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ON THE DETERMINANT
OF ELLIPTIC BOUNDARY VALUE PROBLEMS

ON A LINE SEGMENT

D. BURGHELEA, L. FRIEDLANDER, AND T. RAPPELER

(Communicated by Jeffrey B. Rauch)

Abstract. In this paper we present a formula for the determinant of a matrix-

valued elliptic differential operator of even order on a line segment [0, T] with

boundary conditions.

1. Introduction and summary of the results

In this paper we present a formula for the determinant of a matrix-valued el-

liptic differential operator of even order on a line segment [0, T] with boundary

conditions. In order to state our results we introduce the following notation:

(1) Denote by s? = T,ln=oak(x)Dk a differential operator, D = Dx - -i£ ,

where the coefficients are complex-valued rxr matrices depending smoothly on

x, 0 < x <T. The leading coefficient a2n(x) is assumed to be nonsingular and

to have 6 as a principal angle, i.e. Re n Speca2„(x) - tf> for 0 <x <T ,where
Re := {peie e C | 0 < p< oo}.

(2) We impose boundary conditions of the form

(1.1) ¿ju(T) = 0d,    mju(0) = 0   (1 <;'<«)

where u e C°°([0, T] ; C) and i¡, m¡ are differential operators of the form

( d \
tj := ¿2bJkdkx >    ™) := ¿2cJkdkx     [dx = -j^j

k=0 k=0

such that bjk , cjk are constant rxr matrices with bjaj = cjßj = Id and such

that the integers a¡, ßj satisfy

(1.2)    0<ai <a2 < ■■■ <an < 2« - 1,     0 < ßi < ß2 < ■■ ■ < ß„ <2n - I.

Example 1. Dirichlet boundary conditions: aD = /fo = (0,l,...,n-l)

._ / Id    if l ^ J''^ n ' k = J * l '
'J 'J       I 0      otherwise.
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Example 2. Neumann boundary conditions: a# = /?# = («,« +1,..., 2« - 1)

Id    if 1 < j < n, k = n + j - 1,

0      otherwise.
bNJk — cN,jk '■— \

For convenience we write a = (ai, ... , a„), \a\ = $3"=i a¡ and similarly ß

and \ß\. Boundary conditions of the above form are usually called separated.

Let B = (BJk) and C = (Cjk), 1 < j < 2«, 0 < k < 2« - 1, be 2« x 2«
matrices whose entries are the following r x r matrices

d    ._ f bjk   tf\<j<n and 0 < k < a¡■■,
jk '" \0      otherwise;

C     ={cJ-n>k   ^ n + \ <j <2nand0<k<ßj-n,
Jk '    \ 0 otherwise.

We denote by A — AB,c the operator ¿/ restricted to the space of smooth
functions u : [0, T] —► C satisfying the boundary conditions (1.1).

(3) C-regularized determinant Detg^. In the case where A is not 1-1,

define Dete^ = 0. In the case A is 1-1, one proceeds as follows. As

the coefficient a2n(x) has 6 as a principal angle, there exists e > 0 so that

L(e-e,e+e) n Spec¿í2„(x) = 0, 0 < x < T, where L{a¡P) := {z e C | a < argz <

ß} . Then the spectrum of A, Spec A, is discrete, Spec A = {X}■■, j e N},

\Xj\ -+ oo, and Spec^ n L^-eite+e') f°r anY 0 < s < e' is finite.

If Re n Spec^ = <t>, we define Ca,$(s) - Y,j>i^js = TrA~s where s eC,

Res > 1/2« and where the complex powers are defined with respect to the

angle 6. It is a well-known fact that CA,e(s) admits a meromorphic extension

to C with 5 = 0 being a regular point. According to Ray and Singer [RS]

one defines logDetg^ := -Jj|J=oC^,e(i) ■ If Re H Spec A ^ 0, then choose
0' € (6 - e, 6 + e) so that Re> n Spec ,4 = 0 , and define Dete^ := Dete'(A).
It can be easily checked (cf. [BFK1]) that the definition is independent of the

choise of 6' in = (6 - s, 8 + e).
(4) The fundamental matrix Y(x) = Y(x, sf). Denote by Y(x) = (yke(x))

(x G R) the fundamental matrix for s/ . Note that Y(x) is a 2« x 2« matrix

whose entries yk({x)  (0 < k, I < 2« - 1) are r x r matrices defined by

yke{x) := dky((x)

where ye{x) denotes the solution of the Cauchy problem sfyt{x) = 0, yke{0) =

ôkl Id . Of particular interest is the 2« x 2« matrix Y(T), the evaluation of

the fundamental matrix at x = T.

(5) Introduce the quantities

l ÍM 1 \
*°:=2v«     n+2]      ha = det

/<

where w\, ... ,w„ denote the 2«th roots of (-1)"+1 with Rew > 0 given

by wk = exp | lk"2n~Xni\ ■ ̂ 0T a r x r matrix a with principal angle 6 and

eigenvalues X\,...,Xr, denote (deta)f" = X[]=\\Xj\8a exp{igaargXj} where

6 -2n< argXj < d .
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Example 1. Dirichlet boundary conditions:

gaD = -n/4, haD = «„ := IJ(w, - Wj).

Example 2. Neumann boundary conditions:

gaN = n/4, «Q/v = (-l)"«„.

The main result of this paper is

Theorem.

Dete^ = Ke exp U J  tr(a2nl(x)a2n^(x))dx 1 det(BY(T) - C)

where Ke = Kg{a, ß) is given by

Ke = ((-l)l/?l(2«)"«-1«-1r(deta2„(0))^(deta2„(r))f.

Example 1. Dirichlet boundary conditions:      |ao| = "(""') ,

Ke = ((-l)^(2nrh-2Y(deta2n(0))-"(deta2„(T))-\

Example 2. Neumann boundary conditions:      |a;v| = n("~l) ,

Ke = {{-\t"\2n)"K2)r{deta2nm¡{aeta2n{T))¡.

Corollary. DetgA is a complex number independent of 8 up to multiplication
with a 2« th root of unity.

Remark 1. In the formula above all terms except the matrix Y(T) are easily

computable from the coefficients of s/ , £¿ and m;. The matrix Y( T) requires

the knowledge of the fundamental solutions. The matrix Y(T) and therefore
det(BY(T)-C) can be calculated numerically within arbitrary accuracy by solv-

ing a finite difference equation approximating sf . So the determinant Det g A

can be calculated numerically within arbitrary accuracy.

Remark 2. Theorem is a companion of the corresponding result on the circle

instead of the interval [0, T] which was treated in an earlier paper [BFK1].

Again, the proof of Theorem relies on a deformation argument and explicit

computations for certain special operators and special boundary conditions.

Remark 3. Introduce a spectral parameter X, and denote the fundamental ma-

trix of sf +X by Y{x,X) = Y(x,s/ +X). One then verifies det(BY(T; X)-C)
= 0 iff Det0(^ + X) = 0, i.e. iff -X is an eigenvalue of A = AB,c ■

Remark 4. First results of the type described in Theorem are due to Dreyfus

and Dym [DD] and to Forman [Fol] (cf. also [Fo2]). Forman proved by

different methods that the quotient Det eA/ Det (BY(T) - C) only depends on

the principal and subprincipal symbols of sf , and the principal symbol of the
boundary operators l¡, m¡ (1 < j < n). Our Theorem provides a formula for

this quotient.
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Remark 5. Analogous to results obtained in [BFK2], Theorem can be extended

to the case where sé is a pseudodifferential operator. The determinant Det g A

can be written as a product of local invariants with a Fredholm determinant of

a pseudodifferential operator of determinant class, canonically associated to A .

The Fredholm determinant corresponds to det(BY(T) - C) in the case when

sé is a differential operator.

2. Auxiliary results

In this section we collect some auxiliary results needed for the proof of The-

orem. First we introduce some additional notation. Denote by EDOin =

EDChn r the set of all elliptic differential operators sé of order 2« on [0, T]

as introduced in Section 1. We identify EDChn with the open set {(a2„ , ... ,ao)

G C°°([0, 71, EndCr)2"+1 : det(¿z2„(x)) ̂  0, 0 < x < T} of the Frechet space

C°°([0, T], EndC)2"+1. Further define EDChn,g := {sé e EDChn : 8 is prin-
cipal angle for ¿z2„} . Clearly EDChn,e is an open connected subset in EDChn ■

Given a = (ai, ... , an) G Z" with 0 < a\ < a2 < ■ • ■ < an < 2« - 1 , we intro-

duce the space BDOa of operators used to define the boundary conditions:

BDOa := {B = (bjk)o<j,k<2n-i :    bjk G EndC, bJaj = Id ,

bjk = 0 if k>aj+ 1}.

Given a, ß , we introduce the space

EDChn,a,ß := {ABX:sf G EDChn, B G BDOa, C G BDOß}

where AB,c is the restriction of sé to the subspace of functions u G

C°°([0, T]; C) satisfying the boundary conditions defined by B and C. Simi-

larly introduce EDChnte.a>ß = {ABtc G EDChn;a,ß '■-& € EDQn■ g}. Observe
that {AB>C G EDChn-g-a-ß : AB¡C is 1-1} is open.

Further, denote by ED02naß the open subset of EDChn-a,ß x Sl consist-

ing of pairs (ABC, 8) with AB,C G EDChn;0;a;ß ■ As in [BFK1] we have the
following

Proposition 2.1. (1) Detg(ABc) is a smooth function on ED02„-a-ß and is

locally constant in 8.

(2) Detg(ABtc) is holomorphic when considered as a function on the open

subset ofinjective operators in EDChn;8;a;ß ■

(3) det(57(7\ sé) - C) is holomorphic on EDChn x BDOa x BDOß .

Observe that a necessary and sufficient condition for ABc to have zero

as an eigenvalue is that det(BY(T) - C) = 0, which in view of Proposition

2.1 (3) implies that the subsets of EDChn-,e;a;ß and EDChn^a^ consisting

of injective operators are open (as we already noticed) and connected, and

therefore, ED02na;ß is open and connected as well.

Let s : [0, T] -I GL{£r) be a smooth map. Given se G EDChn and
boundary operators l¡, m¡ (1 < j < n) introduce séi := s(x)~lsés(x),

l\i := siT^ijsix) \x=t, and mXj := s(0)-lmjs(x) \x=0. Denote by {BXjk)

and (C\jk) the matrices introduced in Section 1 corresponding to the boundary

operators (£\j, mij)i<j<a and write Y\(x) = Y(x, sei) for short.

Proposition 2.2.  det{BiYi(T) - Q) = (dets(0)s(T)-l)ndet(BY{T) - C).
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Proof. Let L — L(x) be a 2« x 2« matrix with entries Lkl which are the

following r x r matrices (0 < k, I < 2« - 1)

Lke:=(^\dk-es(x)   if k>i;    Lke=0   if k<i.

Thus we obtain
Bx = diag(5(r)-', ... , s{T)-l)BL{T)

where diag(s(r)-1, ... , s(T)~l) is a 2« x 2« diagonal matrix whose entries

on the diagonal are all equal to the r xr matrix s{T)_1. Similarly, one obtains

C, = diag(5(0)-,,...,5(0)-1)CL(0).

Further, by a straightforward computation, Yi is given by

Yl(x) = L(x)-lY(x)L(0).

Thus

BXY¿T) - C, = diag(5(r)-', ... , s{T)~x, 5(0)"', ... , 5(0)"')

• [BY(T) - C]L(0).

Now obseive that detL(O) = (deti(O))2" as L(0) is lower triangular with di-
agonal entries all equal to the r x r matrix 5(0). This implies that

det{BiYi{T) - CO = (dets(0)s(T)-l)ndet{BY{T) - C).

Next consider for A = ABX in EDChn-e;a;ß and * G C°°([0, T], GLr(C))

the generalized Ç-function C<¡,¡Aíe(s) := tr<PyÇs. Again this is a function

which is holomorphic in Res > ^ and has a meromorphic extension to the

whole complex plane. Moreover 5 = 0 is a regular point. Recall that we have

introduced ga'•= 2(^ ~ n + 2) > an<^ similarly gß .

Proposition 2.3.

(2.1) U,A;e(0) = gßtrO(0) + gotrO{T)

As an immediate consequence we obtain

Corollary 2.4.  ^.,(0) = r(ga + gß) = r(&^ - n + 1).

Proof (Proposition 2.3). We first prove that there are numbers ga, gß G C

which only depend on a and ß respectively such that (2.1) holds. The actual

values of ga, gß are computed at the end of section 3 by considering the case

O(x) = K with K > 1, sé = Dn + X, 8 = n . In the course of the proof we

use a number of results due to Seeley [Se 1,2]. For the convenience of the reader

we partly keep Seeley's notation. For simplicity, we write Ç(s) = Çq>,A-,e(s)-

According to [Se2], the value f (0) consists of a sum of two terms, ((0) = /+//

where I represents the contribution to ((0) of the resolvent of sé - X and //

represents a correction term due to the boundary conditions. According to

[BFK1, p. 8],
pie rT       foo

I = -j—Y,       dx       drtr{<ï>{x)c-2n-i{x,T,reie)}

where C-2n-\{x, x, X) comes from the expansion of the symbol

r(x,T, X) = C-2„(X, T, X) + C-2n-l(x , X, X) + ■ ■ ■
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of the parametrix for se - X = {a2„(x)D2n - X) + E^=ö' aj{x)Dj and is given

by

c-in-\{x, x,X) = -xLn lC-2na2n-\C-2„ - /2«t4"  lc-2„a2nc-2n (^2n)c-2n,

where C-2„ = c-2n(x, x, X) = (a2„(x)x2n - X)~l.

As in [BFK1], Proposition 2.8, in view of the fact that c_2„_i is odd in x,

we conclude 7 = 0. From [Se2], p. 968, it follows that 77 is of the form

77 = tr {¿¿(0)0(0) + A'r(0)<D(r)}

where AlQ{s) and A'r(5) are smooth functions described below. Let us first

consider the scalar case, r = 1. In first approximation the kernel r(x, y, X) of

(AB,c-X)~l is given by

1    f+°°
2^ J     (a2„(x)x2"-X)-le^x-y^dx + rQ(x, y, X) + rT(x, y, X)

where r0{x, y, X) and rT(x, y, X) are correction terms so that in first approx-

imation r(x, y, X) satisfies the boundary conditions at x = 0 and x = T. Let

us explain how to obtain ro(x, y, X) ; for rT(x, y, X) one proceeds in a similar

fashion. Consider the boundary value problem

(2.2) (aD2n -X)u = 0

with the boundary condition

(2.3) lim u{x) = 0;    D^u{0) = -{ax2n - X)-lx^e-iyT
x—>oo

where a = ¿z2„(0) and D = \j¿ . The solution u(x) = u(x, x, y, X) of the

boundary value problem (2.2)-(2.3) is given by u(x) = £¡"=1 uue'x(-~x^a^ "w"

where wv (1 < v < n) are the 2«th roots of -1 with strictly positive

imaginary part and where (-|)1/2n = (-^)lJ2n = (Ji|)«/2»e''(e-"-M»fl)/2» with

X = \X\e'e and 6 - 2n < arg a < 8 . The coefficients w„ = uv{x, y, X) are then

determined by (2.3)

n /    ; \ ßj/2n

J>„ (--)       wS' = -x^{ax2n-X)-xe-iy\
v=\ ^     a'

Thus
n

uv = -Y,^vI{-Xla)-^l2nxß'{ax2n -X)-Xe~iyx

j=i

with S(fv   defined by

n

(2.4) ^2^jwk^0^-
;=i

The term r0{x, y, X) is then given by

r0(x,y,X) = J2eix{~m"2"w" ¿^i(-A/¿*)-^/2"^
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where y is the sum of residues

J = J2^sXkH_m^k{xß'{ax2n -X)-le-^}
k=\

of xh(ax2n - X)~le~'yx in the lower half plane. One obtains

" 1

S = Y^((-Va)l,2nWk)ßj~{2n~l) j— exp{-iy(-X/a)l'2nwk}.

k=\

Summarizing one obtains

r0(x,y,X) = ^(-X/a)-(2"-l»2n £ *VjWßk+l exp{i(-X/a)l!2n(xwu-ywk)}.

" ,j ,k

Following Seeley, we now define for Re 5 > 0

fT/2 ,        ,
(2.5) A0(5):=/      rfjr— /   dXX~sr0(x,x,

Jo Z7Cl Jr„
X)

where To is the contour that goes from oo to 0 along the lower side of ray

{re'e : r > 0} , goes around the origin and then returns to oo along the upper

side of the ray {re'e : r > 0} . By a standard computation,

■=—: /  dXX sr0(x, x, X)
2ni Jy„

- a-se-iKm^^-T{\ - 2ns) ]T ^vjwßk'+\(w„ - wk)x)-l+2ns
, sin ns

i (i - ¿ns,
v ,j ,k

and therefore
1 w"'+l

AO(0)=~-£^-^
2« *-"     Jwv -wk'

v ,j ,k

In the case r > 2, we first treat the case where all eigenvalues of a2n (0) are

different which can be easily reduced to scalar case r = 1. By a continuity

argument we then conclude that

(2.6) gß = ¿ J2 ^j{ßWßk1+\wv-wk)-x
v ,j ,k

where %?Vj = %tj(ß) are determined by (2.4). Similarly one obtains

8a = 2n S ^vj{a)wki+\wv - wk)  ».
vj,k

3.   Proof of Theorem 1

For the proof of Theorem we need two deformation results. The first one is

the analogue of Proposition 3.1 in [BFK1] and proved in a similar way (cf. also

[DD] and [Fol]).
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Proposition 3.1. Suppose se = ¿Z2ki0ak(x)Dk and sé' = ¿Z2kn=oa'k{x)Dk are

in EDChn,e with a2n = a'2n and a2n_x = a'2n_x. Then, for B g BDOa and

C G BDOß

Dete{ABX)det{BY{T,sé') - C) = Detg(ABC)det(BY{T, se) - C).

The second result concerns a deformation of the boundary conditions. Con-

sider boundary operators (1 < j: < n, dx = ^)

<*j ßj

li = S bikdx .    mJ = Yl cJkdk ;    bjaj = cJßj = Id
k=0 fe=0

and
i]:=dax',    m'j = dßx>.

Form the matrices B, C and B', C as in Section 1.

Proposition 3.2. Fix sé e EDChn,e ■ Then

Dete(^,c')det(5V-(r) - C) = Dete(AB,c)det(B'Y(T) - C).

Proof. Without loss of generality we may assume that both AB t c and AB, t ç>

are injective.   Note that {A~ ~ : A~ ~ is 1-1, B e BDOa, C e BDOB}  is
d , C a, C r

arcwise connected in BDOa x BDOß . Define, for 0 < t < 1,

aj-l ßj-\

¿tj = dV + t Y, bjkdkx ,    Ctj = dß' + t £ cjkdk
k=0 k=0

such that, with Bt and C, the corresponding matrices in BDOa and BDOß ,

(3.1) ABttCl is 1-1 for0<f< 1;

(3.2) (Bo,C0) = (B',C),     (B{, Q) = (B, C).

Introduce

w(t] ._ ítü*e(ABl,Cl) ._ Í-tdet{BtY{T)-Ct)
W{1) ■     Dete(AB,, Q) '        °[l> '      det(5,y(r) - Q)  '

The claimed result follows once we show that w(t) = S(t) (0 < t < 1). Let

us first consider S(t). Denote by Pt the Poisson operator corresponding to

the boundary value problem defined by (Bt, Ct). Then Pt is given by Pt =

Y{x)(BtY(T)-Ct)-1 and

S(t) = tr{(ÈtY(T) - C,)(B,Y(T) - Ct)~1}

(3.3) =tx{(itj,fhtj)l<j<HPt)

when ' = j-t and (¿tj, ihtj)i<j<n is the operator associating to a section u the

boundary values (ètju{T), «i/)w(0))i<,-<n .

Next we consider w(t) ; with the notation A, = ^ß,,c, >

tü(0 = F.p.í=otr(^r,"s)

where F.p.s=o denotes the finite part at 5 = 0. In order to evaluate A^lA't =

-{AJ [)'At, consider for a fixed section u:[0, T]—*C the section vt:=Ajxu,

i.e. v, satisfies

sév, = u,    B,v,{T) = 0,     C,v,{0) = 0.
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Taking derivatives with respect to t we obtain

sév¡ = 0,    etjv¡(T) = -l'tjvt{T),    mtjv¡(0) = -m¡jVt(0)   (1 < j < n).

Thus v¡ = -Pt(£¡jVt(T), m¡jV,(0))i<j<n where Pt again denotes the Poisson

operator. Thus we have proved that {A¡~x)' = -Pt(£'tj, m'tj)i<j<nA^x. Note

that (A^x)'At = —Pt{l'tj, tn'tj)i<j<n is a singular Green's operator of order

< -2 and then of trace class. Thus

w(t)' = trP,{fkj, m'ij)i<j<„.   □

Proof of Theorem. We have to prove that

fe{AB,c)-= Dete{AB,c)-Keexpl^ /    tr{a2n{x)~xa2n-i{x))dx\

■det{BY{T)-C)

vanishes identically on {AB,c £ ED02nte;a;ß '■ ABC is 1-1}- First observe

that it suffices to consider the case 8 = n : For sé in EDOine , el^n~e^sé G

EDChn,K we have log DetK(e^-eUBtC) = log Dete(AB !C)+CA,e(0)^ge^-^

and logKg(e'^-e)sé) = logK„(t) + r(gß + ga)i(n- 8) ; thus Corollary 2.4 allows

to conclude the result as soon as we check it for 8 = n.

To make writing easier, let f = fn, K = Kn , 8 = n .

Deformation 1. Consider the factorization sé = a2„(D2" + %f) where %f is a

differential operator with ord J" < 2« - 1. Consider the 1-parameter family

(0<i< 1)
sft :=at(D2n +&),    A,:=AttB,c

when at(x) = ta2„(x) + (1 - t).

Clearly 8 = n is a principal angle for at and At is 1-1 for 0 < t <
1. Moreover A\ = {a2n{x) - l)(ta2„(x) + (1 - t))"xAt. Thus, with w(t) =

log Det * At and Proposition 2.3

w(ty = F.p.s=otr((a2n(x) - l)(ta2n(x) + (1 - t))-lA(t)~s)

= gßtr[(a2n(0)-l)(ta2n(0) + (l-t))-x]

+ gatr[(a2n(T) - \){ta2n{T) + (1 - t))~x]

=-j-t{gßlogdet[ta2n(0) + (I - t)]

+ galogdet[ta2„(T) + (1 - t)]}.

Thus

log Det^-log Det^o = /  w(t)'dt = ^logdet(a2n(0)) + ^Qlogdet(¿z2„(r)).
Jo

Hence we may and will assume that ¿z2n(;t) = Id .

Deformation 2. Define s G C°°([0, T]; EndC) by

^s(x) = ¿¿z2„_,(x)5(x)    (0<x<T);    5(0)= Id.
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Observe that det(5(x)) = exp{^/0x tr {a2n-\{y))dy} ¿ 0 for 0 < x < T and

therefore s(x) G GLr(C). Now consider sé{ := s(x)~xsés(x) and bound-

ary conditions defined by B\,C\ (cf. Proposition 2.2). Then Det^^i) =

Det n(A) as the spectrum of A and the operator A\, defined by sé\ and bound-

ary conditions {B\,C\) do coincide. By Proposition 2.2,

det^y^r) - G) = (det5(r))-'1det(5y(r) - C).

As we have noted above, det5(T) = exp{^ /0 tr (a2n-\{y))dy} . Finally note

that sé\ is of the form

2«-2

sé,=D2n+ Y,aik(x)Dk

k=0

and then we may and will assume that for sé , a2n{x) = Id and a2n-\(x) = 0.

Deformation 3. Applying Proposition 3.1 and Proposition 3.2 we conclude that

it remains to prove that f(AB¡c) = 0 for sé = D2" + X and B, C given by

lj = dax¡,    mj = dßj   (1 <;<«)

where X is chosen positive and sufficiently large so that ABtc is 1-1. This

is verified by an explicit computation. To make writing easier we restrict our-

selves to that case r = 1. However, to obtain the explicit formulas for ga

and gß we consider sé = pD2n + X with p > 1. Denote by Y(x, X) the

fundamental matrix for pD2n + X. For X > 0, let p = (^)1/,2n. Then, with

wk :- exp(i2k~2nn~x n), Y(x, X) is equal to

, e/iWtx . . . epwlnx v      , 1 ... J v

I ..„..   ~UWiX ..„..      „UW-}.X \   I ..„.. ..„.. i

I

pwie"WlX        •■•        pw^e^x pwi       ■■■        pw2n

VCuiui)2"-1^""*   •••    {pw2n)2"-xei'w^xJ \(pwi)n-x    •••    {pw2„)2n-xJ

Further define B = (Bjk), C = (Cjk) by

„     _ Í 1    if 1 < j < n and k = a¡,
Jk ~ \ 0   otherwise ;

c        (I   if n + 1 < j < 2« and /c = ^7-_„ ,
jk ~ \ 0   otherwise.

We have to show that

(3.4)    Detn((pD2" + k)B,c) = (-l)l/,|(2n)"(AQA/l)-V&+i' det(7i7(r, A) - C).

For that purpose we introduce

w(X):=\ogDetx((pD2n+X)B,c),

0{X) :=logdet{BY(T; X) - C).

As « > 1, we know from Proposition 3.1 that djw(X) = Jjá(A). Therefore it

suffices to consider the asymptotics of w(X) and S(X) as X —> +cxd .

First recall from [Fr] (cf. also [Vo]) that w(X) admits an asymptotic ex-

pansion of the form '¿ZlkxL_lPkX~k/n + YlJLo^j^^0^^ with the property that

Po = 0. To find the asymptotics of ô(X) as X —► oo, write Y(T, X) in the form

Y(T; X) = LWE{LWyx
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where L= diag(l, p, p2, ... , p2"'1), E := diag(e^""r, ... , e^»T) and

/    1       ...        1    \

W =
w        ■■■      w In

Wrx ••• w2»-x)

Thus 6{X) = logtdetH'-'L-1) + \ogdet{BLWE - CLW). Observe that the
U, k)th coefficient of the matrix BLWE -CLW is of the form e"w"T fjk(p) +
gjkiß) where fjk(p) and gjk{p) are rational functions of p. We conclude

that, with Q = ZU WJ = S*=i Re^;,

\ogdet{BLWE - CLW)

= /¿Í2r + logdet[7iL^(1^   ty-CLW^    l°d^] + e(X)

where lim e(X) = 0. The matrix BLW (""£)- CLW ( J ¿ ) is of the form

(f     ?2> ) wbere 7"(,) are « x « matrices given by (1 < j, k < n)

F¡1] := pin? ,    F$ := -ßß'wßn'+k = {-\)ß*+xp.p>wßk>

where we used that ?nn+Ä: = -iufc . Therefore, with |a| = YÂ aj > \ß\ = Y," ßj

*««r(». !)-»(¡ ¿J,
= /ílaldet(«;^)/íl/,|(-l)l/,|+"det(ti;f-').

In view of the fact thatdetL-'l^i = n>ö"1(»)~"//2" = Z*^ > this implies that

the 0 th order coefficient of the asymptotic expansion of S(X) for X —> oo is of
the form

S+00 := detL-'|A=1 +log{det(^-1)det(u;^)(-l)l/?l+"det(u;jfJ)/'~(|a|+l/?l)/2'1}

= log/>^ -log/jtH+W)/2" +log((-l)^l+'!det(ír-1)«a«/í)

where «a = det(io^), hß = det(tuj^).

By a straightforward computation we have det W — (-l)"(2n)n and there-

fore

(3.5)  w(X) = S(X) -S+oc = S(X) + \og{{-\)\ß\2n)"Kxh-ßxp^-^\^-^\).

The claim (3.4) then follows from the following.

Lemma 3.3.  ga = \ (^ - n + Ù .

Proof. In view of Proposition 2.3 we obtain from (3.5) in the case a = ß

„ (\a\     n      1\ 1 (\a\ 1\
2ga = 2{Tn-2 + 4)    °r   *'2\T-n+2j-   D
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