depart from the perturbing force,
and we calculate directly the perturbations in the eclipsing pe-
riod in the function of the true anomaly of the eclipsing pair
along the wide orbit. As it will be shown this method is more
effective and faster for this particular problem, than the usual
methods, furthermore, this automatically helps to avoid that
kind of inaccuracies which occured in the former solution.

2.1. The expansion of the perturbing force

Using the mass-point approximation, the perturbing force act-
ing upon the close binary is:

f = Gm3

 r23

r3
23

− r13

r3
13

 , (1)

where G denotes the gravitational constant, m3 is the mass of
the tertiary, while ri3 stands for the position vector between
the ith component of the binary and the third star. The above
expression, as it is well-known, can be expanded into a series
of Lagrangian polynomials of the following form:
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where M12 means the total mass of the binary, ρ1 and ρ2 denote
the absolute value of the first two Jacobian position-vectors,
(e.g. ρ1 means the separation of the members of the eclipsing
pair, while ρ2 is the distance between the centre of mass of the
binary and the distant third companion), while λ stands for the
direction cosine between ρ1 and ρ2. Let us define a Cartesian
coordinate system whose origin is at the centre of mass of the
binary, and the three axes are parallel with the vectors ρ1, c ×
ρ1, c = ρ1 × ρ̇1, respectively. The direction cosines between
the vector ρ2 and the axes (as it can be seen in Fig. 1) are as
follows:

λ = cosw cosw′ + sinw sinw′ cos im, (3)

µ = − sinw cosw′ + cosw sinw′ cos im, (4)

ν = sinw′ sin im, (5)

where w and w′ denote the true longitude of the secondary and
the tertiary measured from the intersection of the orbits, and im
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Fig. 1. The spatial orientation of the orbital planes. See text for details.

is the mutual inclination. According to these the three (radial,
transversal and normal) components of the perturbing force in
the first order of the ratio ρ1/ρ2 are
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8
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2
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]
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where

I = cos im. (10)

(As it can be seen, the radial force component is divided into
two parts. The first one contains terms depending on w, and
very similar to the ft transversal component, while fr2 does not
depend on the revolution of the eclipsing binary.)

In what follows we will refer the orbital elements to a plane
perpendicular to the line of sight of the observer, and going
accross the centre of mass of the binary. We will call it as the
plane of the sky. It is clear that the distance of this plane from
the observer varies in time, according to the

∆z = r sin i′ sin
(
v′ + ω′

)
(11)

function, where

r =
m3

M123
ρ2, (12)

furthermore v′ denotes the true anomaly of the outer body,ω′ is
the argument of the periastron of the binary’s orbit around the
centre of mass of the triple system, and M123 stands for the total
mass of the triple. As it is well-known this motion is the source
of the light-time effect detected in several triple systems.

Using the above mentioned true anomaly, v′, of the outer
body, and the true longitude, u, of the secondary measured from
the plane of the sky, the force-components have the following
forms:
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where the phase angles are

α = 2v′m − 2um, (17)

β = 2v′m + 2um. (18)
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(In the above expressions um refers to the true longitude of the
intersection of the two orbits measured along the inner orbit,
while u′m = v′m + ω′ has the same meaning for the outer one.)

2.2. Calculation of the O–C

Using the expansions (13)–(16) the analytical form of the O–C
can be calculated very easily. To do that we depart from the
well-known fact, that at the moment of a mid-minimum

u = ±π
2
+ 2kπ, (19)

where k is an integer. (Strictly speaking the above equation is
valid exactly only if the eccentricity of the eclipsing binary is
zero, or the visible inclination is 90◦, nevertheless, in our treat-
ment the first condition is practically fulfilled.) Let us define
the so called instantaneous period of the binary in the follow-
ing way:

P = 2π
u̇
, (20)

where as it is well-known (see e.g. Milani et al. 1987,
Chap. 3.2):

u̇ =
c

ρ2
1

− Ω̇ cos i. (21)

Here we note an important fact. The first term on the rhs. is in-
dependent from the plane of reference, while the second one
has different values using different reference planes. (Please
keep in your mind that in the above expression, as well as in
the following ones c means the special angular momentum of
the binary, e.g. the length of vector c, and not the velocity of
light.)

Furthermore, let us denote by Pi the elapsed time between
the ith and the (i + 1)th eclipsing (let’s say primary) minima.
(Hereafter we refer to P as eclipsing period.) Then it can be
seen easily that

Pi =

∫ i+1

i
Pdφ, (22)

where

φ =
u − u0

2π
· (23)

According to this the eclipsing period is the average of the in-
stantaneous period during a revolution. Consequently the oc-
currence of the Nth primary minimum after a t0 epoch can be
determined as
N−1∑
k=0

Pk =

∫ N

0
Pdφ. (24)

Consequently, if the P (or u̇) versus φ (or u) dependence is
known, the theoretical form of the O–C curve can be calcu-
lated formally by an integration. (Of course, the O–C curve is
not a continuous function, only at the integer values of the in-
dependent variable has physical meaning.)

To get this relation we rewrite u̇ as

u̇ = n0

(
1 +

u̇p

n0
+

u̇n

n0

)
, (25)

where n0 stands for the mean motion of the unperturbed two-
body revolution in a fixed (let’s say t = t0) moment, and

u̇p =
c

ρ2
1

− n0, (26)

while

u̇n = −Ω̇ cos i. (27)

As far as the perturbations are small in the mean motion the
relation between the instantaneous period P and the Keplerian
period P0 of the unperturbed motion can be written as

P = P0

[
1 − P0

2π
(u̇p + u̇n)

]
· (28)

(In what follows we omit the “0” subscripts from the initial
values of the quantities referring to the unperturbed motion.)

First we calculate the effect of the u̇p component on the
instantaneous period. It can be easily seen, that

du̇p

dφ
=

du̇p

dt
dt
dφ
= üpP. (29)

The second derivative of the up part of the true longitude has
the following form (cf. Milani et al. 1987, Chap. 3.2):

üp =
ft
ρ1
− 2µ

e sin v

ρ3
1

, (30)

where

µ = GM12, (31)

and v denotes the true anomaly of the secondary component.
Here we have to note an important fact. For the first sight the
presence of the second term in Eq. (30) contradicts our previ-
ous assumption, that the orbit of the binary is circular. In fact
it is not true. Although the eccentricity is close to zero, it can-
not be permanently exactly zero in perturbed systems. Even if
at some moment the close orbit was circular in the next mo-
ment due to the perturbing forces it would not be that. (For
the possible astrophysical importance of this small non-zero
eccentricity especially for semi-detached systems see Eggleton
et al. 1998.) So in nearly circular systems the eccentricity os-
cillates between zero and a small value (typically some ten-
hundredthousandths, see e.g. our numerical integrations for the
system IM Aur in Borkovits et al. 2002). In that case e approx-
imately has the same magnitude as ė, and so it can be shown
that the two terms on the rhs of (30) may have the same order.
Furthermore, since both ft and e sin v have the same order of
magnitude as the small variation in the ρ1 radius, the denomi-
nators in (30) can be replaced by a constant average distance,
which is the Keplerian semi-major axis a. On the other hand,
we note that this is important only in the case of the e sin v term
of Eq. (30), as in the first expression the multiplicator ρ1 in the
amplitude of ft cancels the denominator.

Let us define the expessions

∆u̇1 =
1
a

∫ φ

0
ftdφ′, (32)

∆u̇2 = −2
µ

a3

∫ φ

0
e sin vdφ′, (33)
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respectively. Then

u̇p ≈ (u̇p)0 + P(∆u̇1 + ∆u̇2). (34)

For the evaluation of the first term we have to express the true
anomaly of the third component by φ. This can be done in two
steps. First, we can change from the true anomaly to the mean
anomaly by the use of the expansions of Cayley (1861), and
after that we approximate the mean anomaly l′ by the following
formula:

l′ = 2π
P
P′
φ + l′0, (35)

where l′0 is the mean anomaly at the epoch t0. Now using
the expressions

∫ N

0
cos

(
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)
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2π
1
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[
sin

(
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) (
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)]N

0
, (36)

∫ N

0
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)
dφ = ∓ 1

2π
1
k

[
cos

(
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) (
1 ∓ j

k
P
P′

)]N

0
(37)

the evaluation of (32) is trivial, and we get that

∆u̇1(φ) =
1

4π

[
fr1
a

]φ
0

[
1 + O (

P/P′
)]
. (38)

Our next task is the calculation of (33). The dependence of the
integrand on φ can be written as

e sin v(φ) =
[
(e cosω)0 +

∫ φ

0

d
dφ

(e cosω)dφ′
]

sin u(φ)

−
[
(e sinω)0 +

∫ φ

0

d
dφ

(e sinω)dφ′
]

cos u(φ), (39)

where the further integrands can be evaluated with good ap-
proximation as

d
dφ

(e cosω) ≈ 1
a

P2

2π
( fr sin u + 2 ft cos u) , (40)

and

d
dφ

(e sinω) ≈ 1
a

P2

2π
(2 ft sin u − fr cos u) (41)

(see e.g. Milani et al. 1987, Chap. 3.2). Performing the integra-
tions we obtain that

∆u̇2(φ) = ∆u̇∗2(φ) +
2

3π
fr1
a

(φ) − 1
π

fr2
a

(φ), (42)

where ∆u̇∗2 contains the constant terms and those depending
upon only u (via some trigonometric functions). These terms
will not give any contribution to the values of the O–C, since
they have the same values in every minima, which fact is the
direct consequence of (19).

Finally we give the u̇n = u̇n(φ) function. As it is well known

u̇n = − fn sin u
ρ1

ρ2
1

c
cot i. (43)

Since fn sin u has itself the same order as the components
of u̇p, the other quantities in (43) can be treated as constants.
Consequently, our approximation for u̇n is the following:

u̇n = − 3P
16π

cot i
Gm3

ρ3
2

{
2 sin im sin um sin 2

(
v′ − v′m

)
+ sin 2im cos um

[
1 − cos 2

(
v′ − v′m

)]
+2 sin im sin (2u − um) sin 2

(
v′ − v′m

)
− sin 2im cos (2u − um)

[
1 − cos 2

(
v′ − v′m

)]}
. (44)

Let us turn back to the expression (28) of P. It can be seen
easily that all of the above calculated perturbative terms have
the order of (P/P′)2, which is in the order of 10−2–10−4 even
for the closest hierarchical systems. So, our expansion is veri-
fied. A further integration of (28) gives the analytical form of
the effect of the long period perturbations on the O–C curve.
We keep only the terms which depend also on v′. (The con-
stant terms will give a linear contribution to the O–C, and so
they will build up into the observed eclipsing period, while
terms which contain pure trigonometric functions of u will dis-
appear.) First let’s treat the terms which depend on only the
true anomaly v′ of the tertiary. For these the integration can be
carried out directly with respect to v′, using the expression (cf.
e.g. Roy 1988, p. 292)

dφ =
1

2π
P′

P

ρ2
2

a′2
(
1 − e′2

) 1
2

dv′. (45)

Consequently, the amplitude of these integrated expressions
is multiplied by P′/P � 1. On the other hand, according to
(36) and (37) terms which contain both v′ and u after the in-
tegration will have the same order of magnitude than before.
Consequently, the terms which depend on purely the orbital
motion of the tertiary will be dominant. Keeping only these
terms we obtain that

O−C ≈ 3
8π

m3

M123

P2

P′
(
1 − e′2

)− 3
2

{(
1 − I2

) {
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1
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)] }
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(
2I2 − 2

3
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)

−1
2
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{
cos im cos um

{
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(
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)

+e′
[
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−2
(
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) }
+ sin um

{
cos

(
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+e′
[
cos
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+

1
3

cos
(
3v′ − 2v′m

)] }}}· (46)

(Kepler’s third law has been used for the transformation of the
amplitude.)
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2.3. Comparison with other analytical and numerical
calculations

For a comparison of our result with the formula of Mayer
(1990) we enclose here his solution:

O−CMayer =
3

8π
m3

M123

P2

P′
(
1 − e′2

)− 3
2

{
(2 − Z)

{
sin 2

(
v′ + ω′

)

+e′
[
sin

(
v′ + 2ω′

)
+

1
3

sin
(
3v′ + 2ω′

)] }

+

(
Z − 2

3

) (
v′ − l′ + e′ sin v′

) }
, (47)

where

Z = cos im + cos2 im. (48)

(We used our notations instead of the original ones, further-
more, some obvious misprints were corrected here.) The funda-
mental difference between (47) and (46) manifests in the phase
of the trigonometric terms. The phasing would be identical if ω′
in Mayer’s paper would be measured from the intersection of
the two orbital planes. Nevertheless, he used the same notation
for the argument of the periastron in the light-time contribu-
tion, where ω′ evidently has to be measured from the plane of
the sky. However, the two meanings of the ω′ would be identi-
cal only if the observational and the dynamical system of ref-
erences were the same, or if the two orbital planes intersected
each other in the plane of the sky. As it is well-known the cal-
culation of the perturbational problems is usually carried out in
the dynamical frame of reference, where the fundamental plane
is the invariable plane of the system. In the case of the hierar-
chical triple stellar systems the net angular momentum of the
system mainly concentrates in the wide orbit (see e.g. Eq. (26)
of Söderhjelm 1975), consequently the plane of the wide or-
bit is very close to the invariable plane, and in the immovable
wide orbit approximation (which was used by Mayer 1990) the
two planes become identical. The other discrepancies also arise
from the same problem. If the plane of reference is the plane
of the wide orbit, um ≡ 0, consequently the terms multiplied
by sin um will disappear.

In order to illustrate the accuracy of our result, and to com-
pare it with the formula of Mayer (1990) we carried out sev-
eral numerical integrations with different initial conditions. The
description of the integrator can be found in Borkovits et al.
(2002). The only alteration applied here is, that the sampling
of the Jacobian coordinates and velocities is done after the in-
tegration step closest to the center of an eclipse, and not to
the vicinity of the periastron. Only mass-point approximation
was applied. As initial parameters the physical properties and
orbital elements of two well-known close triple systems were
chosen (see Tables 1–3). As it can well be seen in Fig. 2, in the
exact coplanar case (upper left panel), as well as in the case,
when the two orbital planes intersect each other on the plane of
the sky (upper right panel) both Mayer’s and our results give
similarly accurate approximations, while in the other cases the
differences are significant.

Table 1. The initial parameters of the close systems. (The masses
are given in solar mass, the period in days, and the angular or-
bital elements in degrees.) The non-arbitrary parameters are taken
from Söderhjelm (1980), Lestrade et al. (1993) for Algol, and from
Drechsel et al. (1994) for IU Aur.

System m1 m2 P e i Ω u

“Algol AB” 3.7 0.8 2.8673 0.0 82.3 52 60

“IU Aur AB” 21.3 14.4 1.811474 0.0 88.0 60 90

Table 2. The fixed initial parameters of the wide systems. The mass
function f (m3) is calculated from the amplitude of the O−C curve,
and is given in solar mass. The period P′ is given in days, while the
periastron passage τ′ in HJD−2 400 000.

System f (m3) P′ e′ τ′

“Algol AB-C” 0.125 679.9 0.23 50 000.0
“IU Aur AB-C” 1.89 294 0.54a 50 000.0

a In the (last) run I10 e′ = 0.24 was chosen. (See text for details.)

3. Separation of the dynamical term from the O–C

In this section first we show how the presence of the dynamical
term can influence the usual method of light-time solutions, and
then, we give a numerical method to separate the two terms,
which can improve the accuracy of the light-time solution, and,
furthermore, may give additional information about the spatial
orientation of the triple system.

3.1. The effect of the dynamical term on the light-time
solution

A usual way of calculation of the light-time solution is based
on the fact that there are some very simple relations (at least
in the first and second order in e′) between the orbital ele-
ments of the wide orbit and the first two or three pairs of coef-
ficients of the Fourier-expansion of the light-time curve, where
the fundamental frequency is the period ratio, e.g. 2πP/P′.
Consequently, if the harmonic coefficients of the O–C were de-
termined by some numerical methods (typically by weighted
least-squares fit), then the orbital elements could be calculated
in a very simple way.

For the sake of completeness we describe here the most
important formulae after Kopal (1978, Chap. V). In the case
of the pure light-time effect the mathematical form of the O–C
curve is:

O−C =
∞∑

k=1

[ak sin(kνN) + bk cos(kνN)] −
∞∑

k=1

bk, (49)

where N is the cycle number, and

ν = 2π
P
P′
, (50)

while

ak = A
[
gk

(
e′
)

cosω′ cos kl′0 − hk
(
e′
)

sinω′ sin kl′0
]
, (51)

bk = A
[
gk

(
e′
)

cosω′ sin kl′0 + hk
(
e′
)

sinω′ cos kl′0
]
, (52)
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Fig. 2. The long period dinamical contribution of O−Cs calculated by numerical integration, furthermore, with the analytical formulae presented
in this paper, and in Mayer (1990). Upper panels: low mutual inclinations. Middle panels: medium mutual inclinations. Lower panels: high
mutual inclinations. (For the exact input parameters see Tables 2, 3.)

where

A =
a12 sin i′

c
, (53)

furthermore,

gk
(
e′
)
= 2
√

1 − e′2
Jk (ke′)

ke′
, (54)

hk
(
e′
)
=

2
k

dJk (ke′)
dke′

, (55)

and in the latter expressions Jk represents the Besselian func-
tion of the kth order. (We note, that in (53) c stands for the ve-
locity of light.) Considering a quadratic approximation in the
outer eccentricity the non-zero coefficients are as follows:

a1 = A

[(
1 − 3e′2

8

)
cos

(
l′0 + ω

′) − e′2

4
cosω′ cos l′0

]
, (56)

b1 = A

[(
1 − 3e′2

8

)
sin

(
l′0 + ω

′) − e′2

4
cosω′ sin l′0

]
, (57)

a2 = A
e′

2
cos

(
2l′0 + ω

′) , (58)

b2 = A
e′

2
sin

(
2l′0 + ω

′) , (59)

a3 = A
3e′2

8
cos

(
3l′0 + ω

′) , (60)

b3 = A
3e′2

8
sin

(
3l′0 + ω

′) . (61)

Using the expansions of Cayley (1861) Eq. (46) also can
be easily expanded into trigonometric series of the mean
anomaly l′, as

O−C ≈ 3
8π

m3

M123

P2

P′

{
C cos 2

(
l′ + ω′

)
+ S sin 2

(
l′ + ω′

)

+e′
[
M sin l′ − C cos

(
l′ + 2ω′

) − S sin
(
l′ + 2ω′

)

+
7
3
C cos

(
3l′ + 2ω′

)
+

7
3
S sin

(
3l′ + 2ω′

) ]}
+O

(
e′2

)
,

(62)
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Table 3. Initial parameters which varied in different runs, and three
calculated initial quantities. (“A” runs refer to Algol-like, while “I”
runs to IU Aur-like system.) The angular elements are given in de-
grees, while m3 in solar mass. The quantities in the last three columns
are calculated. Furthermore, Ap = A∗(1 − e′2)−3/2 denotes the ampli-
tude of the perturbative term (without its angular dependence), while
AL = A(1 − e′2 cos2 ω′)1/2 is the same for the light-time contribution.

No. m3 i′ Ω′ ω′ Ap/AL im u′m
A1 1.7 82.3 142 60 0.10 89.0 82.4
A2 1.7 82.3 97 60 0.10 44.6 86.8
A3 1.7 82.3 52 60 0.10 0.0 −
A4 1.7 82.3 7 60 0.10 44.6 266.8
A5 1.7 82.3 187 60 0.10 −47.4 273.2
A6 1.7 82.3 232 60 0.10 −15.4 257.8
A7 1.7 82.3 277 60 0.10 −47.4 93.2
A8 1.7 82.3 322 60 0.10 89.0 97.6
A9 1.7 82.3 322 150 0.10 89.0 97.6
A10 2.0 60.0 142 60 0.11 86.2 83.3
A11 2.0 60.0 97 60 0.11 47.6 108.5
A12 2.0 60.0 52 60 0.11 22.3 180.0
A13 4.2 30.0 142 60 0.18 83.3 86.1
A14 4.2 30.0 97 60 0.18 62.2 127.6
A15 4.2 30.0 52 60 0.18 52.3 180.0
I1 17.5 88.0 150 5 0.14 89.0 88.0
I2 17.5 88.0 105 5 0.14 45.0 89.1
I3 17.5 88.0 60 5 0.14 0.0 −
I4 17.5 88.0 150 60 0.12 89.0 88.0
I5 17.5 88.0 105 60 0.12 45.0 89.1
I6 17.5 88.0 60 60 0.12 0.0 −
I7 27.8 45.0 150 60 0.16 88.6 88.6
I8 27.8 45.0 105 60 0.16 58.4 123.9
I9 27.8 45.0 60 60 0.16 43.0 180.0
I10 17.5 88.0 105 60 0.08 45.0 89.1

where

C = −
(
1 − I2

)
sin 2u′m, (63)

S =
(
1 − I2

)
cos 2u′m, (64)

M = 6I2 − 2. (65)

We omitted terms which are multiplied by 0.5 cot i, as in eclips-
ing systems the observable inclination of the binary is usually
close to 90◦, consequently these terms give only a minor contri-
bution. (E.g. even for i = 80◦, 0.5 cot i < 0.09.) A comparison
between (62) and (49) reveals that in this case the coefficients
are as follows:

a∗1 = A∗e′
[
M cos l′0 − S cos

(
l′0 + 2ω′

)
+ C sin

(
l′0 + 2ω′

)]
, (66)

b∗1 = A∗e′
[
M sin l′0 − S sin

(
l′0 + 2ω′

)
− C cos

(
l′0 + 2ω′

)]
, (67)

a∗2 = A∗
[
S cos 2

(
l′0 + ω

′) − C sin 2
(
l′0 + ω

′)] , (68)

b∗2 = A∗
[
S sin 2

(
l′0 + ω

′) + C cos 2
(
l′0 + ω

′)] , (69)

a∗3 = A∗
7e′

3

[
S cos

(
3l′0 + 2ω′

)
− C sin

(
3l′0 + 2ω′

)]
, (70)

b∗3 = A∗
7e′

3

[
S sin

(
3l′0 + 2ω′

)
+ C cos

(
3l′0 + 2ω′

)]
, (71)

where the amplitude A∗ is

A∗ =
3

8π
m3

M123

P2

P′
· (72)

(It will be seen in the next section, that in the case of sys-
tems interesting for us, for moderate outer eccentricities, the
order of A∗ is about Ae′. This is the reason why the quadratic
terms were held in (56)–(61).) It is evident that a numerical
modelling of the O–C curve in the form (49) yields to co-
efficients which are the sums of the corresponding (56)–(61)
and (66)–(71) terms.

Now some qualitative remarks can be easily done about
the effect of the dynamical terms on a usual light-time solu-
tion. First, if the third star revolves in a circular orbit, which is
coplanar with the orbit of the binary, the dynamical terms di-
minish, e.g. the geometrical terms are unaffected in that case.
Furthermore, for a non-coplanar, but circular outer orbit, the
amplitude of the light-time solution remains invariant, at least
as far as the quadratic term is not counted. On the other hand,
in the case of this configuration the usual determination of the
outer eccentricity (from the second Fourier-coefficients) may
give an error of several 10 percents. Finally, if the outer orbit is
significantly eccentric, both the mass-function (via the ampli-
tude), and the outer eccentricity is affected.

3.2. The numerical method of the separation

The separation of the dynamical terms from the light-time
curve may give two important advantages. The first is the
determination of more accurate orbital elements, mainly the
“projected” third-body mass. The second one is the possibil-
ity to determine the relative spatial orientation of the two or-
bital planes. This latter arises from the fact, that the dynami-
cal terms – through the orbital elements which determine the
light-time orbit – depend on the third body mass (m3), the ob-
servable inclination of the wide orbit (i′), and the mutual incli-
nation (im). It is evident that the dependence on m3 appears in
the amplitude A∗, while the effect of the inclinations manifests
through the following equations of spherical triangles:

sin im cos u′m = − cos i sin i′ + sin i cos i′ cos
(
Ω′ −Ω)

, (73)

sin im sin u′m = sin i sin
(
Ω′ −Ω)

, (74)

cos im = cos i cos i′ + sin i sin i′ cos
(
Ω′ −Ω)

. (75)

In order to make this separation we developed a computer code
which is based on a non-linear Levenberg-Marquardt algorithm
(see Press et al. 1989, Chap. 14.4). In the present state the code
adjusts the following eight parameters: c0 (a zero-point correc-
tion), P, A (the amplitude of the light-time terms), e′, ω′, l′0, i′,
and instead of the mutual inclination, D ≡ Ω′ − Ω. (Here we
note, that although P is an adjusted parameter, de fundamental
frequency ν is constant during the iteration.) The partial deriva-
tives of the coefficients (56)–(71) are listed in the Appendix.

The method of the computation is the following. As a first
step we determine the light-time solution from the O–C curve
in the usual way. These orbital elements are used as input pa-
rameters for the Levenberg-Marquardt method. For the remain-
ing two parameters (i′, D) several initial trial-values are applied
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Table 4. The results of the parameter search for different runs in the “Algol”-like system. The “L”-rows list the results of the simple light-time
solutions. Quantities marked with ∗ are calculated for the input values of i′, which are also listed in the “L”-rows in parenthesis. (For the other
input parameters see Tables 2, 3.)

Run No. e′ ω′ τ′ a12 i′ D im m3 χ2

◦ MHJD 106 km ◦ ◦ ◦ M� 10−7

A1 L 0.22 101 50 071 128∗ (82) (90) 2.0∗ 848
1 0.23 57 49 993 140 65 63 62 2.2 678
2 0.23 57 49 993 130 99 247 113 2.0 719
3 0.21 148 50 157 226 35 14 49 4.2 837

A2 L 0.22 77 50 034 131∗ (82) (45) 2.0∗ 359
1 0.22 59 49 999 128 91 219 140 2.0 216
2 0.22 59 49 999 128 89 320 40 2.0 217

A3 L 0.25 58 50 005 136∗ (82) (0) 2.1∗ 266
1 0.16 54 49 995 175 131 158 141 3.0 400
2 0.21 73 50 027 141 69 185 151 2.2 637

A4 L 0.22 78 50 036 131∗ (82) (315) 2.0∗ 397
1 0.22 59 49 998 135 72 41 41 2.1 205
2 0.22 58 49 998 129 92 222 138 2.0 216
3 0.22 58 49 998 129 88 318 42 2.0 216

A5 L 0.25 80 50 039 131∗ (82) (135) 2.0∗ 514
1 0.23 56 49 995 143 64 44 46 2.3 365
2 0.23 56 49 994 130 84 227 132 2.0 411

A6 L 0.24 59 50 006 135∗ (82) (0) 2.1∗ 237
1 0.21 64 50 011 134 76 194 155 2.1 493
2 0.21 66 50 014 134 103 347 25 2.1 554
3 0.21 67 50 015 148 61 12 24 2.4 564

A7 L 0.17 76 50 031 130∗ (82) (225) 2.0∗ 448
1 0.23 59 49 999 128 88 42 43 2.0 258
2 0.23 60 50 000 135 109 221 139 2.1 266

A8 L 0.17 103 50 077 128∗ (82) (270) 2.0∗ 907
1 0.23 58 49 995 144 63 298 62 2.3 607
2 0.23 57 49 995 129 84 68 68 2.0 645
3 0.17 168 50 197 235 147 162 129 4.5 722
4 0.17 167 50 197 187 42 199 122 3.2 729

Run No. e′ ω′ τ′ a12 i′ D im m3 χ2

◦ MHJD 106 km ◦ ◦ ◦ M� 10−7

A9 L 0.36 166 50 030 139∗ (82) (270) 2.2∗ 679
1 0.23 144 49 990 131 87 68 67 2.0 796
2 0.23 144 49 989 151 61 299 61 2.4 799
3 0.30 186 50 065 153 115 324 49 2.4 1084
4 0.29 186 50 066 185 131 146 135 3.1 1169

A10 L 0.22 106 50 081 145∗ (60) (90) 2.3∗ 968
1 0.23 57 49 994 142 64 68 67 2.2 778
2 0.23 57 49 994 133 107 253 108 2.1 811
3 0.23 155 50 170 231 34 15 50 4.4 958

A11 L 0.16 72 50 025 149∗ (60) (45) 2.4∗ 408
1 0.05 147 50 165 212 37 20 48 3.9 238
2 0.22 62 50 004 128 95 39 41 2.0 276
3 0.22 63 50 004 139 66 323 39 2.2 302

A12 L 0.26 53 49 993 154∗ (60) (0) 2.5∗ 280
1 0.17 40 49 968 177 47 25 41 3.0 265
2 0.17 39 49 967 149 119 333 45 2.4 289
3 0.23 71 50 023 144 65 180 147 2.3 635
4 0.23 73 50 025 166 52 359 31 2.7 744

A13 L 0.24 133 50 129 252∗ (30) (90) 5.0∗ 1820
1 0.23 58 49 996 199 40 84 81 3.5 1256
2 0.34 174 50 204 206 37 198 118 3.7 2332
3 0.25 59 49 997 543 167 222 108 20.1 9377

A14 L 0.07 355 49 876 252∗ (30) (45) 5.0∗ 1474
1 0.22 60 50 002 186 43 133 111 3.2 601
2 0.23 61 50 003 229 213 42 121 4.3 685
3 0.21 270 49 713 201 322 33 114 3.6 1325
4 0.21 268 49 712 250 150 151 123 4.9 1330

A15 L 0.35 31 49 950 264∗ (30) (0) 5.3∗ 953
1 0.23 64 50 011 202 321 356 122 3.6 724
2 0.32 6 49 903 151 60 221 126 2.4 1307

automatically. (Using the mass-function, the mass m3 and the
amplitude A∗ are calculated in each iteration step.) If a solu-
tion is convergent, the program saves the final parameters, and
takes the following set of the angular (i′, D) parameters. The
results of our numerical fitting can be found in Tables 4, 5. In
the case of the “Algol-like” system we deduced the following
conclusions:

– In most cases more accurate orbital elements were gained
for the elements e′, ω′, τ′ than it was obtained from the
simple light-time (L) fit. In these runs the χ2 value also im-
proved with respect to the corresponding L-fits;

– Significant exceptions arise in fits A3, A6, A12, e.g. at those
runs, where Dinitial = 0◦, 180◦. In these cases C ≡ 0,
while S = sin2 im, which is also zero for run A3, while
S ≈ 0.07 and S ≈ 0.14 for runs A6 and A12, respectively.
Consequently, in these cases only theM-term, and the co-
efficients a∗1, b∗1 have significant contributions. On the other
hand, in run A15, where Dinitial was zero a good fit was also
found. In this case already the S ≈ 0.62 term is the domi-
nant. (Here we note, that in this integration the mutual incli-
nation was 52.◦3, which is very close to that “critical” value
where theM-term disappears.) It is interesting, that despite

the weaker fits in these cases, the D ≈ 0◦, 180◦ values were
reproduced well;

– The determination of the visible inclination of the outer or-
bit is less accurate. This is of course not so surprising. We
note that the dependence of the tertiary mass on the visi-
ble inclination (i′) is very weak in the high inclination re-
gion. A comparison of the upper or the middle panels in
Fig. 2 shows this clearly. Nevertheless, for the last three
runs (in the low visible inclination region), where a smaller
variation in the visible inclination i′ results already signif-
icant variation in m3, really a smaller inclination, and con-
sequently larger third body mass was found;

– Finally, we can conclude that the better fits were reached
when the mutual inclination had a medium value.

Considering the “I” runs with the parameters of the IU Aur
system our results are less satisfactory (see Table 5). Although
the light-time parameters were improved in more than the half
of these runs, the accuracy is far from that achieved in the “A”
runs. What could be the reason? There are three significant dif-
ferences between the configurations of the two systems. The
first is the large outer eccentricity in the IU Aur system, while
the other two are the larger masses of the stars, and the smaller
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Table 5. The results of the parameter search for different runs in the “IU Aur”-like system. The “L”-rows list the results of the simple light-time
solutions. Quantities marked with ∗ are calculated for the input values of i′, which are also listed in the “L”-rows in parenthesis. (For the other
input parameters see Tables 2, 3.)

Run No. e′ ω′ τ′ a12 i′ D im m3 χ2

◦ MHJD 106 km ◦ ◦ ◦ M� 10−7

I1 L 0.40 6 50 000 150∗ (88) (90) 16.0∗ 2806
1 0.09 18 50 010 411 160 359 72 71.3 2289
2 0.47 4 49 999 143 89 318 42 15.1 2694
3 0.47 4 49 999 144 85 42 42 15.2 2705

I1S L 0.40 6 50 000 150∗ (88) (90) 16.0∗ 2691
1 0.09 15 50 007 402 159 358 71 69.3 2187
2 0.47 5 49 999 143 88 319 41 15.1 2641
3 0.47 5 49 999 143 86 40 41 15.2 2665

I2 L 0.49 7 50 003 184∗ (88) (45) 21.0∗ 2418
1 0.53 7 50 001 159 88 205 154 17.1 3560
2 0.53 7 50 001 160 83 25 26 17.2 3639

I3 L 0.55 6 50 002 220∗ (88) (0) 26.7∗ 3506
1 0.63 10 50 004 172 94 201 159 19.6 6624
2 0.63 11 50 004 172 90 159 159 19.4 6840

I4 L 0.46 73 50 004 169∗ (88) (90) 18.8∗ 3157
1 0.46 71 49 999 165 86 322 38 18.1 2619
2 0.46 70 49 999 165 89 38 38 18.0 2623

I5 L 0.50 65 50 006 183∗ (88) (45) 20.8∗ 2823
1 0.43 76 50 009 183 108 339 29 20.5 3286
2 0.43 77 50 010 189 67 20 29 21.6 3469

Run No. e′ ω′ τ′ a12 i′ D im m3 χ2

◦ MHJD 106 km ◦ ◦ ◦ M� 10−7

I6 L 0.54 55 50 005 203∗ (88) (0) 23.9∗ 3043
1 0.39 54 50 002 260 132 155 134 34.2 3501
2 0.39 54 50 002 247 129 35 47 31.7 3536
3 0.48 82 40 020 235 55 180 143 29.3 5968
4 0.49 84 50 021 247 51 359 37 31.5 6275

I7 L 0.43 78 50 006 233∗ (45) (90) 28.9∗ 3544
1 0.47 67 49 998 167 77 314 46 18.4 3224
2 0.47 67 49 998 164 83 134 133 18.0 3239

I8 L 0.43 62 50 000 249∗ (45) (45) 31.7∗ 2540
1 0.47 80 50 009 187 66 160 148 21.3 3657
2 0.47 81 50 009 194 62 341 32 22.4 3809

I9 L 0.52 53 50 000 262∗ (45) (0) 34.2∗ 3092
1 0.33 42 49 990 303 216 332 123 42.1 3579
2 0.49 81 50 015 224 128 6 41 27.1 5511
3 0.49 82 50 016 236 48 354 40 29.2 5815

I10 L 0.23 75 50 009 184∗ (88) (45) 20.9∗ 1243
1 0.22 56 49 997 190 73 42 44 22.1 1341
2 0.22 56 49 997 188 102 337 44 21.6 1343
3 0.15 106 50 038 271 138 345 51 36.6 1409

P′/P ratio, e.g. the closeness of this triple. The effects of these
properties for the behaviour of our solution are very complex.
A purely mathematical effect is that due to the larger eccentric-
ity our expression gives a weaker approximation. On the other
hand, we note, as perhaps the most important physical effect,
that because the latter system is more compact, the apse-node
time scale of the largest amplitude perturbations is significantly
shorter, and these disturbances may manifest on the O–C dia-
gram within years. (E.g. according to Drechsel et al. 1994 the
period of the nodal regression is about 300 years in the IU Aur
system.)

In order to study these two above mentioned phenomena
we carried out the following two tests. In the last run (I10) we
changed the outer eccentricity for the value e′ = 0.24, while the
other parameters had the same values as in run I5. A significant
improvement was found in most of the parameters (although a
false result also occurred). Furthermore, we calculated the O–C
solution of run I1 for a shorter (about half of the original) time
interval. (These results are listed in the “I1S ” rows of Table 5.)
We did not find significant discrepancy with respect to the orig-
inal “I1” solutions. We can conclude, that the larger eccentric-
ity plays a more important role in our weaker results in this
case.

4. Conclusions

In this paper we examined the possibility of detecting certain
kind of perturbations, which are manifesting themselves on a
very short time scale (even during a yearly observing window
of the eclipsing variable), but usually omitted due to their low

amplitude. This question naturally has different aspects. These
are as follows:

– There are only a few known systems where the amplitude
of the dynamical term in the O–C exceeds significantly the
present observational accuracy. We can easily estimate the
maximum-value of the P′/P ratio which is necessary to
fulfill this condition. Supposing that the three components
have equal masses, and the third body revolves in a circu-
lar orbit, according to Eq. (72) the amplitude may exceed
the 10−3 day limit, if P′/P < 40P, at least when the two
orbits are perpendicular to each other. If the outer orbit has
significant eccentricity (say e′ = 0.50), or the system con-
sists of stars with different masses, then this limit in the
function of the mutual inclination may even grow up to
P′/P ≈ 150P. From that point of view the two systems for
which the numerical integrations were carried out in this
paper are placed near the limit of the detectability, as for
Algol P′/P ≈ 83P, while for IU Aur the same value is
P′/P ≈ 91P.
The three presently known closest eclipsing triple systems
are λ Tau (P′/P ≈ 2.11P), DM Per (P′/P ≈ 13.17P),
and VV Ori (P′/P ≈ 54.41P) (see e.g. the catalogue of
Chambliss 1992). In the cases of the latter two binaries un-
fortunately only a very few times of minima observations
can be found in the literature, although we could expect the
largest effects at these stars. On the other hand, we have
to note that as the amplitude of the light time-effect de-
creases with P′2/3, at these stars already the detection of
the pure geometrical effect is also a challenge. In the most
interesting case of λ Tau, the amplitude of the perturbative
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terms may be larger with an order of magnitude than that
of the light-time terms. Furthermore, at this system due to
the large amount of proximity our initial assumptions may
loose their validity.

– The second aspect is mainly a technical question. It refers
to the observing strategy. This was written already in the
conclusion of Borkovits et al. (2002), but, for the sake of
the completeness, we repeat it. In order to have any chance
for the detection of this phenomenon frequent and accurate
timings are necessary. It is desirable to cover a few rev-
olutions of the distant object as densely as possible. The
shorter the time interval of such coverage, the smaller the
apse-node time scale or secular variations in the orbital el-
ements which could modify the results.

– Finally, the mathematical modelling of perturbations
are necessary in order to extract all information from
the observations.

In this paper we concentrated mainly on this third item. We
calculated a new analytical formula which gives the long pe-
riod perturbations of the times of minima in eclipsing binaries.
We found that this formula is very similar to the earlier expres-
sion of Mayer (1990), nevertheless, some errors are corrected.
Using this expression we developed a numerical method to sep-
arate this dynamical effect from the pure geometrical light time
effect. We tested the capabilities of our model by the analysis of
numerically simulated O–C curves. In the case of the test runs
for outer orbits with moderate eccentricity, significantly better
solutions were found than in the larger eccentricity cases.

Naturally the next step would be the application of
the method for observed O–C diagrams of real systems.
Unfortunately, up to now there are not any O–C diagrams with
sufficient accuracy for the possible target systems. This is why
we plan to observe some of the few such systems in the near
future to collect as many new times of minima as possible.

Appendix A: Partial derivatives
for the Levenberg-Marquardt algorithm

As it was mentioned in Sect. 3, the following eight parameters
can be adjusted in our non-linear Levenberg-Marquardt code:
c0, P, A ≡ a12 sin i′/c, e′, ω′, l′0, i′, D ≡ Ω′ − Ω. Here we
list the analytical form of the partial derivatives of the Fourier-
coefficients with respect to these parameters. The ak, bk sym-
bols refer to the coefficients of the geometrical light-time effect,
while a∗k, b∗k denote the dynamical terms. (We note that in the
following: Ak ≡ ak + a∗k, Bk ≡ bk + b∗k.)

∂Ak

∂A
=

ak

A
+ 3

M12

M123 + M12

a∗k
A
, (A.1)

∂Bk

∂A
=

bk

A
+ 3

M12

M123 + M12

b∗k
A
, (A.2)

∂A1

∂e′
= −A

e′

2

[
3
2

cos
(
l′0 + ω

′) + cosω′ cos l′0

]
+

a∗1
e′
, (A.3)

∂B1

∂e′
= −A

e′

2

[
3
2

sin
(
l′0 + ω

′) + cosω′ sin l′0

]
+

b∗1
e′
, (A.4)

∂A2

∂e′
=

a2

e′
, (A.5)

∂B2

∂e′
=

b2

e′
, (A.6)

∂A3

∂e′
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2a3 + a∗3
e′

, (A.7)

∂B3

∂e′
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2b3 + b∗3
e′

, (A.8)

∂a1

∂ω′
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[(
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)
sin

(
l′0 + ω
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4
sinω′ cos l′0

]
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)
cos

(
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4
sinω′ sin l′0
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∂ω′
= −2A∗e′

[
C cos

(
l′0 + 2ω′

)
+ S sin

(
l′0 + 2ω′

)]
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[
S cos

(
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(
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(
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where

I1 = −I sin i′ sin im sin u′m, (A.31)

I2 = I sin i′ sin im cos u′m. (A.32)
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