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ABSTRACT
This paper summarizes the goals, organization and results
of the first SOCO competitive evaluation campaign for sys-
tems that automatically detect the source code re-use phe-
nomenon. The detection of source code re-use is an impor-
tant research field for both software industry and academia
fields. Accordingly, PAN@FIRE track, named SOurce COde
Re-use (SOCO) focused on the detection of re-used source
codes in C/C++ and Java programming languages. Partic-
ipant systems were asked to annotate several source codes
whether or not they represent cases of source code re-use.
In total five teams submitted 17 runs. The training set
consisted of annotations made by several experts, a feature
which turns the SOCO 2014 collection in a useful data set
for future evaluations and, at the same time, it establishes
a standard evaluation framework for future research works
on the posed shared task.

CCS Concepts
•General and reference → General conference pro-
ceedings;
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1. INTRODUCTION
Nowadays, the information has become easily accessible

with the advent of the Web. Blogs, forums, repositories,
etc. have made source code widely available to be read, to

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

FIRE ’14, December 05 - 07, 2014, Bangalore, India
c© 2015 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-3755-7/15/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2824864.2824878

be copied and to be modified. Programmers are tempted to
re-use debugged and tested source codes that can be found
easily on the Web. The vast amount of resources on the Web
makes the manual analysis of suspicious source code re-used
unfeasible. Therefore, there is an urgent need for developing
automatic tools capable of accurately detect the source code
re-use phenomenon.

Currently, software companies have a special interest in
preserving their own intellectual property. In a survey ap-
plied to 3, 970 developers, more than 75 percent of them
admitted that have re-used blocks of source code from else-
where when developing their software1. Moreover, on the
one hand, the academic environment has also become a po-
tential scenario for research in source code re-use because it
is a frequent practice among students. A recent survey [4]
reveals that source code plagiarism represents 30% of the
cases of plagiarism in the academia field. In this context,
students are tempted to re-use source code because, very of-
ten, they have to solve similar problems within their courses.
Hence, the task of detecting source code re-use becomes even
more difficult, since all the source codes will contain (to
some extent) a considerable thematic overlap. On the other
hand, detection of source code re-use in programming envi-
ronments, such as programming contests, has an additional
challenge, this is the large number of source codes that must
be processed for detecting such practises [10], and as a result,
source code re-use detection becomes some how unfeasible.
Consequently, most of the research on source code re-use
detection has been mostly applied to closed groups [23, 20,
13].

Whereas at PAN@CLEF the shared task addresses pla-
giarism detection in texts [19], PAN@FIRE focuses on the
detection of source codes that have been re-used in a mono-
lingual context, i.e., using the same programming language.
It is worth mentioning that such situation represents a com-
mon scenario in the academic environment. Particularly,
SOCO involves identifying and distinguishing the most sim-
ilar source code pairs among a large source code collection.
In the next sections we will first define the task and then
summarise all participant systems approach as well as their
obtained results during the SOCO 2014 shared task.

1http://www.out-law.com/page-4613
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2. RELATED WORK
Although the problem of source code re-use is not new,

it is until nowadays that such problem has reached an in-
creasing importance given the rise of material now avail-
able in electronic form. Traditionally, the source code re-
use detection problem has been approached by means of
three main perspectives: i) shallow features comparison, ii)
NLP-related strategies, and iii) structural comparison, i.e.,
graph-based representations.

Shallow techniques involve generating a representation of
each source code as a k -tuple, where each component depicts
an attribute describing some superficial characteristic from
the source code file, for example, number of code lines, num-
ber of variables, methods, loops, indentations, commented
lines, average length of lines (in characters), etc. Once the
representation is obtained, source code re-use is determined
by measuring its distance (similarity) against a set of source
code files [7, 25] represented by the same set of features.
A main drawback of such methodologies is that the num-
ber of possible features may be very large and not adequate
for all programming languages. Additionally, this type of
techniques tend to perform poorly when more sophisticated
modifications are performed in source code files.

Regarding the NLP-related strategies, the intuitive idea
has been to incorporate traditional text similarity measures
to the task of source code re-use detection. Such methods,
as stated in [21], involve more complex as well as robust
approaches. Normally, source code files are treated as text
files, hence, common methods such as the traditional Bag-
of-Words, character n-grams [12, 22], and longest common
sub-sequence [2, 15] are among the most popular techniques.
One of such work takes into account the “whitespace” inden-
tation patterns of a source code file [2], where a source code
document is converted to a pattern, namely whitespace for-
mat, replacing any visible character by X and any whitespace
by S, and leaving newlines as they appear. The work re-
ported in [2] then calculates a similarity index based on the
longest common substring (LCS) of both patterns. For their
experiments, the authors used C sources extracted from the
Apache and Linux Kernel. Using a distribution of similarity
index for source code pairs, the authors corroborate their
hypothesis, namely that similar source code pairs (obtained
from different versions of the Linux kernel) exhibit high av-
erage LCS based similarity index values, whereas different
source codes pairs show low mean similarity index on an av-
erage. The work proposed in [20] represents one of the most
popular freely-available methods for source code plagiarism
identification, and is based on a technique that searches for
the longest non-overlapped common substrings between a
pair of fingerprints.

Another common approach is to determine the fingerprint
of a source code document by making use of the words n-
grams2. However, this does not consider important char-
acteristics inherent to source codes such as keywords, iden-
tifiers names, number of lines, number of terms per line,
number of hapax, etc. The work reported in [18] proposes a
similarity measure that uses a particular weighting scheme
for combining different characteristics of source codes. A
major limitation of these reported works is that obtained
results are inconclusive because the datasets on which their
experiments were conducted do not represent real-life re-use

2http://theory.stanford.edu/˜aiken/moss/

cases and more importantly and not sufficiently large.
In [5] authors performed a detailed analysis of source codes

with the help of latent semantic indexing (LSA). They fo-
cused their work on three components: preprocessing (keep-
ing or removing comments, keywords or program skeleton),
weighting (combining diverse local or global weights) and
the dimensionality of LSA. The experiments were based on
information retrieval scheme, i.e. given a suspicious source
code as a query, they retrieved the most likely candidate
original source codes. The dataset was constructed with the
help of automated tools namely Moss and Sherlock [16] fol-
lowed by manual post processing. It was reported that the
optimum number of LSA dimensions is 30. A major draw-
back of the experiments reported in [5] is that these were
conducted on small collections of source code files (varying
from 106 to 179) which is far from the real-life scenario. A
similar work was done in [17] where authors addressed the
problem of concept location using an information retrieval
model based on LSA. Their proposed approach is employed
to find relevant (semantically related) parts of source codes.

Finally, the most recent approaches as well as the most
complex are the structure-based ones. Most of these tech-
niques involve an in-depth representation of source code files.
Ideally, such type of representations allow to perform more
elaborated comparisons between a pair of source codes, for
example, to compare inherent structure features instead of
only shallow or lexical features [3, 6, 14].

As an example, the work described in [6] proposes a source
code plagiarism detection tool named CCS (code compari-
son system) that compares source code files by means of us-
ing hash values of their abstract syntax trees. Accordingly,
CCS performs codes comparison by means of: first travers-
ing the syntax tree and get every hash value of the suspicious
and original source codes; then, sub-trees are classified ac-
cording to the number of child nodes such that only those
sub-trees having the same number of child nodes are com-
pared; thus, at the end sub-trees with similar hash values
will represent the plagiarised sections within a source code.
Similarly, the work proposed by [3] proposed a method for
fingerprinting based on syntax trees to retrieve clone clusters
of exact matches across a set of software projects. Finally,
DeSoCoRe [11] proposes a comparison of two source codes
at function-level and looks for highly similar functions or
methods in a graphical representation.

Notice that one of the main limitations of previous work
is that, all proposed approaches are not comparable among
them given that there is no standard source codes collection
neither well established metrics suitable for such purposes.
In order to overcome such limitations, PAN@FIRE SOCO
track defines a standard framework in order to provide a con-
trolled scenario for evaluating source code re-use detection
systems. Thus, this paper describes the followed methodol-
ogy for constructing both training and test sets used during
the SOCO competition; and, also a discussion of obtained
results is given.

3. TASK DESCRIPTION
SOCO shared task focused on monolingual source code re-

use detection, which means that participant systems must
deal with the case where the suspicious and original source
codes are written in the same programming language. Ac-
cordingly, participants were provided with a set of source
codes written both in C/C++ and Java languages, where
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Table 1: Total number of source codes and re-used
source code pairs annotated by three experts. The
last column shows their κ value for inter-annotator
agreement.

Training set (Inter-annotator agreement)

Programming Num. of #Re-use Value of
language files cases κ

C 79 26 0.480
JAVA 259 84 0.668

source codes have been tagged by language to ease the detec-
tion. Thus the task consists in retrieving source code pairs
that are likely to be cases of re-use. It is important to men-
tion that this task was performed at document level, hence
no specific fragments inside of source codes are expected to
be identified; only pairs of source codes files. Therefore, par-
ticipant systems were asked to annotate several source codes
whether or not they represent cases of source code re-use.

SOCO 2014 shared task was divided in two main phases:
training and testing. For the training phase we provided
an annotated corpus for each programming language, i.e.,
C/C++ and Java. Such annotation includes information
about whether a source code has been re-used and, if it is
the case, a link to the original source code is provided. It is
worth mentioning that the order of each pair was not impor-
tant3, e.g., if X has been re-used from Y , it was considered
as valid to retrieve the pair X–Y or the pair Y –X. Fi-
nally, for the testing phase the only annotation that was pro-
vided corresponds to the programming language (C/C++ or
Java).

4. CORPUS
In this section we describe the two corpora used in the

SOCO 2014 competition. For the training phase, a corpus
composed by source codes written in C and Java program-
ming languages was released. For the testing phase, par-
ticipants were provided with source codes written in C-like
languages (i.e., C and C++) and also in Java language.

4.1 Training Corpus
The training collection consists of source codes written

in C and Java programming languages. For the construc-
tion of this collection we employed the corpus used in [1].
Source code re-use is committed in both programming lan-
guages but only at monolingual level. The Java collection
contains 259 source codes, which are named from 000.java
to 258.java. The C collection contains 79 source codes, en-
titled from 000.c to 078.c. Relevance judgements represent
re-use cases in both directions(X → Y and Y → X). Ta-
ble 1 shows the characteristics of the training corpus and
the kappa (κ) value of the inter-annotator agreement [9].

As can be seen in Table 1 the inter-annotator agreement
for the C collection represents a moderate agreement whilst
for the Java collection the kappa value indicates a substantial
agreement between annotators [9]. Such results indicate (to
some extent) that the provided training corpus represents a
reliable data set.

3An additional challenge in plagiarism detection is to deter-
mine the direction of the plagiarism, i.e., which document
is the original and which the copy.

Table 2: Number of source code files contained in
the test set, organised by programming language
and scenario. The table shows the number of files (#
Files), number of identified re-use cases (#Re-used)
and the average number of code lines (#Lines) per
file within its respective scenario.

C/C++ programming language

Scenario #Files #Re-used #Lines

A1 5,408 99 63.68
A2 5,195 86 68.11
B1 4,939 86 69.97
B2 3,873 43 80.87
C1 335 8 180.40
C2 145 0 255.21

Total 19,895 322 92.70

Java programming language

Scenario #Files #Re-used #Lines

A1 3,241 54 99.26
A2 3,093 47 107.87
B1 3,268 73 90.86
B2 2,266 34 102.46
C1 124 0 227.12
C2 88 14 361.00

Total 12,080 222 165.42

4.2 Test Corpus
Provided test corpus was divided by programming lan-

guage (C/C++ and Java) and by scenarios (i.e., different
thematic/problems are considered). This corpus has been
extracted from the 2012 edition of Google Code Jam Con-
test4. Each programming language contains 6 monolingual
re-use scenarios (A1, A2, B1, B2, C1 and C2). Hence, the
name of the files consists of the name of its corresponding
scenario and an identifier, for example, file ”B10021”belongs
to scenario B1 and its identifier number is 0021. An overview
of the test dataset characteristics is presented in Table 2. It
can be seen that the entire collection of about 20K and 12K,
for C/C++ and Java respectively, is categorized into six dif-
ferent scenarios.

It is important to mention that there is no re-use cases
between scenarios, therefore participant systems just needed
to look for re-use cases among the source code files inside
each scenario. For example, participants did not have to
submit a re-use case between files ”B10021” and ”B20013”.
Notice that the first one belongs to scenario B1 but the
second one belongs to B2.

As can be noticed in Table 2, the amount of source codes
in the test set is significantly higher than the amount of
codes in the training corpus. Therefore, participant systems
are some how obligated to develop efficient applications for
solving the SOCO task. Such distribution of source code
files tries to replicate a real life scenario, where a suspicious
source code file might have to be compared against a large
set of source code files.

In view of the huge size of the test corpus, it was prac-

4https://code.google.com/codejam/contest/1460488/
dashboard
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tically impossible to label it manually by human reviewers.
Hence, in order to evaluate the performance of participant
systems, we prepared a pool formed by the provided detec-
tions from the different submitted runs [24]. By means of
following this technique, a source code pair needs to appear
at least in the 66% of the competition runs to be considered
as a relevant judgement. Thus, for constructing the rele-
vance assessments, we considered all submitted runs from
participant systems with the addition of the two baselines
described in the next section. The third column in Table 2
indicates the number of identified relevant judgements for
each programming language and scenario. Additionally, Ta-
ble 2 also depicts the average number of code lines contained
in source code files; such value indicates (to some extent) the
difficulty (i.e., necessary code lines) of developed programs
in order to solve the assigned task.

Finally, it is worth mentioning that two out of the five
participant teams submitted their obtained results after the
deadline; hence, two different set for the relevance assess-
ments were constructed. Therefore, the Official relevance
assessments were pooled from the results from the teams
UAEM,UAM and DCU plus the two proposed baselines. Whereas
the Unofficial relevance assessments were formed consider-
ing the former configuration plus the results submitted by
Rajat and Apoorv (see Section 7).

5. EVALUATION METRICS
All the participants were asked to submit a detection file

with all the source code pairs considered as re-use cases.
Participants were allowed to submit up to three runs. All
the results were required to be formatted in XML as shown
below. As can be noticed, for each suspicious source code
pair it must be one entry of the <reuse case .../> in the
XML file.

<document>
<reuse case
source code1=”X1” source code2=”Y1”
/>
<reuse case
source code1=”X2” source code2=”Y2”
/>
. . .
</document>

To evaluate the detection of re-used source code pairs we
calculate Precision, Recall and F1 measure. For ranking
all the submitted runs we used the F1 measure in order to
favour those systems that were able to obtain (high) bal-
anced values of precision and recall.

Two baselines were considered for the SOCO 2014 task,
which are described below:
Baseline 1. Consists of the well-known JPlag tool [20]
using its default parameters. In this model, the source code
is parsed and converted into token strings. The greedy string
tiling algorithm is then used to compare token strings and
identify the longest non-overlapped common substrings.
Baseline 2. Consists of the character 3-gram based model
proposed in [12]. In this model, the source code is considered
as a text and represented as character 3-grams, where these
n-grams are weighted using term frequency scheme. As pre-
processing, whitespaces, line-breaks and tabs are removed.
All the characters are casefolded and characters repeated

more than three times are truncated. Then, the similarity
between two source codes is computed using the well known
cosine similarity measure.

It is worth mentioning that for both baselines, a source
code pair is considered as a re-use case if the similarity value
is higher than 0.95.

6. PARTICIPATION OVERVIEW
In total five teams participated and submitted 17 runs.

Particularly, the Autonomous University of the State of Mex-
ico (UAEM) and the Universidad Autónoma Metropolitana -
Unidad Cuajimalpa (UAM-C) have submitted three runs in
both programming languages, while the Dublin City Uni-
versity (DCU) only in Java. Remaining teams (i.e., Rajat

and Apoorv) submitted their respective runs beyond the al-
lowed official time, nonetheless, their obtained results have
been considered for performing the current analysis.
UAEM [15] used a model for the detection of source code

re-use that is divided into four phases. In the first phase
only the lexical items of each source language are separated
and more than one whitespaces are removed. In the second
phase, a similarity measure is obtained for each source code
regarding the other source codes. The second phase uses as
similarity measure the sum of the different lengths of the
longest common substrings between the two source codes,
normalised to the length of the longest code. Using the com-
parisons made for each source code, in the third phase a set
of parameters is obtained that allow later the identification
of re-used cases. The parameters obtained are: the value
of the distance (1- similarity), the ranking of the distance
(rank order of the most similar), the gap that exists with the
next closest code (it is only calculated for the first 10 closest
codes) and, using the maximum gap between the 10 most
closest codes, the source codes that are Before or After the
maximum gap relative difference are labelled. The result
of the third phase is a matrix where each row represents a
comparison of a source code with other codes (columns).

For the decision, a source code pair X ↔ Y will be a re-use
case if there is evidence of re-use in both directions, it means,
X → Y and Y → X. A re-used case exists when the distance
is less than 0.45 or the gap is greater than 0.14, but also it is
important that one of the additional conditions is achieved.
The first condition is that the ranking must be, at least, in
the second position and, the second condition, that the label
of the relative difference must be Before. The first run for C
and Java languages were processed with above conditions.
However, in some cases the evidence in one direction was
very high and in the other direction was almost reliable, but
according to the training corpus in Java, in most of the cases
this pair was a re-used case. In the second run, if there were
not high evidence of re-use in one direction, then the pair
can be considered as re-used case whether at least one of the
both codes has the ranking of 1 and the relative difference
of Before and the gap greater than 0.1.
UAM-C [22] represents the source code in three views at-

tempting to highlight different aspects of a source code: lex-
ical, structural and stylistics. From the lexical view, they
represent the source code using a bag of character 3-grams
without the reserved words for the programming language.
For the structural view, they proposed two similarities that
take into account functions’ signatures within the source
code, e.g., the data types and the identifier names of the
functions’ signature. The third view consists in account-
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ing for the stylistics’ attributes, such as, number of spaces,
number of lines upper letters, etc. For each view they com-
puted a similarity value for each pair of source codes and
then they established a threshold calculated on the training
corpus. In the first run, they only consider the first view
with a manually defined similarity threshold of value 0.5. In
the second run, they use the first and the second view. From
these two views they have three different similarities: lexi-
cal similarity (L), data types similarities (DT ), and identi-
fiers’ name similarity (IN). Then, they combined them as:
0.5L ∗ 0.25DT ∗ 0.23IN , according to a confidence’s level
manually established. In the third run, they used 8 sim-
ilarity values derived from the three proposed views: one
similarity for the lexical view, 6 similarities from the second
view and 1 more for the stylistic view. Finally, they trained
a model using a supervised approach to be used over the
test corpus.
DCU [14] undertakes an information retrieval (IR) based

approach for addressing the source code plagiarism task.
First, they employ a Java parser to parse the Java source
code files and build an annotated syntax tree (AST ). Then,
they extract content from selective fields of the AST to
store as separate fields in a Lucene index. More specifically
speaking, the nodes in the AST from which they extract
information from are the statements, class names, function
names, function bodies, string literals, arrays and comments.
For every source code in the test corpus, they formulate a
pseudo-query by extracting representative terms (those hav-
ing the highest language modelling query likelihood estimate
scores). A ranked list of 1000 documents along with their
similarities with the query is retrieved after executing the
query. The retrieval model that they use is language model
(LM). Their model walks down this ranked list (sorted in
decreasing order by the similarities) of documents and stops
where the relative decrease in threshold in comparison to
the previous document similarity is less than a pre-defined
threshold value acting as a parameter. The documents col-
lected this way are then reported as the re-used set of doc-
uments. In the first run, separate fields are created for each
AST node type, e.g. the terms present in the class names
and the method bodies are stored in separate fields. They
compute relative term frequency statistics for each field sep-
arately. In the second run, an AST is constructed from the
program code using a Java parser and then bag-of-words
from the selected nodes of the AST are used. However, sep-
arate fields are not used to store the bag-of-words. The index
is essentially a flat one. In the third run, a simple bag-of-
words document representation is used for a program code,
i.e., no program structure is taken into account.
Rajat proposed approach is based on a string compar-

ison technique. The proposed method looks for an exact
lines match between a pair of source codes files. The used
similarity metric consists in calculating a ratio between the
number of common lines and the total number of lines of
the larger source code file. At the end, the decision process
for determining whether or not is a re-use case, is based on
the obtained similarity value that must surpass a threshold
value of 70%.
Apoorv proposes a similar approach to the method de-

scribed by Rajat. Accordingly, the proposed approach con-
siders source code files as text documents, and follows a
string matching strategy for measuring similarities. The ap-
proach looks for exact lines matching between source code

files and estimates a similarity value with the ratio of lines
that both source codes have in common. Selected source
code pairs as re-use cases are those that obtain the max-
imum similarity value. At the end, for each source code
within the test set, the approach lists a single re-used case
with the maximum similarity value.

7. RESULTS AND ANALYSIS
Obtained results by participant systems are shown in Ta-

ble 3, Table 4, Table 5 and Table 6. Particularly, Table 3
and Table 5 report obtained results for the C/C++ program-
ming language, whereas Table 4 and Table 6 depict results
obtained in the Java language. Obtained performance at
scenario level (i.e., thematic related problems) is shown in
Tables 3 and Table 4 for C/C++ and Java programming lan-
guages respectively in terms of the F1 score; whereas that
Table 5 and Table 6 report the overall results during the
SOCO competition in terms of precision (P ), recall (R) and
F1 score.

Notice that the first part of all tables represents the per-
formance obtained when the official relevance assessments
are considered to evaluate system’s performance, whilst the
bottom part depicts obtained results when the unofficial rel-
evance assessments are considered. As we mentioned before,
we ranked obtained results by means of the F1 measure,
given that we prefer systems that are able to obtain (high)
balanced values of Precisions (P ) and Recall (R).

Observe that, for the C programming language (Table 3)
using the official relevance assessments, the team from UAEM

was able to perform well across all the scenarios except
C1. Especially for C1, the most complex task according
to Table 2, the best result was achieved by the UAM-C team.
This behaviour indicates, to some extent, that the proposed
methodology by UAEM is suitable for easy and moderately
hard tasks, whilst for more complicated tasks, the approach
proposed by UAM-C performs better. However, a different
behaviour is obtained when the unofficial relevance assess-
ments are considered. Notice that for this particular exper-
iment, the best performance across scenarios is obtained by
the Baselines except for the C1 task, where once again the
UAM-C got the best performance.

As explained before, both baselines and the UAEM methods
are based on NLP-related strategies for identifying re-use
cases. On the contrary, the approach followed by the UAM-C

considers some features that are not content related (claimed
as structural features in [23]). Thus, it seems like NLP-
related approaches are good enough for small C/C++ source
code files, whereas for more elaborated programs (complex
tasks), structural features allow to accurately identify cases
of source code re-use.

For the Java scenario, UAM-C has achieved the best per-
formance with a balance between precision and recall using
both, official and unofficial relevance assessments. Accord-
ing to the obtained results, the combination of all their pro-
posed similarity (lexical, structural and stylistic) measures
using a supervised decision tree has been decisive. However,
as can be seen in Table 5 and Table 6 their second run has
been affected by the same phenomenon than in the C/C++
scenario: it retrieves more than 10K re-used source code
pairs, affecting precision values. For the three runs submit-
ted by DCU, a good general performance is obtained, see also
Table 6. Particularly for DCU second run, the addition of
the bag-of-words for selecting nodes from the AST slightly
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Table 3: F1 score per scenario considering both the
relevant assessments used during the SOCO 2014
track (i.e., Official) as well as the post-competition
relevance assessments (i.e., Unofficial). Reported
results correspond to the C/C++ programming lan-
guages.

Results considering the Official relevance assessments

Team
name

Run
id

Scenarios (F1)

A1 A2 B1 B2 C1

UAEM
1 0.382 0.372 0.587 0.531 0.552
3 0.321 0.309 0.581 0.521 0.485

UAM-C
1 0.010 0.009 0.024 0.019 0.762
2 0.008 0.008 0.020 0.007 0.800
3 0.010 0.009 0.024 0.019 0.737

Baseline
1 0.101 0.113 0.245 0.349 0.429
2 0.294 0.255 0.326 0.323 0.333

Apoorv 1 0.035 0.023 0.022 0.014 0.029

Rajat 1 0.110 0.106 0.236 0.146 0.066

Results considering the Unofficial relevance assessments

Team
name

Run
id

Scenarios (F1)

A1 A2 B1 B2 C1

UAEM
1 0.125 0.184 0.303 0.250 0.320
3 0.103 0.150 0.300 0.245 0.276

UAM-C
1 0.003 0.004 0.011 0.007 0.471
2 0.002 0.003 0.009 0.002 0.500
3 0.003 0.004 0.011 0.007 0.533

Baseline
1 0.125 0.069 0.386 0.486 0.333
2 0.264 0.256 0.340 0.388 0.500

Apoorv 1 0.023 0.015 0.014 0.009 0.024

Rajat 1 0.081 0.115 0.273 0.155 0.068

improved the performance of the first run. Whereas that
DCU third run, where the bag-of-words is not employed for
selecting nodes within the AST, it slightly decreases their
results.

In general, different approaches were applied to solve the
problem of source code re-use detection. As it is possible to
notice in Table 5, the two submitted runs from UAEM were
able to retrieve all the re-used source code pairs (high re-
call). But their rule introduced for retrieving less obvious
re-used cases in run 3 had a negative impact on the perfor-
mance in terms of precision and, therefore, in F1. For the
UAM-C results, these have been adversely affected in terms of
precision by the huge number of retrieved source code pairs
(+50K).This may happened because they have removed re-
served words (keywords) and taken into account the number
of functions according to the C language. As known, C++
language includes new characteristics such as classes and
methods and also includes new reserved words (e.g. cin or
cout).

As can be seen in Figures 1 and 2, proposed approaches
tend to achieve higher F1 score when the difficulty of the
problem is greater, i.e., source codes files are larger. You
might think that easier tasks require less lines of code, thus

Table 4: F1 score per scenario considering both the
relevant assessments used during the SOCO 2014
track (i.e., Official) as well as the post-competition
relevance assessments (i.e., Unofficial). Reported
results correspond to the Java programming lan-
guages.

Results considering the Official relevance assessments

Team
name

Run
id

Scenarios (F1)

A1 A2 B1 B2 C2

UAEM
1 0.514 0.519 0.613 0.523 N/A
3 0.250 0.234 0.324 0.248 0.500

UAM-C
1 0.474 0.452 0.616 0.447 0.824
2 0.755 0.058 0.021 0.027 0.111
3 0.776 0.739 0.847 0.815 1.000

DCU
1 0.600 0.564 0.652 0.581 0.596
2 0.701 0.681 0.727 0.673 0.636
3 0.667 0.676 0.702 0.687 0.667

Baseline
1 0.324 0.388 0.237 0.556 0.824
2 0.529 0.537 0.559 0.568 0.667

Apoorv 1 0.025 0.021 0.038 0.025 0.275

Rajat 1 0.352 0.337 0.540 0.369 0.718

Results considering the Unofficial relevance assessments

Team
name

Run
id

Scenarios (F1)

A1 A2 B1 B2 C2

UAEM
1 0.507 0.503 0.613 0.534 N/A
3 0.246 0.226 0.324 0.255 0.500

UAM-C
1 0.467 0.437 0.616 0.458 0.824
2 0.746 0.055 0.021 0.028 0.111
3 0.797 0.769 0.847 0.829 1.000

DCU
1 0.570 0.534 0.643 0.576 0.596
2 0.693 0.662 0.727 0.686 0.636
3 0.658 0.657 0.702 0.700 0.667

Baseline
1 0.301 0.369 0.237 0.545 0.824
2 0.519 0.496 0.559 0.562 0.667

Apoorv 1 0.027 0.023 0.038 0.026 0.275

Rajat 1 0.384 0.376 0.560 0.404 0.718

less evidence of re-use exists within such files. This makes
easier tasks a more challenging scenarios to detect re-use of
source code.

Accordingly, the best performing system was the string-
matching based model [15] for C/C++ programming lan-
guages, while the best method for Java was the combination
of lexical, structural and stylistic features proposed in [22],
in both cases using the official relevance assessments. Nev-
ertheless, when considering the unofficial relevant assess-
ments, Baseline 2 model, based on the comparison of charac-
ter 3-grams, obtained the best performing model for C/C++
scenario, meanwhile UAM-C approach remains as the best per-
forming for Java.
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Table 5: Overall results corresponding to the
C/C++ programming languages. Results are re-
ported considering both official and unofficial rele-
vance assessments.

Results considering the Official relevance assessments

Team
name

Run
id

Evaluation metrics

F1 P R

UAEM
1 0.440 0.282 1.000
3 0.387 0.240 1.000

UAM-C
1 0.013 0.006 1.000
2 0.010 0.005 0.950
3 0.013 0.006 0.997

Baseline
1 0.190 0.350 0.130
2 0.295 0.258 0.345

Apoorv 1 0.022 0.011 0.543

Rajat 1 0.129 0.077 0.404

Results considering the Unofficial relevance assessments

Team
name

Run
id

Evaluation metrics

F1 P R

UAEM
1 0.196 0.109 1.000
3 0.169 0.092 1.000

UAM-C
1 0.005 0.002 1.000
2 0.004 0.002 0.935
3 0.005 0.002 1.000

Baseline
1 0.238 0.242 0.234
2 0.300 0.193 0.669

Apoorv 1 0.014 0.007 0.903

Rajat 1 0.126 0.068 0.927

8. REMARKS AND FUTURE WORK
In this paper we have presented the results of the Detec-

tion of SOurce COde Re-use (SOCO) PAN track at FIRE.
Especially, SOCO 2014 has provided a task specification
which is particularly challenging for participating systems.
The task was focused on retrieving cases of re-used source
code pairs from a large collection of programs. At the same
time, SOCO has provided an evaluation framework where
all participants were able to compare their obtained results
by means of applying different approaches under the same
conditions and using the same corpora. With these specifica-
tions, the task has turned out to be particularly challenging
and well beyond the current state of the art of participant
systems.

In total five teams submitted 17 runs. Two teams sub-
mitted their runs after the event but have been considered
in the posterior analysis. We summarised the followed ap-
proaches by each of the participant systems and presented
the evaluation of submitted runs along with their respective
analysis. In general, different approaches were proposed,
varying from string-matching to abstract syntax tree based
models. It is important to notice that the participation for
the Java language was much higher than for the C program-
ming language (10 vs. 7 runs). We considered two scenar-
ios for the evaluation: (i) Calculating the relevance assess-

Table 6: Overall results corresponding to the Java
programming languages. Results are reported con-
sidering both official and unofficial relevance assess-
ments.

Results considering the Official relevance assessments

Team
name

Run
id

Evaluation metrics

F1 P R

UAEM
1 0.556 0.385 1.000
3 0.273 0.158 1.000

UAM-C
1 0.517 0.349 1.000
2 0.037 0.019 0.928
3 0.807 0.691 0.968

DCU
1 0.602 0.432 0.995
2 0.692 0.530 0.995
3 0.680 0.515 1.000

Baseline
1 0.380 0.542 0.293
2 0.556 0.547 0.712

Apoorv 1 0.029 0.015 0.811

Rajat 1 0.418 0.301 0.680

Results considering the Unofficial relevance assessments

Team
name

Run
id

Evaluation metrics

F1 P R

UAEM
1 0.552 0.381 1.000
3 0.271 0.157 1.000

UAM-C
1 0.513 0.345 1.000
2 0.037 0.019 0.927
3 0.821 0.701 0.991

DCU
1 0.688 0.525 0.995
2 0.585 0.418 0.973
3 0.676 0.510 1.000

Baseline
1 0.371 0.525 0.286
2 0.544 0.445 0.700

Apoorv 1 0.031 0.016 0.855

Rajat 1 0.447 0.321 0.732

ments considering just the submitted runs during the track;
and (ii) Calculating the relevance assessments using all the
submitted runs after the competition. UAM-C achieved the
best results in Java programming language in both scenar-
ios. Nevertheless, the team that achieved the best results in
C/C++ in SOCO track was the UAEM. Considering the runs
submitted after the track, the Baseline 2 achieves the best
F1 score by means of its character 3-grams approach.

Finally, a note has to be made with respect to the re-
usability of test collections, which were calculated using a
pool formed by submitted and baseline runs; is that more
experiments need to be performed in order to construct a
more fine-grained relevance judgements. Nonetheless, both
training and test collections represent a valuable resource
for future research work on the field of source code re-use
identification.
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Figure 1: Comparison of the best runs across tasks
in C/C++ programming language.

Figure 2: Comparison of the best runs across tasks
in Java programming language.
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APPENDIX
A. ADDITIONAL DATA

The following tables show in detail the results obtained by
all participant systems at scenario level in terms of F1, P and
R using both official and unofficial relevance assessments.
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Table 7: Results per task considering the official relevance assessments for C/C++ programming languages.

Participant Run
C

A1 A2 B1 B2 C1
F1 P R F1 P R F1 P R F1 P R F1 P R

UAEM
1 0.382 0.236 1.000 0.372 0.229 1.000 0.587 0.415 1.000 0.531 0.361 1.000 0.552 0.381 1.000
2 0.321 0.191 1.000 0.309 0.183 1.000 0.581 0.410 1.000 0.521 0.352 1.000 0.485 0.320 1.000

UAM-C
1 0.010 0.005 1.000 0.009 0.005 1.000 0.024 0.012 1.000 0.019 0.009 1.000 0.762 0.615 1.000
2 0.008 0.004 0.929 0.008 0.004 0.930 0.020 0.010 1.000 0.007 0.003 0.930 0.800 0.667 1.000
3 0.010 0.005 1.000 0.009 0.005 1.000 0.024 0.012 1.000 0.019 0.009 1.000 0.737 0.636 0.875

baseline 1 0.101 0.300 0.061 0.113 0.300 0.070 0.245 0.650 0.151 0.349 0.550 0.256 0.429 0.300 0.750
baseline 2 0.294 0.247 0.364 0.255 0.214 0.314 0.326 0.298 0.360 0.323 0.300 0.349 0.333 0.500 0.250

Apoorv 1 0.035 0.019 0.273 0.023 0.012 0.698 0.022 0.011 0.651 0.014 0.007 0.628 0.029 0.015 0.625
Rajat 1 0.110 0.064 0.394 0.106 0.061 0.407 0.236 0.164 0.419 0.146 0.091 0.372 0.066 0.035 0.500

Table 8: Results per task with the relevant judgements considering all the participants included the post-
competition participants in C.

Participant Run
C

A1 A2 B1 B2 C1
F1 P R F1 P R F1 P R F1 P R F1 P R

UAEM
1 0.125 0.067 1.000 0.184 0.101 1.000 0.303 0.179 1.000 0.250 0.143 1.000 0.320 0.190 1.000
2 0.103 0.054 1.000 0.150 0.081 1.000 0.300 0.176 1.000 0.245 0.139 1.000 0.276 0.160 1.000

UAM-C
1 0.003 0.001 1.000 0.004 0.002 1.000 0.011 0.005 1.000 0.007 0.004 1.000 0.471 0.308 1.000
2 0.002 0.001 0.964 0.003 0.002 0.868 0.009 0.004 1.000 0.002 0.001 0.882 0.500 0.333 1.000
3 0.003 0.001 1.000 0.004 0.002 1.000 0.011 0.005 1.000 0.007 0.004 1.000 0.533 0.364 1.000

baseline 1 0.125 0.150 0.107 0.069 0.100 0.053 0.386 0.550 0.297 0.486 0.450 0.529 0.333 0.200 1.000
baseline 2 0.264 0.158 0.821 0.256 0.167 0.553 0.340 0.231 0.649 0.388 0.260 0.765 0.500 0.500 0.500

Apoorv 1 0.023 0.012 0.607 0.015 0.007 1.000 0.014 0.070 0.973 0.009 0.004 1.000 0.024 0.012 1.000
Rajat 1 0.081 0.042 0.929 0.115 0.061 0.921 0.273 0.160 0.946 0.155 0.085 0.882 0.068 0.035 1.000

Table 9: Results per task with the relevant judgements considering only the SOCO participants in Java.

Participant Run
Java

A1 A2 B1 B2 C2
F1 P R F1 P R F1 P R F1 P R F1 P R

UAEM
1 0.514 0.346 1.000 0.519 0.351 1.000 0.613 0.442 1.000 0.523 0.354 1.000 0.000 0.000 0.000
2 0.250 0.143 1.000 0.234 0.133 1.000 0.324 0.193 1.000 0.248 0.142 1.000 0.500 0.333 1.000

UAM-C
1 0.474 0.310 1.000 0.452 0.292 1.000 0.616 0.445 1.000 0.447 0.288 1.000 0.824 0.700 1.000
2 0.755 0.607 1.000 0.058 0.030 0.957 0.021 0.010 0.973 0.027 0.014 1.000 0.111 0.091 0.143
3 0.776 0.650 0.963 0.739 0.611 0.936 0.847 0.742 0.986 0.815 0.702 0.971 1.000 1.000 1.000

DCU
1 0.600 0.429 1.000 0.564 0.397 0.979 0.652 0.483 1.000 0.581 0.410 1.000 0.596 0.424 1.000
2 0.701 0.540 1.000 0.681 0.516 1.000 0.727 0.576 0.986 0.673 0.507 1.000 0.636 0.467 1.000
3 0.667 0.500 1.000 0.676 0.511 1.000 0.702 0.541 1.000 0.687 0.523 1.000 0.667 0.500 1.000

baseline 1 0.324 0.600 0.222 0.388 0.650 0.277 0.237 0.550 0.151 0.556 0.750 0.441 0.824 0.700 1.000
baseline 2 0.529 0.439 0.667 0.537 0.434 0.702 0.559 0.472 0.685 0.568 0.463 0.735 0.667 0.500 1.000

Apoorv 1 0.025 0.013 0.759 0.021 0.011 0.702 0.038 0.019 0.863 0.025 0.013 0.853 0.275 0.159 1.000
Rajat 1 0.352 0.241 0.648 0.337 0.232 0.617 0.540 0.425 0.740 0.369 0.275 0.559 0.718 0.560 1.000

Table 10: Results per task with the relevant judgements considering all the participants included the post-
competition participants in Java.

Participant Run
Java

A1 A2 B1 B2 C2
F1 P R F1 P R F1 P R F1 P R F1 P R

UAEM
1 0.507 0.340 1.000 0.503 0.336 1.000 0.613 0.442 1.000 0.534 0.365 1.000 x x x
2 0.246 0.140 1.000 0.226 0.127 1.000 0.324 0.193 1.000 0.255 0.146 1.000 0.500 0.333 1.000

UAM-C
1 0.467 0.305 1.000 0.437 0.28 1.000 0.616 0.445 1.000 0.458 0.297 1.000 0.824 0.700 1.000
2 0.746 0.596 1.000 0.055 0.029 0.956 0.021 0.010 0.973 0.028 0.014 1.000 0.111 0.091 0.143
3 0.797 0.662 1.000 0.769 0.625 1.000 0.847 0.742 0.986 0.829 0.723 0.971 1.000 1.000 1.000

DCU
1 0.570 0.405 0.962 0.534 0.371 0.956 0.643 0.477 0.986 0.576 0.410 0.971 0.596 0.424 1.000
2 0.693 0.530 1.000 0.662 0.495 1.000 0.727 0.576 0.986 0.686 0.522 1.000 0.636 0.467 1.000
3 0.658 0.491 1.000 0.657 0.489 1.000 0.702 0.541 1.000 0.700 0.538 1.000 0.667 0.500 1.000

baseline 1 0.301 0.550 0.208 0.369 0.600 0.267 0.237 0.550 0.151 0.545 0.750 0.429 0.824 0.700 1.000
baseline 2 0.519 0.427 0.660 0.496 0.395 0.667 0.559 0.472 0.685 0.562 0.463 0.714 0.667 0.500 1.000

Apoorv 1 0.027 0.014 0.830 0.023 0.012 0.800 0.038 0.020 0.877 0.026 0.013 0.857 0.275 0.159 1.000
Rajat 1 0.384 0.262 0.717 0.376 0.256 0.711 0.560 0.441 0.767 0.404 0.304 0.600 0.718 0.560 1.000
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