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ON THE DETERMINATION OF OPTIMAL DESIGNS FOR AN
INTERFERENCE MODEL1
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This paper generalizes Kushner’s method for finding optimal repeated
measurements designs to find optimal designs under an interference model.
The model we assume is for a one-dimensional layout without guard plots
and with different left and right neighbor effects. The resulting optimal
designs may need many blocks or may not even exist as a finite design.
The results give lower bounds for optimality criteria on finite designs and
the design structure can be used to suggest efficient small designs.

1. Introduction. Many agricultural and horticultural trials are suscep-
tible to treatment interference, that is the treatment on one unit affecting the
response on neighboring units [see, e.g., Besag and Kempton (1986)]. There is
increasing interest in the practical use of models to analyze data from such
trials [e.g., David, Monod and Philippeau (1998)] and in the design of exper-
iments in which treatment interference may occur [e.g., David and Kempton
(1996)]. A wide variety of possible models have been postulated [e.g., David
and Kempton (1996), David, Monod and Philippeau (1998)]. There are only
very limited results on optimal designs under interference models. Gill (1993)
restricts the class of competing designs to those for which each treatment ap-
pears once in each block. Druilhet (1999) avoids this restriction but considers
the case of very few blocks. Both papers assume a one-dimensional layout of
plots within blocks and that each block has a guard plot at each end, so that
each interior plot has two neighbors. They concentrate on model (1) below, or
its special case of equal left and right neighbor effects.

The present paper presents a general approach to determine optimal de-
signs for contrasts among direct treatment effects that can be useful for many
kinds of interference models. We consider experiments for comparing t treat-
ments using b blocks of size k with a one-dimensional arrangement of plots in
each block. We demonstrate the theory for the model with no guard plots and
the treatments having different left and right neighbor interference effects.
Similar results to the ones given here will be possible for many other related
models.
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Let d�i� j� ∈ 1� � � � � t be the treatment assigned to the plot �i� j� in the jth
position of the ith block. In our model the response at plot �i� j� can be written

yi�j = µ+ τd�i�j� + λd�i�j−1� + ρd�i�j+1� + βi + ei�j�(1)

Here:

(i) µ is the general mean;
(ii) τd�i�j� is the direct effect of treatment d�i� j�;
(iii) λd�i�j−1� and ρd�i�j+1� are, respectively, the left and right neighbor ef-

fects; that is the interference effect of the treatment assigned to, respectively,
the left and right neighbor plots �i� j− 1� and �i� j+ 1�;

(iv) βi is the effect of the ith block; and
(v) ei�j is the random error, 1 ≤ i ≤ b�1 ≤ j ≤ k.

We assume that the errors are i.i.d. with expectation 0. The generalization
of the method to correlated errors and generalized least squares estimation
is straightforward, cf. Kushner (1997). Since we assume there are no guard
plots we have λd�i�0� = ρd�i�k+1� = 0.

We seek the optimal design among designs d ∈ �t�b�k, the set of all de-
signs with b blocks of size k and with t treatments. Let Tdu be the treatment
design matrix of the direct effects in block u, 1 ≤ u ≤ b. Further define
Td = [

TTd1� � � � �T
T
db

]T
as the design matrix of direct effects.

Let Y = [
y1�1� � � � � y1�k� y2�1� � � � � yb�k

]T be the vector of the observations, 1k
be the k-vector of ones, Ib the b-dimensional identity matrix and ⊗ denote
the Kronecker product. Let V denote the k×k left neighbor incidence matrix
with �i� j�th element vi�j equal to 1 if i − j = 1 and 0 otherwise. For each

u we define Ldu = VTdu and Rdu = VTTdu. Then Ld = [
LTd1� � � � �L

T
db

]T
=

�Ib ⊗V�Td and Rd = [
RTd1� � � � �R

T
db

]T
=
(
Ib ⊗VT

)
Td are, respectively, the

design matrices of the left and right neighbor effects. Let e be the vector of
the errors and let τ� λ� ρ� and β be the vectors of direct effects, of left neighbor
effects, of right neighbor effects and of block effects, respectively. Then, we can
write model (1) in vector notation as

Y = 1bkµ+Tdτ +Ldλ+Rdρ+ �Ib ⊗ 1k�β+ e�
For an n×p matrixM define ω⊥�M� = In−M�MTM�−MT , where �MTM�−
is a generalized inverse (g-inverse) of MTM. Then [see, e.g., Kunert (1983)]
the information matrix for the least squares estimate of τ, with zero row and
column sums, is

Cd = TTdω⊥��Ib ⊗ 1k�Ld�Rd��Td�
A t×tmatrixM is said to be completely symmetric, if all its diagonal elements
are equal and all its off-diagonal elements are equal. A completely symmetric
information matrix is a scalar multiple of the matrix Bt = It− 1

t
1t1Tt . Assume

we have a design d∗ ∈ �t�b�k such that Cd∗ is completely symmetric and that
trCd∗ is maximal over �t�b�k. Then the design d∗ is universally optimum, that
is, it is optimal under all the optimality criteria considered by Kiefer (1975).
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2. Determination of an upper bound for trCd. For a partitioned ma-
trix M = �S�U�, we can write

ω⊥��S�U�� = ω⊥�S� −ω⊥�S�U {UTω⊥�S�U}−UTω⊥�S��(2)

Applying this formula twice and defining

Cd11 =TTdω⊥�Ib⊗1k�Td� Cd12 =TTdω⊥�Ib⊗1k�Ld� Cd13 =TTdω⊥�Ib⊗1k�Rd�
Cd22 =LTdω⊥�Ib⊗1k�Ld� Cd23 =LTdω⊥�Ib⊗1k�Rd� Cd33 =RTdω⊥�Ib⊗1k�Rd
we get that

Cd=Cd11 −Cd12C
−
d22C

T
d12 −

(
Cd13 −Cd12C

−
d22Cd23

)
× (
Cd33 −CTd23C

−
d22Cd23

)− (
Cd13 −Cd12C

−
d22Cd23

)T
�

(3)

Note that ω⊥�Ib ⊗ 1k� = Ib ⊗ Bk. The formula for Cd contains g-inverses of
Cd22 and of Cd33 −CTd23C

−
d22Cd23, both of which depend on the design d. This

makes the determination of trCd for an arbitrary design d difficult. Hence, we
try to find a simple upper bound for trCd.

The derivation of this bound is inspired by the convexity argument of
Pukelsheim [(1993), page 75; see also Kushner (1997), Lemma 5.1]. We give
a slightly different proof, which is also valid if the matrices do not have full
rank. We begin with a technical proposition.

Proposition 1. Assume A1� � � � �An�D1� � � � �Dn are matrices, Ai ∈ �mi×r,
Di ∈ �mi×s, 1 ≤ i ≤ n. Then∑

ATi Ai −
(∑
ATi Di

) (∑
DTi Di

)− (∑
DTi Ai

)
≥∑{

ATi Ai −ATi Di
(
DTi Di

)−
DTi Ai

}
in the Loewner-ordering.

Proof. Consider the partitioned matrices

M1 =



D1
���
Dn


 and M2 =



D1
� � �

Dn


 �

The column-space ofM1 is contained in the column-space of the block diagonal
matrix M2. Hence,

ω⊥�M1� ≥ ω⊥�M2� =



ω⊥�D1�

� � �

ω⊥�Dn�
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and ∑
ATi Ai −

(∑
ATi Di

) (∑
DTi Di

)− (∑
DTi Ai

)

=



A1
���
An



T

ω⊥�M1�



A1
���
An




≥



A1
���
An



T

ω⊥�D1�

� � �

ω⊥�Dn�





A1
���
An




=∑(
ATi Ai −ATi Di

(
DTi Di

)−
DTi Ai

)
� ✷

Note that Td1t is in the column-space of Ib ⊗ 1k, while Rd1t and Ld1t are
not. This implies [see Kunert (1983)] that Cd11 has row and column sums zero,
that Cd12 and Cd13 have column sums zero, but not necessarily row sums zero
and that Cd22, Cd23 and Cd33 need not have zero row sums or column sums.
For our bound, we use the traces of BtCdijBt and define cdij = trBtCdijBt for
1 ≤ i ≤ j ≤ 3.

Since the matrix

BtCd11Bt BtCd12Bt BtCd13Bt

BtC
T
d12Bt BtCd22Bt BtCd23Bt

BtC
T
d13Bt BtC

T
d23Bt BtCd33Bt


 =



BtT

T
d

BtL
T
d

BtR
T
d


ω⊥�Ib⊗ 1k�

[
TdBt LdBt RdBt

]

is nonnegative definite, this also holds for
cd11 cd12 cd13
cd12 cd22 cd23
cd13 cd23 cd33


 �

This implies directly that cdii ≥ 0�1 ≤ i ≤ 3 and that cd22cd33 − c2d23 ≥ 0. It
also follows that [see, e.g., Rao and Toutenburg (1995), Theorem A74]

Q =
[
cd22 cd23
cd23 cd33

]
satisfies QQ−

[
cd12
cd13

]
=
[
cd12
cd13

]
�(4)

and, consequently, that

[
cd12 cd13

]
Q−

[
cd12
cd13

]

does not depend on the choice of the g-inverse Q−.
We are therefore in a position to define

q∗d = cd11 −
[
cd12 cd13

]
Q−

[
cd12
cd13

]
�
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Then q∗d depends on the following four cases (i) to (iv):

(i) If cd22cd33 − c2d23 > 0, then Q is nonsingular and

q∗d = cd11 −
c2d12cd33 − 2cd12cd13cd23 + c2d13cd22

cd22cd33 − 2c2d23

�

(ii) If cd22cd33 − c2d23 = 0 and cd22 > 0, then q∗d = cd11 − c2d12/cd22.
(iii) If cd22 = 0 and cd33 > 0, then q∗d = cd11 − c2d13/cd33.
(iv) If cd22 = cd33 = 0, then q∗d = cd11.

With these definitions we can show

Proposition 2. Every design d ∈ �t�b�k has trCd ≤ q∗d. If a design f has
all Cfij, 1 ≤ i ≤ j ≤ 3, completely symmetric, then trCf = q∗f.

Proof. Using formula (2), Cd can also be written as

Cd = T̃Tdω⊥��L̃d� R̃d��T̃d�(5)

where T̃d = ω⊥�Ib ⊗ 1k�Td, L̃d = ω⊥�Ib ⊗ 1k�Ld and R̃d = ω⊥�Ib ⊗ 1k�Rd.
In Proposition 1 let n = t! and consider �S1 = It� S2� � � � � Sn�, the set of

all t × t permutation matrices. Then define Ai = T̃dSi, Di = �L̃dSi� R̃dSi�,
1 ≤ i ≤ n. It can be shown with straightforward algebra, using (3) and (4),
that ATi ω

⊥ �Di�Ai = STi CdSi for all 1 ≤ i ≤ n. On the other hand,

∑
ATi Ai −

(∑
ATi Di

) (∑
DTi Di

)− (∑
DTi Ai

)
=∑

STi T̃
T
d T̃dSi −

[∑
STi T̃

T
d L̃dSi�

∑
STi T̃

T
d R̃dSi

]

×


∑
STi L̃

T
d L̃dSi

∑
STi L̃

T
d R̃dSi∑

STi R̃
T
d L̃dSi

∑
STi R̃

T
d R̃dSi




−

∑
STi L̃

T
d T̃dSi∑

STi R̃
T
d T̃dSi




=∑
STi Cd11Si −

[∑
STi Cd12Si�

∑
STi Cd13Si

]

×
[∑

STi Cd22Si
∑
STi Cd23Si∑

STi C
T
d23Si

∑
STi Cd33Si

]− [∑
STi C

T
d12Si∑

STi C
T
d13Si

]
�

Since the summations are over all permutations of the numbers �1� � � � � t�,
we have that

∑
STi CdrsSi is completely symmetric for all 1 ≤ r ≤ s ≤ 3. The

fact that Cd11, Cd12 and Cd13 have column sums zero implies
∑
STi CdrsSi =

�cdrsn/�t− 1��Bt + zrs1t1Tt for some zrs, with zrs = 0 if r = 1. To proceed, we
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need a g-inverse of

F =
[
�cd22n/�t− 1��Bt + z221t1Tt �cd23n/�t− 1��Bt + z231t1Tt
�cd23n/�t− 1��Bt + z231t1Tt �cd33n/�t− 1��Bt + z331t1Tt

]

= n

t− 1
�Q⊗Bt� +

[
z22 z23
z23 z33

]
⊗ 1t1

T
t �

One such g-inverse, for appropriate wij, is

F− = t− 1
n

(
Q− ⊗Bt −

[
w22 w23
w23 w33

]
⊗ 1t1

T
t

)
�

Therefore∑
ATi Ai −

(∑
ATi Di

) (∑
DTi Di

)− (∑
DTi Ai

)
= n

t− 1
cd11Bt −

n2

�t− 1�2 ��cd12� cd13 � ⊗Bt�F−
([
cd12
cd13

]
⊗Bt

)

= n

t− 1
q∗dBt�

Then Proposition 1 implies that trCd ≤ q∗d.
Finally note that for design f we have Cfrs =

∑
STi CfrsSi/n for every 1 ≤

r ≤ s ≤ 3. ✷

3. Methods for determination of a maximal q∗
d. An optimal design d∗

should have a completely symmetric Cd∗ , with trCd∗ = q∗d∗ and it should have
the right proportions of blocks assigned to the treatment sequences such that
q∗d∗ is maximal. Therefore, we need to maximize the bound q∗d. Define

c
�u�
d11 = tr�TTduBkTdu�� c

�u�
d12 = tr�TTduBkLdu�� c

�u�
d13 = tr�TTduBkRdu��

c
�u�
d22 = tr�BtLTduBkLduBt�� c

�u�
d23 = tr�BtLTduBkRduBt� and

c
�u�
d33 = tr�BtRTduBkRduBt��

We then get that

cdrs =
b∑
u=1

c
�u�
drs� 1 ≤ r ≤ s ≤ 3�

Note that each c�u�drs remains unchanged if the treatments are relabelled, i.e.
if Tdu, Ldu and Rdu are replaced by TduS, LduS and RduS, respectively,
where S is any t× t permutation matrix. We call two sequences of treatments
equivalent if one can be transformed to the other by relabelling the treatments.
Hence, two equivalent treatment sequences give the same c�u�drs. Therefore, for
given t and k, we can divide the set of all possible treatment sequences into
K equivalence classes s1� � � � � sK. If, for example, k = 3 and t ≥ 3, then there
are the K = 5 equivalence classes given in Table 1.
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Since c�u�drs is the same for each u receiving a treatment sequence in a given

equivalence class s0, 1 ≤ 0 ≤ K, we can define crs�0� = c�u�drs and get cdrs =
b
∑K
0=1 πd0crs�0�, where πd0 is the proportion of blocks assigned to the class s0.

This, however, implies that the bound q∗d of any design d ∈ �t�b�k is determined
by the proportions πd0. Note that the cdij are linear in the πd0, but that q∗d is
a quotient, where the πd0 are third order in the numerator and second order
in the denominator. This makes the maximization of q∗d difficult.

The situation is similar to the models (with carryover effects) for repeated
measurements designs. For these Kushner (1997) showed how to use the lin-
earity of the cdrs to maximize q∗d. This idea can be generalized to interference
models.

Proposition 3. For any design d ∈ �t�b�k define the function qd � �2 → �
as

qd�x�y� = cd11 + 2cd12x+ 2cd13y+ 2cd23xy+ cd22x
2 + cd33y

2�

Then for every x and y, we have qd�x�y� ≥ q∗d. There is at least one point
�xd� yd� such that qd�xd� yd� = q∗d.

Proof. We can write

qd�x�y� = cd11 + 2
[
cd12 cd13

] [x
y

]
+ [
x y

]
Q

[
x
y

]

= cd11 + 2
[
cd12 cd13

] (
u−Q−

[
cd12
cd13

])

+ (uT − [
cd12 cd13

]
Q−)Q(u−Q−

[
cd12
cd13

])

where

u =
[
x
y

]
+Q−

[
cd12
cd13

]
�

Then equation (4) implies that

qd�x�y� = cd11 −
[
cd12 cd13

]
Q−

[
cd12
cd13

]
+ uTQu�

Therefore, qd�x�y� is minimal iff Qu = 0, that is, iff

Q

[
x
y

]
= −

[
cd12
cd13

]
�

This, however, holds if and only if the partial derivatives of qd with respect to
x and y are both 0. The minimum of qd equals q∗d. ✷

From the proof of Proposition 3, we immediately get the following corollary:
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Corollary 1. Consider a point �xd� yd� such that the partial derivatives
∂qd�x�y�/∂x and ∂qd�x�y�/∂y are both 0 for �x�y� = �xd� yd�. Then
qd�xd� yd� = q∗d.

The elegance of qd�x�y� is that it can be written as a linear combination
of functions h0�x�y�, which depend on the equivalence classes of treatment
sequences. Define

h0�x�y� = c11�0� + 2c12�0�x+ 2c13�0�y+ 2c23�0�xy+ c22�0�x2 + c33�0�y2�

for every 1 ≤ 0 ≤K. Then

qd�x�y� = b
K∑
0=1

πd0h0�x�y��

Proposition 4. For a design d ∈ �t�b�k consider a point �xd� yd� for which
qd�xd� yd� = q∗d. If bh0�xd� yd� ≤ qd�xd� yd� = q∗d for every 1 ≤ 0 ≤ K, then
for every f ∈ �t�b�k we have trCf ≤ q∗d = a∗t�b�k, say.

Proof. For any f we have

q∗f = b
K∑
0=1

πf0 h0�xf� yf� ≤
K∑
0=1

πf0 b h0�xd� yd� ≤
K∑
0=1

πf0q
∗
d = q∗d�

The rest follows from Proposition 2. ✷

Note that the proportions πd0 must be such that the partial derivatives of∑
πd0h0�x�y� at �xd� yd� are both 0 and that only such classes 0 of sequences

are included for which h0�xd� yd� = max1≤0≤K h0�xd� yd�. Therefore �xd� yd�
must be either at the minimum of an h0 or at the intersection of two or more
of the h0.

In many situations there is no design fulfilling both the conditions of Propo-
sition 4 and of Proposition 2. In that case, however, one practical use of the
a∗t�b�k is the lower bound which it provides for the optimality criteria.

As an example, consider the A-criterion ϕA�Cf�, which is the trace of the
Moore-Penrose generalized inverse of Cf. From Proposition 2 we get

ϕA�Cf� ≥ ϕA
(
q∗f
t− 1

Bt

)
= tr

(
t− 1
q∗f
Bt

)
= �t− 1�2

q∗f
�

With Proposition 4 it follows that

ϕA�Cf� ≥
�t− 1�2
a∗t�b�k

�

4. Some examples. In this section we demonstrate the methods derived
in this paper by finding optimal or efficient designs for k = 3 and 4 for all
t ≥ 2. Note that, to save space, blocks are represented as columns in Examples
1 to 4.
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4.1. The case of 3 plots per block. Table 1 lists the equivalence classes and
the corresponding crs�0� for the case that there are k = 3 plots per block. If
t = 2, then only the first four sequences are possible.

A design d∗ which has half of its sequences from s2 and half of its sequences
from s4 has

qd∗�x�y� = b
{

1
2
h2�x�y� +

1
2
h4�x�y�

}

= b
(

4
3
− 1

3
x− 1

3
y− 4t− 2

3t
xy+ 3t− 2

3t
x2 + 3t− 2

3t
y2
)
�

If x = y = t/�2�t− 1��, then the derivatives of qd∗�x�y� with respect to x and
y are both 0. Therefore from Corollary 1, we have

xd∗ = yd∗ = t

2�t− 1� and q∗d∗ = qd∗�xd∗� yd∗� =
(

7t− 8
6�t− 1�

)
b�

To prove the optimality of q∗d∗ we have to calculate h0�xd∗� yd∗� for every 1 ≤
0 ≤ 5, and to verify that q∗d∗/b − h0�xd∗� yd∗� is nonnegative for every 0. Some
algebra shows that q∗d∗/b − h0�xd∗� yd∗� equals �3t− 4�/�4t− 4� > 0�0� �3t2 −
5t�/�3t2 − 6t+ 3� > 0�0� �t− 2�/�3t2 − 6t+ 3� > 0 (since t > 2) for 0 = 1� � � � �5,
respectively.

Hence, we have shown:

Theorem 1. If k = 3 and t ≥ 2, then for any design d ∈ �t�b�3 we have

trCd ≤ a∗t�b�3 =
(

7t− 8
6�t− 1�

)
b�

If a design d∗ has half of its blocks with treatment sequences which are equiv-
alent to �1 1 2� and half of its blocks with treatment sequences equivalent to
�1 2 2� and if Cd∗11, Cd∗12, Cd∗13, Cd∗22, Cd∗23, and Cd∗33 are completely sym-
metric, then d∗ is universally optimal over �t�b�3.

Table 1
The classes s0 of sequences and adjusted crs�0� for k = 3, t ≥ 2

00
Repre-
sentative
sequence

3c11�00� 3c12�00� 3c13�00�
3c22�00�
+ 2

t

3c23�00�
− 1

t

3c33�00�
+ 2

t

1 [1 1 1] 0 0 0 2 –1 2
2 [1 1 2] 4 –1 0 2 –2 4
3 [1 2 1] 4 –3 –3 4 1 4
4 [1 2 2] 4 0 –1 4 –2 2
5 [1 2 3] 6 –2 –2 4 –1 4
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Example 1. If t = 2, then a 4 block example of a design fulfilling the
conditions of Theorem 1 is

d∗
1 =




1 2 1 2

1 2 2 1

2 1 2 1


 ∈ �2�4�3�

If t = 3 then a 12 block example of a design fulfilling the conditions of Theorem
1 is

d∗
2 =




1 1 2 2 3 3 1 1 2 2 3 3

1 1 2 2 3 3 2 3 1 3 1 2

2 3 1 3 1 2 2 3 1 3 1 2


 ∈ �3�12�3�

If t = 4, then a 24 block example is

d∗
3 =




1

1

2

1

1

3

1

1

4

2

2

1

2

2

3

2

2

4

3

3

1

3

3

2

3

3

4

4

4

1

4

4

2

4

4

3

1

2

2

1

3

3

1

4

4

2

1

1

2

3

3

2

4

4

3

1

1

3

2

2

3

4

4

4

1

1

4

2

2

4

3

3


 ∈ �4�24�3�

4.2. The case of 4 plots per block. If k = 4 and t ≥ 4, then we have 15
equivalence classes. The representative sequences and the crs�0� for the 15
classes are given in Table 2. For t = 3, only the 14 classes s1 to s14 are possible.
For t = 2, only the 8 classes s1, s2, s3, s4, s6, s7, s9 and s10 are possible.

We start with the case t = 2. Then consider a design d∗ with half of its
blocks from s4 and half of its blocks from s9. In that case

qd∗�x�y� = b� 1
2h4�x�y� + 1

2h9�x�y�� = b (2 + 11
8 x

2 − 2xy+ 11
8 y

2
) ≥ 2b�

with equality holding iff x = y = 0. Now, h0�0�0� = c11�0� ≤ 2 for all 8 possible
classes s0 of sequences, with equality for 0 = 4, 7 and 9. Thus we have shown

Theorem 2. If t = 2 and k = 4, then for every design d ∈ �2�b�4 we have
trCd ≤ a∗2�b�4 = 2b. If a design d∗ has b/4 of its blocks with each of the sequences
�1 1 2 2�, �2 2 1 1�, �1 2 2 1� and �2 1 1 2�, then d∗ is universally optimal over
�2�b�4.

Note that sequences [1 1 2 2] and [2 2 1 1] are from s4, while [1 2 2 1] and
�2 1 1 2� are from s9. Because h7�0�0� = 2, it is possible to show that there
is another design f that has q∗f = a∗2�b�k. Design f has 3b/4 of its blocks with
sequences from s4 and b/4 with sequences from s7.
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Table 2
The classes s0 of sequences and adjusted crs�0� for k = 4

00
Repre-
sentative
sequence

4c11�00� 4c12�00� 4c13�00�
4c22�00�
+ 3

t

4c23�00�
− 1

t

4c33�00�
+ 3

t

1 [1 1 1 1] 0 0 0 3 –1 3
2 [1 1 1 2] 6 –1 1 3 –2 7
3 [1 1 2 1] 6 –3 –3 7 –1 7
4 [1 1 2 2] 8 2 2 7 –4 7
5 [1 1 2 3] 10 –1 0 7 –3 9
6 [1 2 1 1] 6 –3 –3 7 –1 7
7 [1 2 1 2] 8 –6 –6 7 4 7
8 [1 2 1 3] 10 –5 –4 7 1 9
9 [1 2 2 1] 8 –2 –2 7 –5 7
10 [1 2 2 2] 6 1 –1 7 –2 3
11 [1 2 2 3] 10 –1 –1 7 –4 7
12 [1 2 3 1] 10 –4 –4 9 –3 9
13 [1 2 3 2] 10 –4 –5 9 1 7
14 [1 2 3 3] 10 0 –1 9 –3 7
15 [1 2 3 4] 12 –3 –3 9 –2 9

Example 2. Theorem 2 requires that b is divisible by 4. Suppose b = 2
and consider the two designs

d =




1 1

1 2

2 2

2 1


 and f =




1 2

1 1

2 2

2 1


 �

While q∗d = a∗2�2�4 = 4, for d we have trCd = 16/7 < 4, because Cd33 is
not completely symmetric. Design f, for which the Cdij, except for Cd23, are
completely symmetric, has trCd = 3. Calculating the information matrix for all
256 possible designs, we find that f is universally optimal (since rankCd = 1).

As h14�0�0� = c11�14� = 10/4 > 2, an optimal design for t = 3 must have
other sequences than just s4, s7 and s9. The case k = 3 suggests the candidate
design d∗ with πd∗5 = πd∗14 = 1

2 . In fact, we find that qd∗�x�y� = b � 5
2 − 1

4x−
1
4y− 4

3xy+ 7
4x

2 + 7
4y

2�, with a minimum at xd∗ = yd∗ = 3/26. Therefore q∗d∗ =
qd∗�xd∗� yd∗� = �257/104�b. It is easy to check that for every 0, 1 ≤ 0 ≤ 14,
we have 257/104 − h0�xd∗� yd∗� ≥ 0, with equality holding only for 0 = 5 and
0 = 14. Hence, we have shown:

Theorem 3. If k = 4 and t = 3, then for any design d ∈ �3�b�4 we have
trCd ≤ a∗3�b�4 = �257/104�b. If a design d∗ has b/2 blocks with treatment
sequences which are equivalent to each of �1 1 2 3� and �1 2 3 3�, and if
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Cd∗11, Cd∗12, Cd∗13, Cd∗22, Cd∗23 and Cd∗33 are completely symmetric, then d∗ is
universally optimal over �3�b�4.

Example 3. The design

d∗ =




1 2 3 3 1 2 1 2 3 2 3 1

1 2 3 2 3 1 1 2 3 3 1 2

2 3 1 1 2 3 3 1 2 1 2 3

3 1 2 1 2 3 2 3 1 1 2 3


 ∈ �3�12�4

fulfills the conditions of Theorem 3. The first 6 blocks of d∗ form a design d
which maximizes q∗d in �3�6�4 but for which trCd < q

∗
d, since Cd12 and Cd13 are

not completely symmetric. However, when we calculate the A-criterion ϕA�Cd�
of d and compare it to the unattainable lower bound ϕ∗

A = �t−1�2/a∗3�b�4, then
we find that ϕ∗

A/ϕA�Cd� = 0�996; that is, d has an efficiency of 99�6% and is
likely to be A-optimal.

Finally, we consider the case k = 4 and t ≥ 4. We try a design with a
proportion π of sequences from the class s15 and proportions �1−π�/2 of classes
s5 and s14, each. The three h0�x�y� intersect at x = y = �5 − √

17�/4 = x∗,
say. For x = y = x∗, we have

h5�x�y� = h14�x�y� = h15�x�y� =
�135 − 23

√
17�t− �42 − 10

√
17�

16t
�

Note that h15�x�y� = h15�y�x�. Thus the derivative of h15�x + δ� x − δ� with
respect to δ is zero if δ = 0. The same holds for 1

2h5�x�y�+ 1
2h14�x�y�. It hence

remains to find a π such that

∂

∂x

(
πh15�x� x� −

1 − π
2
h5�x� x� +

1 − π
2
h14�x� x�

)

is zero for x = x∗ ≈ 0�219. Therefore, set

π = �23 − 5
√

17�t− �10 − 2
√

17�
2
√

17t
= π∗ say�

It is easy to see that the differences h5�x∗� x∗�−h0�x∗� x∗�, for 0 = 1�2� � � � �15
are all positive, except for 0 = 4, 5, 14 and 15, when they are 0.

Hence we have an optimal design using sequence classes s5, s14 and s15.
Since h5�x∗� x∗� −h4�x∗� x∗� = 0, we can construct an optimal design with
some sequences from the class s4. In fact, a second optimal design exists which
consists of s4 and s15 only having a proportion

δ∗ = �23 − 3
√

17�t− �10 − 2
√

17�
4
√

17t
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of sequences from the class s15 and a proportion of 1−δ∗ of sequences from s4.
Any convex combination of these two designs is also optimal. Hence, we have
shown:

Theorem 4. If k = 4 and t ≥ 4, then for every design d ∈ �t�b�4 we have

trCd ≤ a∗t�b�4 = b�135 − 23
√

17�t− �42 − 10
√

17�
16t

�

To achieve this bound, we would need to construct a design d∗ as follows�
Define

π∗ = �23 − 5
√

17�t− �10 − 2
√

17�
2
√

17t
and δ∗ = �23 − 3

√
17�t− �10 − 2

√
17�

4
√

17t
�

Choose 0 ≤ α ≤ 1. Let proportions �1 − α��1 − δ∗�, α�1 − π∗�/2, α�1 − π∗�/2
and

(
απ∗ + �1 − α�δ∗) of the blocks of d∗ have treatment sequences which are

equivalent to �1 1 2 2�, �1 1 2 3�, �1 2 3 3� and �1 2 3 4�, respectively, such that
Cd∗11, Cd∗12, Cd∗13, Cd∗22, Cd∗23 and Cd∗33 are completely symmetric.

Remark. The design d∗ in Theorem 4 cannot exist for finite b. To see this,
note that 1− δ∗ = �1−π∗�/2, which is irrational. Therefore, �1− α��1− δ∗� =
�1 − α��1 − π∗�/2 and there is no α such that both �1 − α��1 − π∗�/2 and
α�1 − π∗�/2 are rational.

Despite the non-existence of d∗, Theorem 4 has two useful aspects. First, it
suggests the structure of an efficient design, and second, a∗v�b�4 gives a lower
bound for the A-value. This is demonstrated in Example 4.

Example 4. It is possible to construct highly efficient designs if we can
approximate reasonably well the fractions π∗ or δ∗ from Theorem 4. If t = 4,
then the upper bound a∗4�b�4 for trCd is approximately b×2�49852. To construct
an efficient design, we select α = 0. We would need a proportion of δ∗ ≈
0�617995 of blocks with a sequence from s15. We use 2/3 instead and construct
the 36 block design

f =




1

1

2

2

1

1

3

3

1

1

4

4

2

2

1

1

2

2

3

3

2

2

4

4

3

3

1

1

3

3

2

2

3

3

4

4

4

4

1

1

4

4

2

2

4

4

3

3

1

2

3

4

2

4

1

3

3

1

4

2

4

3

2

1

1

2

4

3

2

3

1

4

4

1

3

2

3

4

2

1

1

4

3

2

4

2

1

3

3

1

2

4

2

3

4

1

1

2

3

4

2

4

1

3

3

1

4

2

4

3

2

1

1

2

4

3

2

3

1

4

4

1

3

2

3

4

2

1

1

4

3

2

4

2

1

3

3

1

2

4

2

3

4

1


 ∈ �4�36�4�

It is easy to verify that Cf11, � � � , Cf33 are completely symmetric and that
trCf ≈ 89�8064. This is extremely close to the upper bound which is ap-
proximately 36 × 2�49852 = 89�94672, so that f is highly efficient (efficiency
≈ 0�9984).
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With 12 blocks, a design similarly constituted to f is

g1 =




1 2 3 4 1 2 3 4 1 2 4 3

1 2 3 4 2 4 1 3 2 3 1 4

2 3 4 1 3 1 4 2 4 1 3 2

2 3 4 1 4 3 2 1 3 4 2 1


 ∈ �4�12�4�

Its Cg is not completely symmetric. However, its relative A-efficiency with
respect to the bound �t− 1�2/a∗4�12�4 is 0.968.

If we prefer not to repeat treatments, we have the universally optimal bi-
nary design using a type I orthogonal array with efficiency 0.924:

h =




1 2 3 4 1 2 3 4 1 2 3 4

3 1 4 2 2 4 1 3 2 3 4 1

2 4 1 3 3 1 4 2 4 1 2 3

4 3 2 1 4 3 2 1 3 4 1 2


 �

With 6 blocks, a design with relative A-efficiency 0.885, similarly constituted
to f is

g2 =




1 3 1 2 3 4

1 3 2 4 1 3

2 4 3 1 4 2

2 4 4 3 2 1


 ∈ �4�6�4�

For 8 treatments and 24 blocks, similar ideas lead to the design g3 ∈ �8�24�4,
where

g3 =




1 2 3 4 5 6 7 8 1 1 3 6 2 2 6 5 4 7 8 8 3 5 4 7

1 2 3 4 5 6 7 8 2 4 1 7 5 8 3 6 3 2 6 1 8 7 5 4

5 6 7 8 1 2 3 4 3 2 6 1 8 7 5 4 2 4 1 7 5 8 3 6

5 6 7 8 1 2 3 4 4 7 8 8 3 5 4 7 1 1 3 6 2 2 6 5


 �

This design has a relative A-efficiency of 0.910. Note that each treatment is
replicated 12 times in the design g3, as in g1.

The methods of the present paper can be used for blocks with k > 4 as
well. However, with larger k the number K of equivalence classes increases
rapidly. For k = 5 and t = 5 there are 52 classes of sequences. It is possible,
though, to show that a design d with a proportion

π∗ = 3

4
√

41t

(
25t− 3

√
41t− 7 +

√
41
)

of blocks with a sequence equivalent to [1 2 3 4 5] and the other blocks with
a sequence equivalent to [1 1 2 3 3] has a maximal q∗d = a∗t�b�5. In the special
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instance t = 5 (with π∗ ≈ 0�6643), then a binary type I orthogonal array
h, which uses only sequences equivalent to [1 2 3 4 5], has an efficiency of
q∗h/a

∗
5�b�5 = 0�959. This is slightly higher than for k = 4.

Further work is aimed at obtaining bounds on the cij�0� to get results for
a general k. We conjecture that a∗t�b�k is achieved by a design with a majority
of sequences from the class containing �1 2 3 · · · k− 2 k− 1 k� and the rest of
the sequences equivalent to �1 1 2 · · · k − 3 k − 2 k − 2�. We also conjecture
that for t ≥ k > 5, a binary type I orthogonal array will have an efficiency of
more than 0.95.
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