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Abstract

A martingale framework for concept change
detection based on testing data exchangeabil-
ity was recently proposed (Ho, 2005). In
this paper, we describe the proposed change-
detection test based on the Doob’s Maximal
Inequality and show that it is an approx-
imation of the sequential probability ratio
test (SPRT). The relationship between the
threshold value used in the proposed test and
its size and power is deduced from the ap-
proximation. The mean delay time before a
change is detected is estimated using the av-
erage sample number of a SPRT. The perfor-
mance of the test using various threshold val-
ues is examined on five different data stream
scenarios simulated using two synthetic data
sets. Finally, experimental results show that
the test is effective in detecting changes in
time-varying data streams simulated using
three benchmark data sets.

1 Introduction

A recent challenge in online mining of data streams
is the detection of changes in the data-generating
process. In the data stream, the target concept to
be learned may change over time, known commonly
as concept drift. These changes can be either gradual
or abrupt. By locating these changes, one gains the
knowledge of the instance when concept change oc-
curs. Moreover, the data model can be adapted based
on these located changes. These changes in concept in
a data stream have an important characteristic: the
violation of data exchangeability condition in the data
stream.

The problem of detecting changes in sequential data
was first studied by statisticians and mathematicians.
In the online setting, data are observed one by one

from a source. The disruption of “stochastic homo-
geneity” of the data might signal a change in the data
generating process which would require decision mak-
ing to avoid possible losses. This problem is gener-
ally known as “change-point detection”. Change de-
tection methods first appeared based on Wald’s se-
quential probability ratio test (SPRT) (Wald, 1947).
Later, Page introduced the cumulative sum method
(Page, 1957) and Girshik and Rubin (Girshik & Ru-
bin, 1952) also developed a test to detect changes.
These methods, however, make strong parametric as-
sumptions about the data distribution and may not
be suitable for real data. Recently, Kifer et al. (2004)
proposed a non-parametric change-detection method
with statistical guarantees on the reliability of detected
changes, but the use of their discrepancy measure on
high dimensional data streams is still under investiga-
tion.

The contribution of this paper is the justification that
the change-detection test based on the Doob’s Maxi-
mal Inequality is an approximation of the sequential
probability ratio test (SPRT), which is then used to (i)
deduce the relation between the threshold value used
in the change-detection test and its size and power,
and (ii) estimate the mean delay time before a change
is detected.

In Section 2, we review the concept of martingale and
exchangeability and then, in Section 3, we describe the
change detection method using the martingale. In Sec-
tion 4, we show that the martingale test is an approxi-
mation of the SPRT. We examine the change detection
method on time-varying data streams simulated using
two synthetic data sets and three benchmark data sets
in Section 5.

2 Martingale and Exchangeability

Let {Zi : 1 ≤ i < ∞} be a sequence of ran-
dom variables. A finite sequence of random vari-
ables Z1, · · · , Zn is exchangeable if the joint distribu-



tion p(Z1, · · · , Zn) is invariant under any permutation
of the indices of the random variables. A martingale
is a sequence of random variables {Mi : 0 ≤ i < ∞}
such that Mn is a measurable function of Z1, · · · , Zn

for all n = 0, 1, · · · (in particular, M0 is a constant
value) and the conditional expectation of Mn+1 given
M0, · · · ,Mn is equal to Mn, i.e.

E(Mn+1|M1, · · · ,Mn) = Mn (1)

Vovk et al. (2003) introduced the idea of testing ex-
changeability online using the martingale. After ob-
serving a new data point, a learner outputs a pos-
itive martingale value reflecting the strength of evi-
dence found against the null hypothesis of data ex-
changeability. Consider a set of labeled examples Z =
{z1, · · · , zn−1} = {(x1, y1), · · · , (xn−1, yn−1)} where xi

is an object and yi ∈ {−1, 1}, its corresponding label,
for i = 1, 2, · · · , n − 1. Assuming that a new labeled
example, zn, is observed, testing exchangeability for
the sequence of examples z1, z2, · · · , zn consists of two
main steps (Vovk et al., 2003):

A. Extract a p-value pn for the set Z ∪ {zn}
from the strangeness measure deduced from a
classifier

The randomized p-value of the set Z ∪ {zn} is define
as

V (Z ∪ {zn}, θn) =

#{i : αi > αn} + θn#{i : αi = αn}

n
(2)

where αi is the strangeness measure for zi, i =
1, 2, · · · , n and θn is randomly chosen from [0, 1]. The
strangeness measure is a way of scoring how a data
point is different from the rest. Each data point zi

is assigned a strangeness value αi based on the clas-
sifier used (e.g. support vector machine (SVM), near-
est neighbor rule, and decision tree). In our work,
the SVM is used to compute the strangeness mea-
sure, which can be either the Lagrange multipliers or
the distances from the hyperplane for the examples in
Z ∪ {zn}.

The p-values p1, p2, · · · output by the randomized p-
value function V are distributed uniformly in [0, 1],
provided that the input examples z1, z2, · · · are gener-
ated by an exchangeable probability distribution in the
input space (Vovk et al., 2003). This property of out-
put p-values no longer holds when the exchangeability
condition is not satisfied (see Section 3).

B. Construct the randomized power
martingale

A family of martingales, indexed by ǫ ∈ [0, 1], and
referred to as the randomized power martingale, is de-

fined as

M (ǫ)
n =

n
∏

i=1

(

ǫpǫ−1
i

)

(3)

where the pis are the p-values output by the random-
ized p-value function V , with the initial martingale

M
(ǫ)
0 = 1. We note that M

(ǫ)
n = ǫpǫ−1

n M
(ǫ)
n−1. Hence, it

is not necessary to stored the previous p-values. In our
experiments, we use ǫ = 0.92, which is within the de-
sirable range where the martingale value is more sen-
sitive to a violation of the exchangeability condition
(Vovk et al., 2003). The role of ǫ, with respect to the
characteristics of a likelihood ratio, will be discussed
in Section 4.

3 Change Detection using Martingale

Intuitively, we assume that a sequence of data points
with a concept change consists of two concatenated
data segments, S1 and S2, such that the concepts of
S1 and S2 are C1 and C2 respectively and C1 6= C2.
Switching a data point zi from S2 to a position in
S1 will make the data point stands out in S1. The
exchangeability condition is, therefore, violated. Ex-
changeability is a necessary condition for a conceptu-
ally stable data stream. The absence of exchangeabil-
ity would suggest concept changes.

When a concept change occurs, the p-values out-
put from the randomized p-value function (2) become
skewed and the p-value distribution is no longer uni-
form. By the Kolmogorov-Smirnov Test 12, the p-
values are shown not to be distributed uniformly after
the concept changes. The null hypothesis “the p-values
output by (2) are uniformly distributed” is rejected at
significance level α = 0.05, after sufficient number of
data points (about 100 − 200) are observed (see the
example in Figure 1). The skewed p-value distribu-
tion plays an important role in the martingale test for
change detection as small p-values inflate the martin-
gale values. We note that an immediate detection of a
true change is practically impossible.

For the martingale test, one decides whether a change
occurs based on whether there is a violation of ex-
changeability condition which is, in turn, based on the
martingale value. Consider the simple null hypothesis
H0 : “no concept change in the data stream” against
the alternative H1 : “concept change occurs in the data

1Kifer et al. (2004) proposed using Kolmogorov-
Smirnov Test (KS-Test) for detecting changes using two
sliding windows and a discrepancy measure which was
tested only on 1D data stream.

2The readers should not confuse the p-values from the
KS-Test in Figure 1 with the p-values from the randomized
p-value function.
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Table 1: The 10-dimensional data points simulated
using normally distributed clusters data generator (see
Section 5.1.2) are observed one by one from the 1st to
the 2000th data point with concept change starting at
the 1001th data point. (Y-axis represents values of the
p-values, the skewness and the significance level.)

stream”. The test continues to operate as long as

0 < M (ǫ)
n < λ (4)

where λ is a positive number. One rejects the null

hypothesis when M
(ǫ)
n ≥ λ.

Assuming that {Mk : 0 ≤ k < ∞} is a nonnegative
martingale, the Doob’s Maximal Inequality (Steele,
2001) states that for any λ > 0 and 0 ≤ n < ∞ ,

λP

(

max
k≤n

Mk ≥ λ

)

≤ E(Mn) (5)

Hence, if E(Mn) = E(M1) = 1, then

P

(

max
k≤n

Mk ≥ λ

)

≤
1

λ
(6)

This inequality means that it is unlikely for any Mk

to have a high value. One rejects the null hypothesis
when the martingale value is greater than λ. But there
is a risk of announcing a change detected when there
is no change. The amount of risk one is willing to take
will determine what λ value to use.

4 Exchangeability Martingale Test as

an Approximation to the Sequential

Probability Ratio Test

Let f(z, Hj) be the probability of observed point(s) z
given the hypothesis, Hj . For a fixed sample Z =
{z1, z2, · · · , zn}, the most powerful test (smallest β
where β is the probability of the type II error) depends
on the likelihood ratio ln, where

ln =

n
∏

i=1

f(zi,H1)

f(zi,H0)
=

f(Z, H1)

f(Z, H0)
(7)

and the test decides for or against the null hypothesis,
H0 according as ln is less than or greater than a chosen
constant of a desirable size α and test power (1 − β).

The sequential probability ratio test (SPRT) intro-
duced by Wald (1947) for testing the null hypothe-
sis H0 : θ = θ0 against the alternative hypothesis
H1 : θ = θ1 based on observations z1, z2, · · · is analo-
gous to the above likelihood ratio test. In the sequen-
tial analysis scenario, the test continues to operate as
long as

B < ln < A (8)

Stop the test and decide for θ0 as soon as ln < B, or
decide for θ1 as soon as ln > A. The constants A and
B can be chosen by approximating A ≈ (1−β)/α and
B ≈ β/(1 − α) (Wald, 1947).

The randomized power martingale (3) is used to ap-
proximate the likelihood ratio (7), also a martingale.
Consider the simple null hypothesis H0 : “no concept
change in the data stream” against the alternative H1 :
“concept change occurs in the data stream”. Similar
to (7), a ratio for a particular point zi is defined as

r(zi) =
f(zi,H1)

f(zi,H0)
≈

ǫpǫ
i

pi

where the p-value pi, by definition, is the smallest sig-
nificance level (or observed size) at which a hypothesis
will be rejected for a given observation. The p-value
should not be interpreted as the probability that the
null hypothesis H0 is true (as a hypothesis is not a
random event that can have a probability), despite a
higher p-value when H0 is true. We can, however,
approximate f(zi, H0) and f(zi,H1) using pi and ǫpǫ

i ,
respectively.
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Figure 1: The “Likelihood Ratio” of a particular point
zi, derived from the p-values with ǫ = 0.92 and when
ǫpǫ

i − pi = 0, pi = 0.35265. When pi < 0.35265,
f(zi,H1) > f(zi, H0) .

The characteristic of the approximated “likelihood ra-
tio” at a particular point r(zi) is shown in Figure 1.



When pi < 0.35265, the likelihood of a new concept
is just slightly higher than the likelihood of an orig-
inal concept. Hence, r(zi) > 1 when pi < 0.35265.
The p-values output by (2) tend toward smaller val-
ues when concept change occurs (see Figure 1). As a
result, r(zi) is likely to be greater than 1. A stream
of pi < 0.35265 will produce a stream of r(zi) greater

than 1. The martingale M
(ǫ)
n =

∏n

i=1 r(zi) ≈ ln will
increase.

A higher ǫ shifts the intersection point of the approxi-
mated f(zi,H1) and f(zi,H0) to a higher (but < 0.37)
p-value and increases the sensitivity of the martingale
test. The test becomes more prone to false alarms. On
the other hand, a lower ǫ increases the miss detection
rate and lengthens the delay time.

By the Neyman-Pearson Fundamental Lemma, a deci-
sion in favor of the alternative hypothesis H1, for some
λ ∈ R+, happens when

f(Z, H1) > λf(Z,H0) (9)

In our change-detection problem, we are only inter-
ested in the rejection of the null hypothesis. Hence, B
in (8) is set to 0 and A is replaced by λ.

Following the argument in Wetherill and Glazebrook
(1986), let D be the set of all possible sets of
{z1, z2, · · · , zn} for all n, which lead to a decision in
favor of the alternative hypothesis, then

∑

Z∈D

f(Z, H1) = 1 − β (10)

∑

Z∈D

f(Z, H0) = α (11)

where α is the size of the test deciding in favor of the
alternative hypothesis when the null hypothesis is true
and 1 − β is the power of the test deciding in favor of
the alternative hypothesis when it is true.

From (9), (10) and (11), we obtain the upper bound
for λ,

λ ≤
1 − β

α
(12)

By equating λ to this upper bound, our test is

φ(z) =

{

“change detected”, f(Z,H1) > 1−β
α

f(Z, H0)

“need more data” , f(Z,H1) < 1−β
α

f(Z, H0)

Replacing the probability function by the martingale
function with Z implicit in the pi values,

φ(z) =

{

“change detected”,
∏n

i=1

(

ǫpǫ−1
i

)

> 1−β
α

“need more data” ,
∏n

i=1

(

ǫpǫ−1
i

)

< 1−β
α

At a fixed size α, as the power of the test increases
(i.e. β decreases), the λ value does not increase signif-
icantly. For example, at fixed α = 0.05, λ = 18 when

β = 0.1 and limβ→0 λ = 1
α

= 20. On the other hand,
decreasing α at fixed β increases λ significantly. This
observation suggests that the λ value in the Doob’s
Maximal Inequality (6) is inversely proportional to the
size α of the test and the power of the test is less promi-
nently reflected in λ. A most powerful martingale test
exists with λ = 1

α
.

When α and β are specified, the SPRT minimizes the
average number of observations needed to make a de-
cision when either of the hypothesis is true. In the
case of the martingale test, we are interested in the
mean (or median) time between the point change oc-
curs and the point it is detected, known as the mean
(or median) delay time, which can be estimated using
the average sample number (ASN) (Wald, 1947) of a
SPRT. When the alternative hypothesis H1: “concept
change occurs in the data stream” is true, the mean
delay time, i.e. expected value of n is:

E(n) =
(1 − β) log λ

E(L)
(13)

where

L = log ǫpǫ−1
i (14)

Hence, with α and β specified, the mean delay time
depends on the expected value of L, the logarithm of
r(zi).

5 Experiments

Experiments are first performed on time-varying data
streams simulated using two synthetic data sets to an-
alyze the martingale test with respect to various λ val-
ues in Section 5.1. We also show that the martingale
test works well on high dimensional (i) numerical, (ii)
categorical, and (iii) multi-class data streams simu-
lated using three benchmark data sets in Section 5.2.

In the experiments, a fast adiabatic incremental SVM
(Cauwenberghs & Poggio, 2000), using the Gaussian
kernel and C = 10, is used to deduce the strangeness
measure for the data points. A necessary condition for
the test to work well is that the classifier must have a
reasonable classification accuracy.

5.1 Simulated Data Streams using Synthetic
Data Sets

In this subsection, we examine the performance of the
martingale test based on the retrieval performance in-
dicators, recall and precision, and the delay time for
change detections for various λ values on five differ-
ent time-varying data stream scenarios simulated us-
ing the two synthetic data sets. The retrieval perfor-
mance indicators, recall and precision, are defined in



our context as:

Precision =
Number of Correct Detections

Number of Detections

Probability that a detection is actually correct, i.e.
detecting a true change.

Recall =
Number of Correct Detections

Number of True Changes

Probability that a change detection system recognizes
a true change.

The delay time for a detected change is the number of
time units from the true change point to the detected
change point, if any.

First, we describe how the data streams with concept
changes are simulated (i) using rotating hyperplane
(Hulten et al., 2001) (Section 5.1.1), and (ii) using
normally distributed clusters data generator (NDC)
(Musicant, 1998) (Section 5.1.2) and then, the exper-
imental results are presented in Section 5.1.3.

5.1.1 Simulated Data Stream using Rotating
Hyperplane

Data stream is simulated using rotating hyperplane to
generate a sequence of 100,000 data points consisting
of changes occurring at points (1, 000 × i) + 1, for i =
1, 2, · · · , 99. First we randomly generate 1,000 data
points with each component values ranged in [−1, 1].
These data points are labeled positive and negative
based on the following equation:

m
∑

i=1

wixi =

{

< c : negative
≥ c : positive

(15)

where c is an arbitrary fixed constant, xi is the compo-
nent of a data point, x, and the fixed components, wi,
of a weight vector are randomly generated between -1
and 1. Similarly, the next 1,000 random data points
are labeled using (15) with a new randomly generated
fixed weight vector. This process continues until we
get a data stream consisting of 100 segments, with
each segment having 1,000 data points. Scenario (A),
(B), (C) and (D) simulated using rotating hyperplane
are summarized below:

• Scenario (A) - Gradual Changes: For m =
2, we control the rotation of the hyperplane
about the origin by using the weights w =
[cos(r) sin(r)] restricting r ∈ [−π

3 , π
3 ]. Hence,

the maximum angle difference between two con-
secutive hyperplanes is 2π

3 rad.

• Scenario (B) - Arbitrary Changes (Gradual
and Abrupt Changes): For m = 2, we allow

the weight w = [cos(r) sin(r)] to change with
r ∈ [−π, π]. In this case, any rotating hyperplane
about the origin is possible.

• Scenario (C) - Arbitrary Changes with
Noisy Data Stream: Noise is added to Scenario
(B) by randomly switching the class labels of p%
of the data points. In the experiment, p = 5.

• Scenario (D) - Arbitrary Changes in a High
Dimensional, Noisy Data Stream: Setting
m = 10, we repeat Scenario (C).

5.1.2 Simulated Data Streams using the
Normally Distributed Clusters Data
Generator (NDC)

Linearly non-separable binary-class data streams of
100,000 data points consisting of changes occurring at
points (1, 000 × i) + 1, for i = 1, 2, · · · , 99 is simulated
using the NDC in R10 with randomly generated cluster
means and variances. The values for each dimension
are scaled to range in [−1, 1]. The generating process
for the data stream is similar to that used for the rotat-
ing hyperplane data stream described in Section 5.1.1.
Scenario (E) simulated using NDC is summarized be-
low:

• Scenario (E) : Arbitrary Changes in a
High Dimensional, Noisy, Linearly Non-
separable Data Stream: Setting m = 10 and
noise is added by randomly switching the class la-
bels of p% of the data points. In the experiment,
p = 5.

5.1.3 Results

Figure 2, 3, 4, 5 and 6 show the recall, precision and
delay time of the martingale test on the five differ-
ent data stream scenarios simulated using the rotating
hyperplane and normally distributed clusters.

Some observations on the recall and precision of the
martingale criteria for the different scenarios are re-
ported below:

1. Precision decreases with decreasing λ value. The
precision shows similar trends, decreasing from
1.0 to around 0.8 as λ−1 increases from 0.01 to
0.25, independent of the different scenarios.

2. The recall of a data stream with gradual changes
(Scenario (A)) is lower than the recall of a data
stream with arbitrary changes (Scenario (B)). The
martingale test is more sensitive towards less re-
stricted changes.
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Figure 2: Scenario (A): Gradual changes.
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Figure 3: Scenario (B): Arbitrary changes (gradual
and abrupt changes).

3. Both a noisy data stream (Scenario (C)) and a
data stream with gradual changes (Scenario (A))
have low recall.

4. Higher dimension data streams (Scenario (D) and
(E)) with arbitrary changes have high recall.

5. Despite Observation 3, noise in the high dimen-
sion data streams has limited effect on the recall.

As λ increases from 4 to 100, the upper bound (6) be-
comes tighter, decreasing from 0.25 to 0.01. This cor-
responds to increasing precision, i.e. decreasing false
alarm rate. All five scenarios reveal, unsurprisingly,
that a higher precision, higher λ, comes at the ex-
pense of a higher median (or mean) delay time for the
martingale test. As shown in the box-plots, the de-
lay time distribution skews toward large values (i.e.
small values are packed tightly together and large val-
ues stretch out and cover a wider range), independent
of the λ. The delay time is very likely to be less than
the mean delay time.

In real applications, λ must be chosen to minimize
losses (or cost) due to delay time, miss detections and
false alarms.

T-tests are performed on the log transformed delay
time of changes detected to determine if at a specific
λ value, say 10, two different scenarios could have the
same (log) mean delay time. We observe that at more
sensitive λ, i.e. lower λ values, the means are likely
to be equal. However, when noise is added, the mean
delay time is affected. But if the data stream is high
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Figure 4: Scenario (C): Arbitrary changes with noise.
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Figure 5: Scenario (D): Arbitrary changes on a high
dimensional noisy data stream.
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Figure 6: Scenario (E): Arbitrary changes on a high
dimensional noisy linearly non-separable binary data
stream.

dimensional, noise has limited effects. For higher λ,
say 30, the test is less sensitive but more cautious in
detecting changes. The mean delay time varies for
different scenarios. For Scenario (E), it is not surpris-
ing to see that its mean delay time is different from
the other scenarios as the data set used is different.
Hence, if the high dimensional data stream comes from
the same source, a fixed λ has similar performance in
both a noiseless and a noisy environment. This may
not be true for lower dimensional data stream.

5.2 Simulated Data Streams using
Benchmark Data Sets

In this subsection, we describe how the data streams
with concept changes are simulated using (i) combin-
ing ringnorm and twonorm data sets (Breiman, 1996)
(Section 5.2.1), (ii) modifying UCI nursery data set
(Blake & Merz, 1998) (Section 5.2.2), and (iii) mod-
ifying the USPS handwritten digits data set (LeCun



et al., 1989) (Section 5.2.3). The effectiveness of the
martingale test on high-dimensional (i) numerical, (ii)
categorical, and (iii) multi-class data streams is shown
in Figure 7, 8 and 9 for the simulated data streams
using the above three benchmarks respectively.

5.2.1 Numerical High Dimensional Data sets:
Ringnorm and Twonorm

We combined the ringnorm (RN) (two normal distri-
bution, one within the other) and twonorm (TN) (two
overlapping normal distribution) data sets to form
a new binary-class data stream of 20 numerical at-
tributes consisting of 14, 800 data points. The 7,400
data points from RN is partitioned into 8 subsets with
the first 7 subsets (RNi, i = 1, · · · , 7) consisting of
1,000 data points each and RN8 consists of 400 data
points. Similarly, the 7,400 data points from TN is
also partitioned into 8 subsets with the first 7 subsets
(TNi, i = 1, · · · , 7) consisting of 1,000 data points each
and TN8 consists of 400 data points.

The new data stream is a sequence of data points
arranged such that RN1TN1 · · ·RN7TN7RN8TN8.
This is done to simulate 15 changes in the structure
of the data sequence at the points, 1000i + 1, for
i = 1, · · · , 14 and the last one at 14,401.
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Figure 7: Simulated data stream using Ringnorm and
Wavenorm: The martingale values of the data stream
using λ = 10. ∗ represents detected change point:
1020, 2054, 2125 (false alarm) 3017, 3410 (false alarm),
3614 (false alarm), 4051, 5030, 6036, 7023, 8018, 9019,
10014, 11031, 12032, 13013, 14014, 14374 (false alarm)
and one miss detection.

5.2.2 Categorical High Dimensional Data set:
Nursery benchmark

We modified the nursery data set, consisting of 12,960
data points in 5 classes with 8 nominal attributes, to
form a new binary-class data stream. First, we com-
bined three classes (not recommended, recommended
and highly recommended) into a single class consist-
ing of 4,650 data points labeled as negative examples.
The set RN is formed by randomly selecting 4,000 out
of the 4,650 data points. The “priority” class contains
4,266 data points are labeled as positive examples and

we randomly select 4,000 out of the 4,266 data points
to form the set PP . The “special priority” class, con-
taining 4,044 data points are split into two subsets
consisting of 2,000 data points each, a set (SPP ) of
positive examples and a set (SPN) of negative exam-
ples. The other 44 data points are removed.

New subsets of data points are constructed as follows:

• Set Ai: 500 negative examples from RN and 500
positive examples from PP .

• Set Bi: 500 negative examples from SPN and 500
positive examples from PP .

• Set Ci: 500 negative examples from RN and 500
positive examples from SPP .

The data stream S is constructed as follow:

S = A1B1C1A2B2C2A3B3C3A4B4C4

consisting of 12,000 data points with 11 change points
and in each subset, the data point positions are ran-
domly permutated.
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Figure 8: Simulated data stream using a modified
Nursery data set: The martingale values of the data
stream with λ = 8. ∗ represents detected change point:
1059, 1179 (false alarm), 2024, 3109, 4084, 5010, 6090,
7114, 8007, 9115, 10086, 11079

5.2.3 Multi-class High Dimensional Data:
Three-digit data stream from USPS
handwritten digits data set.

The USPS handwritten digits data set, consisting
7,291 data points in 10 classes with 256 numeric at-
tributes, is modified to form a data stream as follows.
There are four different data segments. Each segment
draws from a fixed set of three different digits in a ran-
dom fashion. The three-digit sets change from one seg-
ment to the next. The composition of the data stream
and ground truth for the change points are summa-
rized in Table 2. We note that the change points do
not appear at fixed intervals. The one-against-the-rest
multi-class SVM is used to extract p-values.

For the three-digit data stream, three one-against-the-
rest SVM are used. Hence, three martingale values are



Segment Digit 1 Digit 2 Digit 3 Total Change
Point

1 597 (0) 502 (1) 731 (2) 1830 1831
2 597 (0) 658 (3) 652 (4) 1907 3738
3 503 (1) 556 (5) 664 (6) 1723 5461
4 645 (7) 542 (8) 644 (9) 1831 -

Table 2: Three-Digit Data Stream: The number
of data points are shown with the true digit class of
the data points inside ( ).

computed at each point to detect change (see Figure
9). When one of the martingale values is greater than
λ, change is detected.
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Figure 9: Simulated three-digit data stream using the
USPS handwritten digit data set: The martingale val-
ues of the data stream. ∗ represents detected change
point: 1876, 3837, 5523, 5780 (false alarm). True
change points are 1831, 3738 and 5461. Delay time
are 45, 99 and 62.

6 Conclusions

In this paper, we describe the detection of con-
cept change in time-varying data streams by testing
whether exchangeability condition is violated using
martingale. The contribution of the paper is the jus-
tification that this change-detection martingale test
based on the Doob’s Maximal Inequality is an approxi-
mation of the sequential probability ratio test (SPRT),
which is used to (i) deduce the relation between the
threshold value used in our change-detection test and
its size and power, and (ii) estimate the mean delay
time before a change is detected.

Future works include (i) building a robust adaptive
learning system based on the martingale test, and (ii)
extending the martingale test to detect changes in un-
labeled data streams and single-class data streams.
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