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On the Determination of Critical Values for Bartlett's Test

1. INTRODUCTION

Testing homogeneity of variances in normal populations is frequently
of interest in many statistical analyses. One important use is testing
the validity of the assumption of errors with constant variance in a
multiple regression model or, from an experimental design point of view,
equal "within group" variances in & one-factor analysis of variance model.

Suppose there are k normal populations with unknown means U, and
variances oi , i=1, ... , k. Independent random samples {Xij} of
gize n, are teken, i1=1 , ... 4 k3 J=1 , ... , n, . We wish to test

2

2
the null hypothesis HO POy e =0y

against the alternative le

og # oi for some 8 ¢ t. The generalized likelihood ratio test of Ho
(the Neyman and Pearson Ll~test 1931) was modified by Bartlett (1937) by
replacing the biased meximum likelihood estimators of the variances by the
unblased estimators and eubstituting ni-l for ng in the weights.
Specifically, the Bartlett Llﬁ~test of size o thas critical region

0 <L,*< A, where

1
k 2 ay k 5
L= 1 (8D T a8y, (1.1)
S /i=1 i
n n
2 1 - 4 L
with 87 = (/y,) [ (X, =%)", X = (1/n)) L Xgq sy =my=1,
e 3=1 y=1
Y= Z Y, , and a, = v, /y. The teat statistic Ll* is the ratio of
=1 i i i



the weighted geometric mean of the sample variances to thelr weighted
arithmetic mean (the welghts are relative degrees of freedom). The
critical value A 1is determined by PHO(G < Ll* <Ay = d‘. The L1*~test
is a) consistent against all alternatives (Brown 1939) and b) unbilased
(Pitman 1939) and is therefore usually preferred over the Ll-test which
is biased ekcept for equal sample sizes ny o= o =N, in which case
the two teste are identical. It is also a well established fact (Box
1953, Boﬁ and Andersen 1935) that the Ll*—test is rather nonrobust (i.e.,
gensitive to departures from normality). It is therefore recommended that
it be used only when preceded by & preliminary test (e.g., the k-sample
W-test, Wilk and Shapiro 1968) which, based on the data, does not reject
normality. When normality can be relied om, the Li*-test is apparently

more powerful than various other testsz of H (Gartside 1972). 1If

0
population normality is suspect, there are a number of robust test pro-

cedures which may be used (Keselman, Games, and Clinch 1979).

2. BARTLETT'S DISTRIBUTION

Initially and for a period of about forty years, the size o Bartlett
critical value was approximated by A = axp{~cxi_1(1n-u)/yl s where xi(n)
is the 100nth percentile of a chi~square distribution with m degrees of

k
freedom and ¢ 48 a correction factor given by c = 14 [1/3(k~1)]1( Zlyi-
. {e

1
- Yﬁl) . The accuracy of this approximation is somewhat difficult to
assess; however, in certain situations (very small sample sizes and/or a

large number of populations) it is known to be inadequate (Bishop and Nair

1939, Hartley 1940).



Chao and Glaser (1978) have recently shown the exact null density of

Ll* (hereinafter referred to as Bartlett's distribution) to be

gCuing s o) = ka2 cenw® D e o< ue

(2.1)
where
€z an®D2 g ai(Yi'l)/zI‘(vlﬂ)/g Pary/2) (2.2)
im1 -1
E(u) = § v (~tnw)® (2.3)

=0
- & t t
v 2 {UTIGk-1/2 + 21} ] Gy hyy 3ygS 0/ legltglg
r>0 , (2.4)
with E* indicating summation over all distinct sequences (tl, t, s tg s 00e)
+ 3 £, +5 e .+ o=}

: 1 3 5
and y_ = (ml}r+1{r(r+l)}”1{izl a;r,l}gﬁl ,r>1, and By ,By,...

of nonnegative integers satiafying 1 « t

are the Bernoulli numbers.

From a mathematical point of view, gk(u FBy s e ,nk) is not well-
defined in its left-tail. For although the power series E(u) is known
to be convergent whenever expl[-2m min(ai g sae ,ak)} <u<i, 1t is
possibly divergent otherwise. ‘The interval of known convergence is no
doubt conservative since exp[-27 min(al s s ,ak)} is actually an upper

pound on the left end-point of the true interval of convergence. Fortunately,



from a practical point of view this possible divergence is of little con-
sequénce in determining size o Bartlett critical values (Chao and Glaser
1978).

Let hk(u Ty s ees ,nk) be the 100ath percentile of the Bartlett's

distribution, i.e.,

1
jb ( )gk(u.;nl g coe ,nk)du m 1-qg and bk(-) > exp[-2m min(al, ey akl.
‘k.
(2.5)

Since

(-£n z) (p+1)
f v9 exp(-y)dy

1 1
J' WP(-Louw)ldu = (p+1)" 9"
4 0

= p+1y UL rig41, L) (p+ D], pia >=1,2> 0

X

where I'(d,x) = I t¢_1 exp(~t)dt 4is the incomplete gamma function; the
0

1000th percentile of the Bartlett distribution (the size O Bartlett

critical value) is determined by the nonlinear equation

k2”21 ) rlr (k=1 /2, [-n by (s ny e mIY/2)
=0

= 1“"‘@ + (2'6)

The solution for bk(-) in (2.6) may be easily found by a Newton-Raphson

procedure. We reject the hypothesis of equal variances, HO , at the



level of significance o if Ll* < bk(a My ees ,nk) , where Ll* is

given by (1.1).

3. DISCUSSION

The special case of equal sample sizes is of particular interest.
When By = «.0 =My =0, Table 1 gives the 100ath percentile of the
Bartlett's distribution, bk(m ;n)szbk(a RS NS n), for
o= ,01,.05,.10,.25; k= 2(1)10; n = 3(1)30(10)60(20)100. An
asterisk appears in the table when (2.5) does not hold, that is, the
posaible divergence of E(u) 4s a factor. A portion of Table 1 was
previously givenby Glaser (1976) and, in some instances, Bishop and Nair
(1939). There are, however, several worthwhile reasons for presenting a
more extenslve version.

(1) Very small sample sizes (n = 3,4) were not considered by
Glaser and were dealt with only in a few isolated cases by Bighop and Nair,
Since Bartlett's approximate critical values for these sample sizes are
known to be inadequate, the exact percentiles are given (perhaps more for
the sake of completeness of the table than for practicality).

(2) When the hypothesis of equal variances is not rejected, the
sample variances are often pooled to obtain an estimate of the supposed
common variance. However, pooling the sample variances when, in fact,
heteroscedasticity is present is likely a more serious error than not pool-
ing when, in fact, homoscedasticity is present. To protect against a Type
11 error, a level of significance as large as .25 is sometimes used.

For this reason, Table 1 includes the 25th percentiles.



(3) There are several sample size "gaps' in the Glaser table. The
need for a more complete set of percentiles in the equal sample sizes
case is prompted by the rather remarkable fact that they may be used to
obtain a highly accurate approximation to the percentiles in the unequal

sample sizes case. Specifically,

b lasn,, ... ’“k) x (nIIN)bk(a ;nl) + 0.+ (nk/N)bk(a ;nk) , (3.1)

i ®
im]
bination of sample sizes from 5(1)100, the absolute error of this approx-

imation is less than .005 (the percent relative error is less than % of
1%) when o = .05, .10, or ,25. The larger absolute ertors occur in
extreme cases such as when, for specified k, max(nl s 2o ,nk) is very
large, say near 50, while all remaining sample sizes are very amall, say
near 5. Moreover, for virtually all cases in which min(n1 P ,nk) > 10,
the absolute error is less than .0005. When o = .01, the approximation

k
where N= ) n For specified k, where k = 2(1)10, and any com-
|
1
(3.1) is slightly high--the absclute error is around .015 d4n extreme cases

and less than .005 when min(n1 PP ,nk) > 10. However, when the cor-
rection factors in Table 2 are used, the absolute error of the corrected
approximation is as small as for the other o values. The corrected version
of (3.1) for o = .01 and specified L is

bk(.Ol; Byseee ,nk) = (ni*/N*)bk(.Ol; ni) S S (nk*/N*)bk(.Ol ;nk) s

(3.2)

where



ni* - ni-j , if ni/N falls within a coefficient interval with

corresponding correction factor j

= 1 otherwise

i!
k-
and Nt = § n %, To illustrate, suppose k = 4 and ny =5, n,=6,

gm1 1

= 10, = 50, Using (3.1),

ny b7

b,(.0115,6,10,50) a (5/71)(.4607) + (6/71) (.5430) + (10/71) (.7195)
+(50/71) (. 9433) = .B44D .

Using (3.2) and Table 2,

b4(.01; 5,6,10,50) = (5/66)(.4607) + (6/66)(.5430) + (10/66)(.7195)

+ (45/66)(.9433) = ,8364

The exact value is bé(.OI; 5,6, 10, 50) = ,8359.

The approximations (3.1)-(3.2) may also be used when min(nl s sus ,nk)
= 3 or 4; however, the accuracy is not as good as when min(nl 2 sea ,nk)
> 5. The absolute error 18 usually less than .02 when min(nl s ot ,nk)
= 3, and less than .01 when min(nl s ten ,nk} = 4, From s practical
point of view, this is probably adequate., 1f, however, the exact value of
a percentile is required, it can be obtained from (2.86) using the approx-
imation as a starting value.

The assessment of the accuracy of the approximations was carried out
as follows. For each (k,0} ecombination, two groups of sample sizes

were considered: {ni tn, = 3(1)12} eand {“i tn, o= 15(¢5)50 , 75, 100} .




For each possible combination of sample sizes from each of the two groups

as well as pelected sample sizes from both groups, the exact pergentile

was obtained from (2.6) using the corresponding approximation as a starting
value. In addition, the absolute error of the approximation as well as
expl-2n min(a1 s e ,ak}] was calculated. TFortunately, it was unnecessary

to consider all possible sample sizes because of stable and predictable
absolute error patterns. Based on the above computations, it appears that

if bkﬂ(aO ;no) exists, that is (2.5} is satisfied for a given (kn » O ,nO),
then bko(aﬂ 305 eee ,nk) exists for all (nl s ose ,nk) for which

min(nl s ses ,nk) = flg .

(4) The traditional 2-sample test for equal variances is the F-test
(Brownlee 1965, pp. 285-288). This test is equivalent to the Neyman and
Pearson L,-test for k = 2 and is, therefore, biased when n, o n, . On
the other hand, not only is the Bartlett Ll*—test unbiaged for any two
sample sizes but also is apparently more powerful than the F-test (Bishop
and Nair 1939). Consequently, the 2-sample (equal sample sizes) Bartlett
critical values are given in Table 1 from which the critical values for the
Ll*—test when 1, # n, may be easily determined using (3.1) or (3.2).

4. AN EXAMPLE

The data in Table 3 are the mealed bide for each of five Texas offshore
oil and gas leases selected from 110 leases issued on May 21, 1968. Using
probability plote, Crawford (1970} concluded that the bids for each of these
five leases were lognormally distributed. Indeed, lognormality of bids for
federal offshore oil and gas leases has often been the rule (Arps 1965;

Brown 1969; Pelto 1971; Dougherty and Lohrenz 1976). However, Bruckner and



Johnson (1978) have shown that such a conclusion might be equivocal when
the number of bids for a lease is small.

To test simultaneously for lognormality of bids (or normality of log
bids), we use the k-sample W-test (Wilk and Shapirc 1968)., TFor the ith
sample, let W({: ni) be ;he W-test statistic and Fn («) 4s its dis-

i
tribution function:

- In /2]
Wi - ig (X - X )7 s,
) B, = 3+1% (n, ~ 14D "MW Yi%y
=1 i i
where {xi(j)} 18 the ordered 1ith gample and the coefficients {aj} are

tabled in Shapiro and Wilk (1965). Using the log bids in Table 3, we find:

W(l; 8) = .982 , Fg(.982) = .971 ;
W(2510) = .970 , F, (.970) = .875 ;
W(3; 5) = .982 , Fy(.982) = .936 ;
W(4512) = 960 , F,,(.960) = .730 ;
W(5313) = .928 , F,,(.928) = .320 .

Note that for each lease, lognormality of bids is not rejected at the .25
level of significance. To combine the results of these independent tests,
we determined the standard normal percentile, Gi s, corresponding to
Wil ni)’ i=1,...,5%,. 1Ina normal probability plot, all of the Gi's
are above the null line, thus jointly indicating that lognormality of bids
should not be rejected.

We now test for homogeneity of variances using Bartlett's test.

Based on the log bide in Table 3, Ll* « 9141, Using Table 1, the 25th



10

percentile is approximately

bs(.25; B,10,5, 12, 13) = (8/48)(.8499) + (10/48)(.8825)

+ (5/48) (L7440) + (12/48)(.9035) + (13/48)(.9114) =~ .8757

(the exact value to four digits 1s .8762); and the hypothesis of equal
variances is not rejected at a significance level of .25 or lower.
These results are consistent with a feeling among data analysts who deal
with bids for federal offshore oil and gas leases that, within a sale,
"large bids do not tend to be proportionately more or less precise than

small ones" (Brown 1969, p. 37).



1. Percentiles of the Bartlett Distribution
Equal Sample Sizes : iy = 0@ =0

1 per cent points

1L

Rumber of populations, k

n 2 3 4 5 6 7 8 9 10
3 1411 .1672 #* * * * %* * *
4 2843 3165  .3475  ,3729  .3937  .4110 * * *
5 .3984 4304 4607  .4850  .5046  .5207  .5343  .5458  ,5538
6 4850  ,5149  ,5430 .5653  .5832  .5978 ,6100 .6204  .6293
7 <5512 .5787  .6045  .6248  ,6410 .6542  .6652  .6744  .6824
8 .6031 .6282 .6518 .6704  .68B51 .6970 .7069 .7153  .7225
9  .6445 .6676 .6892 7062 7197 .7305 .7395 .7471 .7536

10 .6783  .6996 ,7195 ,7352  .7475 .7575 .7657 .7726 .7786

11 .7063 7260 .7445 .75%0 .7703 7795 .7871  .7935 .7990

12 .7299 7483 .7654 ,7789  ,7894  ,7980  .8050  .8109  .Bl60

13 .7501  .7672 .7832 ,7958 ,8056  .8135 .8201 .8256  .8303

14 . ,7674 .7835 .7985 ,8103 .8195 ,8269%  .8330 .8382  .B8426

15 .7825 .7977 .8118  .8229  ,8315 .8385  .8443 .,8491 .8332

16 <7958 .8101 .8235 .8339  .B421  .B4B6  .8541  .B586  ,8625

17 .8076  .8211 ,8338 .8436  .8514  .8576 .8627 .8B670  .B707

18 .8181  ,8309 .8429  .8523  ,8596  .8655  .8704  .8745  .B780

19 .8275  .8397 .8512 .8601 .B670  .8727 .B773  .B811  .8845

20 .8360 .B476  ,8586  ,8671  ,8737 .8791  .8835 ,.8871 .8903

21 .8437  .B548  .8653 .B734  .B8797  .8848  ,8890  .8926  .8956

22 .8507 .8614 ,8714 .B791  .g852  .8901  .89%941 .B975  .9004

23 .8571  .B673  .8769  .BB844  ,8902 .BY4D  .B988  .9020  .9047

24 8630  .8728  .8820 .8B92  .8948  .8993  .9030  .9061  .9087

25 .8684 8779  .8867  .8936 .B990  .9034 .9069  .9099 .9124

26 .8734  .8B25  .8911 (8977 .9029 .%071 .9105 .9134 .9158

27 .8781  .8869  ,8951 .9015 .9065 .9105 .9138 .9166  .9190

28 .8824  ,B909  .8988  .9050 .9099 .9138 .916% .9196  .9219

29 .B8864  .B946  ,9023 .9083 .9130 .9167 .9198  .9224  .9246

30 .8902 .8981 .9056 .9114  .9159 ,9195 ,9225 .9250 .9271

40 W9175  .9235  .9291  ,9335  .9370  .9397  .9420  .9439  ,89455

50 .9339 9387 .9433  .9468  ,9496  .9518  .9536 .9551  .9364

60 L9449 .9489  ,9527  .9557  .9580  .9599  .9614  .9626  .9637

80 .9586 .9617 ,9646 .9668 ,9685 .9699  ,9711  .9720  .9728

100 .9669  .9693 ,9716  .9734  ,9748  .9759 .9769 .9776  .9783
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1. Percentiles of the Bartlett Distribution (continued)
Equal Sample Sizes ! By = ...mm =0
5 per cent points
Number of populations, k

n 2 3 4 5 8 7 8 9 10

3 .3123 .3058  .3173  ,3299 # * * * *

4 A780 L4699 4803 L4921 5028 5122  .5204  ,5277 ,5341

5 5845 5762 5850  .5952 6045 6125 6197 6260 .6315

6 . 6563 6483 6559 , 6646 6727 .6798 L6860  .6914 L6961

7 L7075 7000 .7065 7142 7213 7275 7329 7376 7418

8 L7456 . 7387 L1444 L7512 .7574 7629 L7677 7719 .1757

9 .7751  .7686 7737 .7798  .7854  .7903 7946 L7984 .8017
10 7984  .7924 .7970  ,B8025  .BO76 .8121  .8160 .8194 L8224
11 .8175 8118 .8160 .Bz10  .B257 .8298  ,8333 .8365 .B392
12 .8332 .B2B0  .8317 B364 8407 Bhb4 L8477 .8506 .8531
i3 B465 8415  .B450  .8493  .B533 .B568 .8598  .8625 .B648
14 .8578 .8532 .8564  ,B604 .8641  .B673 .B701 .8726 .8748
15 8676 .8632 .B662 .B699 8734  .B764 .8790  .B814 .8834
16 8761 8719 8747  ,8782 ,8815 L8843 .BB68  .8890  .8909
17 8836 8796 8823 L8856 .B8BS 8913 .8936 .B8957 .8975
18 8902 ,B8B65 .8890 .8921 8949 ,B975 8997 .9016  .9033
19 8961 .89 ,B949 .B979 ,9006 .9030 .9051  ,9069 . 9086
20 .9015 .8980 .9003 .9031 .9057 .9080 ,9100 .9117 .9132
21 .9063 (9030 ,9051 ,.9078 ,8103 .9124 .9143 .91860 L9175
22 .9106 .9075 ,8095 ,9120 ,9144 .9165 ,9183 9199 .9213
23 .9146 .9116  ,9135 ,9159 .9182 ,9202 ,.9219 9235 .9248
24 .9182  .9153  .9172 ,91%95 .9217 .9236  ,9253 92487 .9280
25 .9216  ,9187  .9205 9228  ,9249 9267  .9283 ,9297 .9309
26 L9246 .9219  ,9236 ,9258 ,9278 ,9296 .9311 .9325 ,9336
27 L9275 L9249 9265 89286  ,9305 L9322 .9337 .9350 .9361
Z8 L9301 .9276  ,9292 L9312 ,9330  ,8347  ,9361 ,9374  .9385
29 ,9326 ,9301 .9316 <9336  .9354  ,9370  ,9383 ,9396 . 9406
30 L9348  ,9325 L9340 ,9358 .9376 .9381 9404 (9416 L9426
40 L9513 . 9495 . 9506 L9520  .9533 . 9545 L9555  ,9564 L9572
50 .9612 .8597 . 9606 L9617 L9628  .9637 L9645 L9652 <9658
60 9677 . 9665 L9672 L9681 L9690 L9698  ,9705 .9710  .9716
BO L9758 9749 . 9754 .9761 9768 L9774 L9779  .9783  .9787
100 L9807 .9799 9804 .9809 L9815 L9819 .9823 .9827 ° .9830




1. Percentiles of the Bartlett Distribution {continued]
Equal Sample Sizes : ny =L = n = n
10 per cent points
Number of populations, k

n 2 3 4 5 6 7 8 9 10

3 .4359 ,3991 .3966 .4006  .4061  .4116 * * *

4 .5928  .5583  .5551 .5582 .5626 .5673 ,5717  .5759  .5797

5 6842  .6539  .6507 .6530 .6566 .6605 .6642 .6676  .6708

6 L7429 7163 L7133 .7151  .7182 7214 .7245 7274 7301

7 .7834  .7600 .7572 7587 .7612 .7640  .7667 .7692 ,7716

8 ,8130 .7921 .7895 .7908 .7930 .7955 .7978 .8000 ,8021

9 .8356 ,8168 .8143 ,8154 .8174 .8196  .B8217  .8236  .B254
10 .8533  ,8362 .B339 .8349 .8367 .8386 .B405  .B423  .8439
11 .8676 .8519 .8498 .8507 .B523  ,B8540 .8557 .8574  .8589
12 8794 .B649  ,8629 .8637 .8652 .B668  .B683  .8698  ,.8712
13 .B892  .8758 8740 .8746 .8760 .8775 .8789  .8803  .B816
14 .8976 .8851 .8833 ,8840 .8852 .8866 .B879  ,B8892  .BY04
15 .9048  .8931 .8914 .8920 .8932  .8944  .8957  .8969  .8980
16 .9110 .9000 .8985 ,8990 ,9001 .9013  .%025 .9036  .9046
17 .9165 .9061  .9046 .9051 .9062 .9073  .9084  .9094  .9104
18 9214 .9115  .9101  ,9106 .9115 .9126  .9137 .9146  .9156
19 .9257  .9163  .9150 .9154 .9163  .9174 .9183 .9193  ,9201
20 .9295  ,9206 .9194 .9198  .9207  .9216  .9226  .9234 ,9243
21 .9330 - .9245 .9233  ,9237  ,9245  .9255 .9263  ,9272  .9280
22 .9362  .9281 .9269 .9273 .9281 .9289  ,9298 .9306 .9313
23 .9390  ,9313 ,9302 .9305 .9313  .9321  .9329  .9337 9344
24 .9417  .9342  .9332  ,9335 .9342 .9350 .9358 .9365 ,9372
25 9441  .9369  .9359  ,9362  .9369  .9377  .9384 .9391 .9398
26 .9463 L9394  ,9384  .9387  .9394  .9401 9408  .9415 .9421
27 L9484 L9417 .9408 L9410  .9417  .9424  ,9431 9437 9443
28 L9503 L9439  .9429  ,9432  .9438  .9445  .9452  .9438  .9464
29 .9520 .9458 L9449  ,9452  ,9458  .9464 9471  .9477  .9483
30 .9537  .9477 .9468  .9471  .9476  .94B3  .9489  .9495  .9500
40 .9655 .9610 .9603 .9605 .9609  .9614  .9619  .9623  .9627
50 .9725  .968%  .9683 ,9685 .9688  .9692 .9696 .9699 .9703
60 .9771  .9741  .9737  .9738  .9741  .9744  .9747  .9750  .9753
80 ,9829 .9806 .9803 .9804 .9806  .9808 .9811  .9813  .9815
100 L9864 .9845  ,9B43  .9843  ,9845 9847 .9849 .9851  .9852
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1. Percentiles of the Bartlett Distribution [continued)
Equal Sample Sizes : n,®...o=m o=mn
25 per cent points
Number of populations, k

n 2 3 b 5 6 7 8 9 10

3 6614  .5711 .5411  .5279  .5212  .5176  .5156  .5146 *

4 .7728  .7025 .6779  .6667  .6609  .6577  .6559  .6549 6544

5 .8299 7737  .7534  .7440  .7391 .7363  .7347 .7338 .7333

6 .8644  .8177 .8006 .7926  ,7884 ,7860 .7846  .7838 .7833

7 .8873 .B475  .8327 .8258 ,8221 .8200 .8188  .8181 .8177

8 .9036 .8690 .8560 .8499 .8467  ,844B  .8437  .8431 8427

9 .9158 .8852 .8737 .8682 .8653  .B636  .8626  .8620 .8617
10 ,9253  .8978 .8875 .8825 .B799  .B784  .8775  .8769 .8766
11 .9329 .9080 .8985 .8940 .B8916 .8902  .B894  .8B89 .8887
12 .9390 .9163 ,9076 .9035 .9013 .9000  .8993 .8988  .8986
13 8442  .9232  .9152  .9114  .9094  .9082  .9075 .9071 .9068
14 .9485 .9291  .9217 .9181 .9162  .9151 .9145 .9141 .9139
15 9522  ,9342 .9272  ,9239  .9221  .9211  .9205 .9201  .9199
16 ,9554  .93B5  .9320 .9289  .9273  .9263  .9257 .9254  ,9252
17 9582  .9424  .9363  ,9333  ,9317 .9308 .9303 .3300 .9298
18 .9607 L9457  .9400  ,9372  .9357 .9349  .9343 9340  .9339
19 .9629 L9487  .9433  .9407  .9393  .9384  .9379 .9377  .9375
20 L9649  .6514 L9463  .9438  .9424  .9416 9412 9409 . 9407
21 L9667 © .953% .9489  .9466 9453 (9445 9441 L9438 9437
22 L9683  .9561  .9513  .9491  .9479  .9471  .9467 L9465  .9463
23 .9697 .9580 .9535 .9514  .9502  .9495  .9491 L9489  .9487
24 .9710  .9599  .9556  .9535 .9523  .9517 L9513 .9511  .9509
25 .9722 .9615  .9574  .9554  .9543  .9537  .95333 .9531  .9530
26 ,9734 .9631 .9591 ,9572 .9561  .9555  .9552 .9550 .9548
27 .9744  .9645 ,9607 .9588  ,9578  .9572  .9569 .9567  .9566
28 ,9754 .9658 .9621  .9603  ,9594 .9588  ,9585 .9583  .9581
29 ,9762  .9670 ,9635  ,9617 .9608  .9603  .9599 .9597  .9596
30 .9771 .9682  .9647  .9630  .9621 .9616  .9613 .9611  .9610
40 .9830 .9763 .9737 .9725 .9718  .9714 .9712 .9710  .9710
50 ,9865 .9811 .9791 .9781 .9775 .9772 .9770 .9769  .9769
60 .9888 .9843  .9826 .9818  .9813  .9811  .9809 .9808 .9808
80 .9916 .9883 .9870 .9864  .9861  ,9839  .9857 .9857  .9856
100 .9933  .9907 .9896 .9891  .9889  .9887  .9886 .9886  .9885




2. Coefficient Intervals with Corresponding Correction
Factors for Approximating bk(.Ol Fhy s e ,nk)

15

Number of populations, k

Correction
factors 2 3 4 5 6 7-10
1 [.55,.65) [.35,.55) {.30,.50) [.25,.45) {.20,.40) [.15,.35)
2 [.65,.75) [.55,.65) [.50,.60) [.45,.55) [.40,.50) [.35,.50)
3 {[.75,.80) [.65,.70) [.60,.65) [.55,.60) [.50,.55) [.50,.55)
4 [.80,.82) {.70,.75) [.65,.70) [.60,.65) [.55,.60) [.55,.60)
5 [.82,.84) [.75,.80) [.70,.75) [.65,.70) {.60,.65) [.60,.65)
6 [.84,.86) [.80,.81) [.75,.80) [.70,.75) [{.65,.70) [.65,.70)
7 [.86,.88) [.81,.82) [.80,.81) [.75,.80) [.70,.75) [.70,.75)
8 [.88,.90) [.82,.83) [.81,.82) [.80,.81) [.75,.80) [.75,.80)
9 [.90,.91) [.83,.84) [.82,.83) [.81,.82) [.80,.81) [.80,.81)
10 [.91,.92) [.84,.85) [.83,.84) [.82,.83) [.81,.82) [.81,.82)
11 [.92,.93) [.85,.86) [.84,.85) [.83,.84) [.82,.83) [.82,.83)
12 [.93,.94) [.86,.87) [.85,.86) [.84,.85) [.83,.84) [.B3,.84)
13 [.94,.95) [.87,.88) [.86,.87) [.85,.86) [.84,.85) [.84,.85)
14 [.95,.96) [.88,.89) [.87,.88). [.86,.87) [.85,.86) [.85,.86)
15 [.96,.97) [.89,.90) {.88,.89) [:87,.88) [.86,.87) [.86,.87)
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3. Bids for Texas Offshore 01l and Gas Leases
Bidder Bid Log Bid
a. Tract 228, Block A~]
Ashland/Canadian Superior/et al. $11,628,691 $ 16.269
Shell 6,804,691 15.733
Atlantic Richfield/Continental/Sinclair 4,221,460 15.256
Texaco 3,386,880 15,035
Humble 2,805,120 14,847
Marathon/Tenneco/et al. 1,503,360 14.223
Chevron/Pan American 1,186,560 13.987
Sun 744,710 13.521
2
(n1 = 8, 'ﬁl = 14,859, 61 w BA2Y
b. Tract 229, Block 305
Phillips/American Petrofina/et al. $11,900,000 $ 16,292
Texaco 4,083,840 15,223
Atlantic Richfield/Continental/Sinclair 3,614,060 15.100
Mobil/Union 3,252,000 14.995
Chevron/Pan American 1,848,960 14.430
Ada 1,634,515 14.307
Sun- 744,076 13.520
Humble 702,720 13.463
Shell 503,251 13.129
General Crude/Highland/et al. 295,776 12.597
2
(n2 w 10, ﬁé « 14,306, 62 = 1,282)
¢, Tract 286, Block 241, SE/4
Ashland/Canadian Superior/et al. $ 1,178,726 $ 13.980
Cabot/Occidental/et al. 581,553 13.273
Atlantic Richfield/Continental/S8inclair 301,480 12.616
Sun 186,105 12.134
Pennzoll/Midwest/et al. 112,320 11.629
— P
(n3 w 5, X, = 12.726 , 43 = ,859)



3. BPBids for Texas Offshore 0il and Gas Leases (continued)

d. Tract 230, Block 506

Texacé
Continental/Phillipa/et al,
Chevron/Pan American
Champlin/Perry Basa/et al.
Mobil/Union/Gulf

Shell

Skelly/Cities Service/et al,
Bumble

Ada

Sun

Marathon/Amerada/et al.
Aghland/Canadian Superior/et al.

2

43,528,320
15,505,000
11,566,808

8,509,000
8,123,000
5,606,611
4,731,006
2,805,120
2,636,755
744,710
731,520
443,635

(na = 12, §% = 15.237 , by = 1.883)

Mobil/Union/Gulf

Humble

Phillips/American Petrofinalet al.
Skelly/Sunray DX/et al.

Texaco

Atlantic Richfield/Continental/Sinclair
Shell

Chevron/Pan American

Sun

Ada

General Crufle/fHighland/et al.
Cabot/Colorade 04il & Gas/et al.
Marathon/Tenneco/Amerada

(n5=13g b4

5 = 14,663,

62

5

$29,151,360
18,103,680
11,515,000
10,100,000
5,195,520
3,614,000
2,116,051
2,021,760
744,710
448,588
443,635
303,185
276,480
= 2,635)

17

$ 17.589
16.557
16.264
15.957
15.910
15.539
15.370
14.847
14.785
13.521
13.503
13.003

§ 17.188

16,712
16.259
16,128
15.463
15.100
14.565
14,519
13.521
13.014
13.003
12.622
12.530

Source ¢ Crawford (1970).
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