World Bank Reprint Series: Number 308

Johannes Bisschop and Alexander Meeraus

On the Development of a General Algebraic Modeling System in a Strategic Planning Environment

Reprinted with permission from Mathematical Programming Study, vol. 20 (1982), pp. 1–29.

World Bank Reprints

- No. 269. James R. Follain, Jr., Gill-Chin Lim, and Bertrand Renaud, "Housing Crowding in Developing Countries and Willingness to Pay for Additional Space: The Case of Korea," *Journal of Development Economics*
- No. 270. Bela Balassa, "Policy Responses to External Shocks in Sub-Saharan African Countries," Journal of Policy Modeling
- No. 271. Jaime de Melo and Sherman Robinson, "Trade Adjustment Policies and Income Distribution in Three Archetype Developing Economies," *Journal of Development Economics*
- No. 272. J. B. Knight and R. H. Sabot, "The Role of the Firm in Wage Determination: An African Case Study," *Oxford Economic Papers*
- No. 273. William G. Tyler, "The Anti-Export Bias in Commercial Policies and Export Performance: Some Evidence from Recent Brazilian Experience," Weltwirtschaftliches Archiv
- No. 274. Ron Duncan and Ernst Lutz, "Penetration of Industrial Country Markets by Agricultural Products from Developing Countries," World Development
- No. 275. Malcolm D. Bale, "Food Prospects in the Developing Countries: A Qualified Optimistic View," *The American Economic Review* (with Ronald C. Duncan) and "World Agricultural Trade and Food Security: Emerging Patterns and Policy Directions," *Wisconsin International Law Journal* (with V. Roy Southworth)
- No. 276. Sweder van Wijnbergen, "Interest Rate Management in LDCs," Journal of Monetary Economics
- No. 277. Oli Havrylyshyn and Iradj Alikhani, "Is There Cause for Export Optmism? An Inquiry into the Existence of a Second Generation of Successful Exporters," *Weltwirtschaftliches Archiv*
- No. 278. Oli Havrylyshyn and Martin Wolf, "Recent Trends in Trade among Developing Countries," European Economic Review
- No. 279. Nancy Birdsall, "Fertility and Economic Change in Eighteenth and Nineteenth Century Europe: A Comment," *Population and Development Review*
- No. 280. Walter Schaefer-Kehnert and John D. Von Pischke, "Agricultural Credit Policy in Developing Countries," translated from *Handbuch der Landwirtschaft und Ernährung in den Entwicklungsländern* (includes original German text)
- No. 281. Bela Balassa, "Trade Policy in Mexico," World Development
- No. 281a. Bela Balassa, "La política de comercio exterior de México," Comercio Exterior
- No. 282. Clive Bell and Shantayanan Devarajan, "Shadow Prices for Project Evaluation under Alternative Macroeconomic Specifications," *The Quarterly Journal of Economics*
- No. 283. Anne O. Krueger, "Trade Policies in Developing Countries," Handbook of International Economics
- No. 284. Anne O. Krueger and Baran Tuncer, "An Empirical Test of the Infant Industry Argument," *American Economic Review*
- No. 285. Bela Balassa, "Economic Policies in Portugal," Economia
- No. 286. F. Bourguignon, G. Michel, and D. Miqueu, "Short-run Rigidities and Long-run Adjustments in a Computable General Equilibrium Model of Income Distribution and Development," *Journal of Development Economics*
- No. 287. Michael A. Cohen, "The Challenge of Replicability: Toward a New Paradigm for Urban Shelter in Developing Countries," *Regional Development Dialogue*
- No. 288. Hollis B. Chenery, "Interaction between Theory and Observation in Development," World Development

Mathematical Programming Study 20 (1982) 1–29 North-Holland Publishing Company

ON THE DEVELOPMENT OF A GENERAL ALGEBRAIC MODELING SYSTEM IN A STRATEGIC PLANNING ENVIRONMENT*

Johannes BISSCHOP** and Alexander MEERAUS

Development Research Center, The World Bank, Washington, DC 20433, U.S.A.

Received 18 March 1980 Revised manuscript received 8 May 1981

Modeling activities at the World Bank are highlighted and typified. Requirements for successful modeling applications in such a strategic planning environment are examined. The resulting development of a General Algebraic Modeling System (GAMS) is described. The data structure of this system is analyzed in some detail, and comparisons to other modeling systems are made. Selected aspects of the language are presented. The paper concludes with a case study of the Egyptian Fertilizer Sector in which GAMS has been used as a modeling tool.

Key words: Algebraic Modeling System, Modeling Language, Strategic Planning, Applications.

1. Introduction

The first portion of this paper focuses on the dynamics of modeling activities in a strategic planning environment such as the World Bank. This environment is broadly characterized by long-term, often ill-defined and poorly understood issues, which require near immediate decision making. It is the long-term impact of the decisions that make them important. Government planning agencies and corporate planning offices are other examples of a strategic planning environment. Mathematical models are a potentially powerful tool during the process of making good plans and decisions in such an environment, but their effective use has often been limited. This is not only due to the extensive resource requirements in terms of technical skills, money and time, but also because of such intangible issues as the low reliability of model generators, and the extensive communication problems that occur during the dissemination of models and their results.

The second portion of the paper focuses on our efforts to eliminate some of the current barriers to successful modeling applications, namely the development of a General Algebraic Modeling System (GAMS). The aim of this system

** Presently at Shell Research, Amsterdam, The Netherlands.

^{*} The views and interpretations in this document are those of the authors and should not be attributed to the World Bank, to its affiliated organizations or to any individual acting in their behalf.

J. Bisschop and A. Meeraus/A general algebraic modeling system

is to provide one representation of a model which is easily understood by both humans and machines. We have chosen a rigorous algebraic representation of both data and equations, coupled with relational database-type facilities. With such a notation, the information content of the model representation is such that a machine can not only check for algebraic correctness and completeness, but also interface automatically with solution algorithms and report writers. In Section 4, we compare our choice of data structure to those underlying some of the existing modeling systems that were designed for large-scale linear programming problems. In Section 5, we provide some selected aspects of the language in GAMS in order to illustrate its use as a tool for expressing structural and partitioning information inherent in large models.

The final portion of this paper is devoted to a specific application in the industrial planning area, namely the planning of investments in the Egyptian Fertilizer industry. This section serves as an illustration of a strategic modeling exercise. In the case study, the model was used as a moderator, and was continuously modified as the planning process took place. GAMS was used as the basic modeling tool.

2. The modeling environment at the World Bank

Over the last decade, the World Bank has emerged as a prominent producer of research on development issues [3]. Both social and economic research is done with the following broad objectives: (i) to support all aspects of the Bank's operations, including the assessment of development progress in member countries, (ii) to broaden understanding of the development process, (iii) to improve the Bank's capacity to give policy advice to its members, and (iv) to help develop indigenous research capacity in member countries. The bulk of the Bank's research is organized into research projects which are usually prepared and executed within the Bank. If the expertise of the research staff is limited in a particular area, it is supplemented with that of outside consultants and other institutions. The audience for which research is done consists of policy and operating staff within the Bank, planners and policy makers in developing countries, and the international development community, including other researchers.

Mathematical models play an important role in many of the research projects of the Bank. The research on the planning of investment programs in the manufacturing sector is one example [4,9]. This project has designed a methodology for investment planning in industrial subsectors where there are economies of scale, such as the forest industry, steel and fertilizer, and where interdependent choices must be made on scale, timing, location, product mix and technology. We will address one specific case study in the last portion of this paper. A second example is the research on income distribution where several

projects have used economy-wide general equilibrium models as a framework for analyzing the effects on different income groups of policy interventions that might be undertaken to improve income distribution [1, 5]. A third example is the use of models in country economic analysis based on the construction of social accounting matrices [10]. A fourth example is the modeling framework for the projections of global growth, international trade, and capital flows underlying the Bank's World Development Reports [8]. Other examples of model use are the linear programming research studies that have been used in the formulation and evaluation of agricultural policies [6, 7].

The above examples describe a diversity of model use within the World Bank. The Bank, however, is not unique in this respect. There are many national planning agencies and corporate planning offices where a wide range of modeling activities are employed in the process of better planning. These planning environments have common characteristics and can be typified as follows. The issues under consideration are usually extremely complex, and need to be sorted through. The amount of possibly relevant information is vast. In addition, the consequences of any decision are not necessarily limited to one person or one institution. Nor are all other aspects of the decision necessarily under the jurisdiction of one person or one organization. In such an environment, mathematic models play a special role. They are used as a framework for analysis, for data collection and for discussion. They are created to improve one's conceptual understanding of the problem. If several decision makers and/or institutions are involved in a final decision or set of recommendations, models can be used as neutral moderators to guide the discussions. Different viewpoints can be tested and examined. In such an environment the actual values of model results are not so important, but the relative values resulting from testing different scenario's are of interest. The model is a learning device, and should never be expected to produce final decisions. Because of this indirect importance of a model in a strategic planning environment, there is no clear way to measure the benefits, although it is not too difficult to keep track of the (usually high) costs.

Due to the special role that mathematical models play in a strategic planning environment, there are definite requirements for the success of any modeling exercise. A model is successful if it is easy to understand, if its structure and content can be communicated effectively to others, if the results produced by the model can be explained, if changes in the model can be accomplished on short notice, and if model experiments can be easily repeated or verified by experts other than the original model builders. These high requirements have undoubtedly contributed to the limited role that mathematical models have played thus far in the planning environment of the Bank. These same requirements have also stimulated our ideas for a General Algebraic Modeling System.

The relatively limited use of models in our environment is partly due to the fact that a significant portion of total resources in a modeling exercise (measured in either time, skill or money) is spent on the generation, manipulation and

J. Bisschop and A. Meeraus/A general algebraic modeling system

reporting of models. It is evident that this must be reduced greatly if models are to become effective tools in planning and decision making. Other barriers to effective model use have come from attempts to disseminate previous and ongoing research. As modeling is a dynamic process in a planning environment, it becomes an horrendous task to document the many versions of each model, especially when they are large. In addition, experience has shown that it is difficult to communicate models to interested parties that are not part of the development team. As there are no standards in notation, it is practically impossible to judge from any write-up what exactly the model is. Without proper documentation, however, no effective dissemination of knowledge can take place. A third barrier that we have become painfully aware of, is the nonexistence of a single interface with different solution routines.

The heart of it all is the fact that solution algorithms need a data structure which, for all practical purposes, is impossible to comprehend by humans, while, at the same time, meaningful problem representations for humans are not acceptable to machines. We feel that the two translation processes required (to and from the machine) can be identified as the main source of difficulties and errors. GAMS is a system that is designed to eliminate these two translation processes, thereby lifting a technical barrier to effective modeling in a strategic planning environment.

3. The development of GAMS

In the previous section, we described and typified the modeling environment in which GAMS evolved. In this section, we would like to portray our basic choice of data structure, and compare this to the apparent design choices in selected other modeling systems. The following statements should not be interpreted as absolute facts, but they do reflect our strong beliefs after several years of experience in modeling activities.

Model building in a strategic planning environment is a dynamic process, where models are used as a way to unravel the complex real-world situation of interest. This implies not only that a model builder must be able to develop and modify models continuously in a convenient manner, but, more importantly, that a model builder must be able to express all the relevant structural and partitioning information contained in the model in a convenient short-hand notation. We strongly believe that one can only accomplish this by adhering to the rigorous and scientific notation of algebra. Only by providing a capability to express partitionings, mappings, nestings and conditional information can we expect to be able to communicate the complexities inherent in large-scale real-world phenomena. With a well-specified algebraic syntax, any model representation can be understood by both humans and machines. The machine can make all the required syntactical and semantic checks to guarantee a complete and algebraically correct model. At the same time, humans with a basic knowledge of algebra can use it as the complete documentation of their model. In addition to this, the algebraic representation contains all the necessary information that is needed for an automatic interface with the various linear and nonlinear solution routines.

The data structure in GAMS resembles that of a sophisticated relational database with an added capacity to handle symbolic algebraic relationships. It does not resemble any general purpose programming language, but instead stays as close as possible to existing algebraic conventions. Some examples of the language are specified in the next section, while the last section illustrates its use in the planning of the Egyptian fertilizer industry. Although it is not possible to provide a detailed comparison of GAMS to other modeling systems in this paper, we would like to compare the underlying data structure of GAMS to the apparent choices made by others. Our selection is guided by personal experience with these systems. The intent is to make some general comments reflecting our views.

Systems such as GAMMA (developed by Bonner and Moore), MAGEN, PDS, OMNI (developed by Haverly Systems) and DATAFORM (Ketron) are some of the most successful LP data management systems in use today. They are often referred to as 'matrix generators', a rather limited description which does not acknowledge their important role in database management and report generation. The key to success for these systems has been the recognition that the major portion of most real-world LP models consists of data, and that these data must be managed efficiently. As a result, they all have an easy-to-use two-dimensional data structure allowing alpha-numeric characters as table row and column identifiers. These identifiers are then used in the generation of equation and variable names, which in turn are used for the generation of reports. The data tables used in GAMS are similar, except that all identifiers, however many there are, must be carried separately in the row and column labels for each table. This results in multi-dimensional labels whenever the data elements in a table are identified by more than two identifiers. We have chosen the more restrictive form for several reasons. In order to communicate models and their associated data, it is important that data tables are self-explanatory. In that case, any outsider familiar with the data can read the table without having to ask questions regarding the information content of each label. In addition, carrying this partitioning information along will allow the user to express subsequently all algebraic and logical relationships between the various data elements. This is a relevant factor, since many data elements occurring in the equations of a model are not collected directly, but are generated in some algebraic and/or logical fashion from more basic data.

Another principal choice for any of these systems is that they provide the user with a short-hand notation for the MPS-tape, the more than 30-year old industry standard for interfacing with an LP solver. This means that any model builder

J. Bisschop and A. Meeraus | A general algebraic modeling system

using such a language is forced into the process of concatenating strings of at most eight characters in order to generate the row and column names needed to identify the non-zero elements in the MPS-tape. Centering on the MPS-tape also implies that any structural information contained in the model can only be passed on via the labeling scheme for the rows and columns. We feel that in this case, the partitioning information is essentially lost as any understanding of the underlying model structure requires a key for decoding the information. The data structure in GAMS allows one to express all partitioning information directly via the use of algebra. The information content of this representation is much higher than that of an MPS-tape: one can program a machine to translate the algebraic representation into an MPS-tape, but not the other way around. As we already pointed out previously, the algebraic notation allows for a machineintensive modeling technology where syntactically and semantically correct models can be interfaced automatically with a large variety of linear and nonlinear solution algorithms.

Other modeling systems such as DATAMAT, MGG and ALPS differ in one respect or another from the three systems mentioned above. DATAMAT. developed by the National Bureau of Economic Research, is a system designed around interactive LP model building. It also centers around the construction of the MPS-tape, but uses built-in macro's to allow for a quick and compact interface with the LP modeling system. This design characteristic is both the strength and the weakness of the system: although the model representation is extremely compact, it is difficult to understand and to communicate. In this respect, it is further removed from GAMS than the four LP data management systems discussed previously. A rather different system has been developed by Scicon, and is called MGG, Matrix Generator Generator. This system can be viewed as a short-hand notation for a FORTRAN program matrix generator, and is probably the first commercial system to have chosen a row-wise (equationwise) representation of the model. In addition, being so close to a general purpose programming language, MGG has the advantage of being relatively fast during execution time. Unfortunately, it has also inherited some characteristics of FORTRAN that are less desirable for model representations. One example is that all data elements in FORTRAN are accessed by position and not by non-numeric labels, which does not permit a database-like language such as the one we have chosen in GAMS. The model notation in MGG also differs from the notation in GAMS in that the model builder is still required to specify the concatenation scheme for the eight-character equation and variable names. The first system in which the user does not have to be concerned with concatenating the eight-character equation and variable names for the MPS-tape is ALPS. ALPS stands for advanced linear programming system, and has been marketed by United Computing Systems. Like MGG, it is a FORTRAN-based and equation-oriented system, also suffering from a lack of flexible database facilities. Both the choice of database facilities and the notational restrictions in ALPS make the system different from GAMS. One example is the restriction that data arrays in ALPS cannot be more than two dimensions, which, we feel, inhibits a natural formulation of the problem. In spirit, however, the ALPS system is closest to GAMS, as it concerns itself with a model representation, which, as far as the user is concerned, is independent of any input requirements imposed by the various solution algorithms.

The above comparisons of GAMS with other modeling systems reflect our personal views and experiences. It goes almost without saying that most ideas embodied in GAMS can be traced to one or more of the systems discussed in this section. GAMS seems to be a natural outgrowth of these systems, providing a rigorous but flexible algebraic representation (data structure) whereby a machine can take the responsibility for the correctness of the model and for the automatic interface with solution algorithms.

4. Selected aspects of the modeling language in GAMS

While the previous section concerned itself with general aspects of GAMS, this section will illustrate selected details of the language in GAMS. We should state clearly that this section is not designed to convince any reader that our choice of language is superior to any other modeling language. We merely want to illustrate that our choice of data structure does provide a framework for expressing structural information contained in large models. The examples in this section are supplemented with the application of the last section. For a more extensive description of the language, the reader is referred to [2].

A model statement in GAMS can be viewed as an integrated database. In addition to the data tables and assignment statements, there are the symbolic equations which represent data that can only be obtained via some solution algorithm. Both data and symbolic equations are used for a complete model definition within GAMS. We have restricted ourselves to a small character set which is available on most computers. We also have assumed that there is no carriage control available (i.e., no subscripts or superscripts), and that there are only capital letters. Besides the usual algebraic and logical operators found in other languages, we have introduced one new operator, namely the \$-operator. This is a conditional operator which can be inserted throughout the language (see Section 4.4). There are several key words used in the language, each one identifying important components of a model. Some of the main ones are: SET, PARAMETER, TABLE, VARIABLE, EQUATION and MODEL. The following subsections each describe a selected aspect of the language.

4.1. Sets and set mappings

A simple (one-dimensional) set in GAMS is a finite collection of labels. These sets play an important role in the indexing of algebraic statements. Onedimensional sets can be related to each other in the sense that there exists a correspondence between them. The syntax for sets and set correspondences are alike. As an example, consider the following correspondence between the simple sets of regions, water zones and districts.

SET RZD REGION ZONE DISTRICT MAPPING /

NORTH.IRRIGATED.(W-NORTH, C-NORTH, E-NORTH) CENTRAL.(IRRIGATED.(NW-UPPER, NE-UPPER) RAINFED.(S-UPPER, W-LOWER, E-LOWER)) : /;

After the key word set comes the name of the set, followed by a description of the set name (optional). The (three-dimensional) elements of the set are contained between the 'slash' separators. Note that the period is used as a separator of the dimensions embedded in each element, and that the order of the dimensions is fixed (in this case regions first, water zones second and districts third). In order to reduce unnecessary repetition of labels, parentheses have been used. The above three lines represent eight three-dimensional elements of the set RZD.

4.2. Data tables

Tabular arrangements are a very convenient way to describe data elements. As we discussed previously, a fundamental part of the data structure in GAMS is that all identifying information for a data element must be explicit in its description, and must be carried along in any later references. The different identifiers (set elements) can be contained in either the row or column labels. If there is more than one identifier embedded in a label, the period is again used as a separator. The following table illustrates a four-dimensional parameter, where three dimensions are captured in the row description (namely regions, crop rotations and production technologies), while the fourth dimension (time) is contained in the column label.

TABLE L LABOR COEFFICIENTS IN HOURS PER RAI

	JANUARY	FEBRUARY	MARCH	APRIL
NORTH-UPP.SUGARCANE.TRAD-BUFF	2	2	2	12
NORTH-UPP.SUGARCANE.MOD-TRACT	1	2	2	10
i i				
+	MAY	JUNE	JULY	AUGUST
NORTH-UPP.SUGARCANE.TRAD-BUFF	12	35	30	45
NORTH-UPP.SUGARCANE.MOD-TRACT	12	30	30	40

The order of the sets used in the row and column description in the table statement must be maintained in later references to the parameter. For the above example this will be L(R,C,T,M) where R, C, T and M refer to the simple sets of regions, crop rotations, technologies and months respectively.

4.3. Assignment and equation statements

Most of the syntax used in assignment statements and equations are the same, although it is straightforward to detect if a GAMS statement is either an assignment or an equation.

An assignment statement in GAMS is an instruction to perform some data manipulation and store the result. It can be compared to a FORTRAN statement where the result of the operations performed is stored under the name that appears on the left side of the equal sign. As an example, consider the parameter DIST(I,J) indicating the distance from location I to location J, where the elements in the sets I and J are identical. Assume that initially only the lower triangular part of DIST was specified in a TABLE statement (Section 4.2), and that we are interested in specifying the entire TABLE. One should note that all values of DIST(I,J) that are not defined in the TABLE statement, are assumed to be zero. We can write the following algebraic statement.

DIST(I,J) = DIST(I,J) + DIST(J,I);

This statement is implicitly defined for all two-tuples of the Cartesian product of the sets I and J. The entries of DIST(I,J) on the left will be replaced in a parallel fashion with the results from the additions on the right. An equation in GAMS is a symbolic representation of one or more constraints to be used as part of a simultaneous system of equation, or an optimization model. It always begins with the equation name, possibly indexed, followed by two dots (periods). Each symbolic equation has a type associated with it. Possible types are =L= (for less than or equal to constraints), =G= (for greater than or equal to constraints), and =E= (for equality constraints). An example is given in the next section.

4.4. The \$ operator

Partitioning large models by using driving indices provides an elegant shorthand notation. Complexities, however, are introduced when there are restrictions imposed on the partitionings. As these complexities arise continually in large-scale models, we have strived for an elegant and effective way to incorporate them in a model statement. Let us begin with an example. Define the sets R and D as regions and districts respectively. Assume that for each district in a region we know the level of income YD(R,D), and that we want to determine the regional income YR(R) for each of the regions. Writing the assignment statement

YR(R) = SUM(D, YD(R, D));

is meaningless as not every district is contained in each region. We need to use, therefore, the relationship between the sets R and D. Let RD be the set correspondence between these two sets. Then we can write the following assignment statement

 $YR(R) = SUM(D \ RD(R, D), \ YD(R, D));$

Here the dollar sign is used as a conditional operator. For each specific region R it restricts the sum to be over those elements of D for which the correspondence RD(R,D) is defined.

More generally, let A be a name or an expression in GAMS, and let B be a name or a true-false expression. Then the phrase A B is a conditional statement in GAMS where the name A is considered or the expression A is evaluated if and only if the name B is defined or the expression B is true.

A second example illustrates the conjunctive use of the dollar operator and logical phrases contained in an assignment statement. Let the sets P, I and M denote processes, plants and machines respectively. The parameter K(M,I) denotes the number of units of available capacity of machine M in plant I, while the parameter B(M,P) describes the required number of units of capacity of machine M per unit level of process P. We want to define a zero-one parameter, PPOSS(P,I), indicating which processes P need to be considered for plant I. We can write the following set of logical relations always resulting in either a zero or one.

$PPOSS(P,I) = SUM(M \ (K(M,I) EQ 0), B(M,P) NE 0) EQ 0;$

Here the expression B(M,P) NE0 will contain a value 1 if process P is dependent on machine M, and 0 otherwise. These values are summed over all machines M that are not available in plant I. If the resulting sum is zero for process P, then the process is not dependent on unavailable machines, and should therefore be considered. Note that PPOSS is one in this case. If the resulting sum is not 0, the process is dependent on at least one unavailable machine, and should therefore not be considered. The parameter PPOSS is set to zero in this case.

When the dollar operator appears in an equation statement, it is used to control the generation of equations and/or variables. As an illustration let CAP be an equation name referring to capacity constraints, and let Z be a variable name referring to levels of process operation. Using the notation of the previous paragraph, we can write the following symbolic equation.

> CAP(M,I) (K(M,I) GT 0).. SUM(P \$ PPOSS(P,I), B(M,P) * Z(P,I)) = L = K(M,I);

In this example, the system will generate an equation for a specific pair of machines and plants only when the capacity of that machine in that plant is strictly positive. Similarly, only those variables that refer to processes which can be operated at a positive level will be generated.

5. The Egyptian fertilizer sector; A case study using GAMS

In this section, we will report on a real-world application where GAMS was used as a model building tool. It is a case study to evaluate the present structure and development potential of the Egyptian fertilizer industry using several planning models. We will not be able to describe the entire family of models, but instead will provide some of the background, some experiments and some of the results. This section relies heavily on a recently published book called "The planning of investment programs in the fertilizer industry" [4]. We would like to point out that the GAMS representation of the one-period Egyptian fertilizer model is listed in the appendix of this book. Although the model is carefully developed in the various chapters, the GAMS version is the only document that finally presents a complete description of the model.

The problem in the Egyptian fertilizer industry is as follows. Given that fertilizer use will continue to increase from present levels, and that existing production capacity is not sufficient to meet even current demand, Egyptian planners are faced with the question as to what the best policy is for Egypt to adopt in order to meet future fertilizer demand requirements. Would it be preferable to import fertilizers, to produce them domestically, or both? If some fertilizers are to be imported, which ones should be imported? At what scale should fertilizer production take place? Which feedstocks should be used? What is the least-cost transport pattern for both imported and domestically produced fertilizers? Should intermediate products be shipped between plants? In an effort to deal with these questions from the point of view of the sectoral planner, a family of dynamic, linear, mixed-integer planning models of the Egyptian fertilizer industry was built in collaboration with Egyptian authorities.

The family of Egyptian fertilizer models serves as a typical example of strategic modeling: a reference model is continuously modified to reflect the learning process of the parties involved. The starting point of the analysis is the actual recorded use of fertilizer material by type in each of the twenty governorates of Egypt in 1975. The supply of these fertilizers originated either from domestic production facilities in 1975 or from imports. Domestic supplies are, however, subject to capacity constraints that are initially defined in terms of the actual production levels achieved in 1975. Fertilizer materials can be transported from supply sources to the various marketing centers by water, road or rail. In accordance with the actual situation, however, it is first assumed that all final products are transported by rail, and that all raw materials are transported by boat, and if necessary by train. With this specification, the model can be used to select the least-cost supply and shipment pattern for fertilizers in 1975. It can also determine whether a fertilizer should be imported or produced domestically, given the existing production facilities and their location.

The major portion of effort at this stage is the collection of data to support the simple model. GAMS was used as an organizing device for the specification of the model equations and the lay-out of the empty data tables. As such it served as a means to communicate the model and the data needs to the Egyptian planners. These tables were then updated or modified in accordance with the availability of data. By separating technical information from political and J. Bisschop and A. Meeraus/A general algebraic modeling system

judgmental data, the simple model helped the several parties involved in focusing on relevant issues. Once the model specification was acceptable to everyone concerned, minor variations in specification were introduced.

The following refinements of the simple model were made. First, the restriction on interplant shipments of intermediate products was dropped. Then the capacity constraints were relaxed to allow 100% capacity utilization. Finally the model was altered to investigate the implications of greater flexibility in fertilizer use by specifying nutrient requirements (in terms of nitrogen, phosphorus and potassium) rather than requirements by fertilizer type. As all these model refinements were easily expressed in terms of algebra, GAMS was used as a documenting device (See Appendix).

The purpose of running these static (one period) models is to determine if there are any short-run improvements in the operation of the fertilizer sector. Given their simplified nature, however, conclusions along these lines are only tentative and indicative. In this respect, the model serves as a device to generate particular options deserving further study. In the case of introducing the interplant shipments into the model, the results showed a non-negligible 24% total cost saving. This observation led to further investigations into the possibility of interplant shipments. The second refinements, namely, allowing increases in capacity utilization in existing facilities, did not result in any substantial payoffs. The most interesting refinement of the basic model was to change the demand specification in terms of products into a demand specification in terms of nutrient requirements. Letting the model decide on the least-cost mix of fertilizer products meeting the nutrient requirements caused a drop in the objective function value of 12%. This outcome caused the Egyptian planners to focus on the likely rate of adoption by Egyptian farmers of relatively new fertilizers such as urea.

After the simple static model and its refinements were used to focus on various issues and to build confidence in the modeling exercise, a dynamic medium-term version of the model was built. This version introduces time and addresses directly the issue of economies of scale associated with production and capacity expansion over time. With a model of this type, it is standard procedure to solve the model using estimates of the parameters that the analysts consider most likely to materialize. Since many of the estimates involve projections into the future, the values eventually chosen may reflect a certain degree of compromise among the diverging opinions of the planners involved in the study. These, in turn, provide a useful demarcation of the range of values to be investigated in the subsequent sensitivity analysis. Following the basic run and some sensitivity studies of the dynamic model, specific scenarios regarding domestic production patterns, imports and exports were investigated. At this point we refer to [4] for specific details.

One qualification of the above modeling approach should be noted. The models developed in this case study are simplified representations of reality, designed to guide decision making, not to replace it. They are merely efficient tools to evaluate and quantify the implications of a certain understanding of the economic and technical relationships that typify the fertilizer industry and the environment in which the industry is supposed to function. We also should point out some of the limitations of this approach to investment planning. First and foremost, the approach requires a set of projections of demand for the final products. As the supply price for final products is not known at the outset, the demand projections need to be based on price assumptions that may turn out to be incorrect. Another limitation is that by definition the demand projection for final products excludes the possibility of substitution among products on the basis of supply price considerations. Finally, the state of art in the computational area does not permit uncertainty to be incorporated. Despite these limitations, this modeling approach has proven to be a successful aid in the planning of the Egyptian fertilizer sector, and various specific model results were judged to be meaningful at an operational level.

A complete GAMS statement of the static one-period model is provided in the Appendix as an illustration of a medium-to-large real-world model.

6. Conclusions

Mathematical models built in a strategic planning environment such as the World Bank can play a useful and even powerful role in the overall planning process. The case study of the Egyptian fertilizer industry described in Section 5 is a good example thereof. The modeling process in such an environment is a dynamic one, as models are continuously modified. This imposes special requirements on the success of any modeling exercise. Based on our experience we have concluded that the key to success is a modeling technology where only one model representation is needed to communicate with both humans and machines. The language should be a powerful notation which can express all the relevant partitioning and structural information contained in the real-world problem. In addition, the information content of the model representation should be such that a machine can take over the responsibility for verifying the algebraic correctness and completeness of the model. GAMS is a system which is designed around these principles, and is a natural outgrowth of several of the existing modeling systems. In our environment, it has grown into a standard instrument for the representation and generation of mathematical models.

Appendix. GAMS listing of Egyptian fertilizer model

Cat defi	-141.0-00		
Set defi	nitions		
4 5	SET I	PLANT LOCATI	ons /
6		ASWAN	
7		HELWAN	
8		ASSIOUT	
9		KAFR-EL-ZT	
10		ABU-ZAABAL	
11			1
12			
13	J	DEMAND REGIO	NS /
14			
15		ALEXANDRIA	ALEXANDRIA
16		BEHERA	DAMANHUR
17		GHARBIA	TANTA
18		KAFR-EL-SH	KARE EL-SHEIKH
19		DAKAHLIA	EL MANSURA
20		•	
21		DAMIETTA	DAMIETTA
22		SHARKIA	ZAGAZIG
23		ISMAILIA	ISMAILIA
24		SUEZ	SUEZ
25		MENOUFIA	SHIBIN EL KOM
26 27		VATIOTA	BENHA
28		KALUBIA GIZA	GIZA
29		BENI-SUEF	BENI-SUEF
30		FAYOUM	EL-FAYOUM
31		MINIA	EL-MINIA
32			
33		ASSIOUT	ASSOIUT
34		NEW-VALLEY	EL KHARGA
35		SOHAG	SOHAG
36		QUENA	QUENA
37		ASWAN	ASWAN
38			1
39	M	PRODUCTIVE U	NITS /
40			
41			SULFURIC ACID: SULFUR
42		SULF-A-P	SULFURIC ACID: PYRITES
43		NITE-ACID	NITRIC ACID AMMONIA: WATER ELECTROLYSIS
44		AMM-ELEC AMM-C-GAS	AMMONIA: WAIER ELECTROLISIS
45 46			AMMONIA: COKE GAS CALCIUM AMMONIUM NITRATE
47		AMM-SULF	AMMONIUM SULFATE
48		SSP	SINGLE SUPERPHOSPHATE
49			/
50	Р	PROCESSES	/
51			
52		SULF-A-S	SULFURIC ACID: SULFUR
53			SULFURIC ACID: PYRITES
54		NITR-ACID	NITRIC ACID
55		AMM-ELEC	AMMONIA: WATER ELECTROLYSIS
56		AMM-C-GAS	AMMONIA: COKE GAS

Set definitions (contd.)

57		CAN-310	CALCIUM AMMON'IUM NITRATE: 31.0 PCT
58		CAN-335	CALCIUM AMMONIUM NITRATE: 33.5 PCT
59		AMM-SULF	AMMONIUM SULFATE
60		SSP-155	SINGLE SUPERPHOSPHATE: 15.5 PCT
61			1
62	CQ	NUTRIENTS	/
63			
64		N	NITROGEN
65		P205	PHOSPHORUS
66			/
67	CF	FINAL PRODUC	CTS (FERTILIZERS) /
68			, , , ,
69		UREA	
70		CAN-260	CALCIUM AMMONIUM NITRATE: 26.0 PCT
71		CAN-310	CALCIUM AMMONIUM NITRATE: 31.0 PCT
72			CALCIUM AMMONIUM NITRATE: 33.5 PCT
		CAN-335	
73		AMM-SULF	AMMONIUM SULFATE
74		DAP	DIAMMONIUM PHOSPHATE
75		SSP-155	SINGLE SUPERPHOSPHATE: 15.5 PCT
76		C-250-55	COMPOUND 25-5.5-0
77		C-300-100	COMPOUND 30-10-0
78			1
79	CI	INTERMEDIAT	E PRODUCTS /
80			
81		AMMONIA	
82			NITRIC ACID
		NITR-ACID	
83		SULF-ACID	SULFURIC ACID
84			
85	65	TNTERMEDIAT	ES FOR SHIPMENT / AMMONIA, SULF-ACID /
	05	INCOMBOLAL	LO FOR SHITHENT / AMOULA, SOBT-ROLD /
86			
87	CR	DOMESTIC RA	W MATERIALS AND MISCELLANEOUS INPUTS /
88			
89		EL-ASWAN	ELECTRICITY FROM ASWAN DAM
90		COKE-GAS	COKE-OVEN GAS
91		PHOS-ROCK	PHOSPHATE ROCK
92		LIMESTONE	
-			
93		EL-SULFUR	ELEMENTAL SULFUR
94		PYRITES	
95		ELECTRIC	ELECTRICITY
96		BF-GAS	BLAST-FURNACE GAS
97		WATER	COOLING WATER
98		STEAM	
99		BAGS	
100		~	1
			/
101	ALIAS	5 (I,IP);	
102			
103	SET C	ALL COMMOD	ITIES ; C(CF)=YES; C(CI)=YES; C(CR)=YES;
			1110 , 0(01/-100; 0(01/-100; 0(00/-100;

Consumption and demand data

106 107	TABLI	E CF75 CC	NSUMPTION ()F FERTILIZE	R 1974-75 (10	000 TPY)
108		CAN-260				
109		CAN-200	CAN-310	CAN-335	AMM-SULF	UREA
110	ALEXANDRIA			5.0		
111	BEHERA	1.0		5.0	3.0	1.0
112	GHARBIA	1.0		25.0	90.0	35.0
113	KAFR-EL-SH	1.0		17.0	60.0	28.0
114	DAKAHLIA	1.0		10.0	45.0	22.0
115		*•0		26.0	60.0	20.0
116	DAMIETTA			2 0		
117	SHARKIA	1.0		2.0	15.0	8.0
118	ISMAILIA	1.0		31.0	50.0	28.0
119	SUEZ			4.0	6.0	2.0
120	MENOUFIA	1.0		1.0		
121		1+0		24.0	21.0	30.0
122	KALUBIA					
123	GIZA			25.0	16.0	7.0
124	BENI-SUEF	1.0		40.0	6.0	2.0
125	FAYOUM	1.0		15.0	1.0	20.0
126	MINIA	2.0	15 0	20.0	6.0	20.0
127		2.0	15.0	35.0	1.0	41.0
128	ASSIOUT	1.0	00.0			
129	NEW-VALLEY	1.0	20.0	26.0	1.0	27.0
130	SOHAG					1.0
131	QUENA		65.0	3.0		7.0
132	ASWAN		95.0	2.0		3.0
133			40.0			
134	+	CCD 165				
135	r	225-100	C-250-55	C-300-100	DAP	
136	ALEXANDRIA	8.0				
137	BEHERA	-				
138	GHARBIA	64.0	1.0	• 1	• 1	•
139	KAFR-EL-SH	57.0	1.0	• 2	• 1	
140	DAKAHLIA	25.0	2.0	• 1		
141	DARAILDIA	52.0	1.0			
142	DAMIETTA	5.0				
143	SHARKIA	5.0				
144	ISMAILIA	43.0	1.0	• 1		
145	SUEZ	4.0				
146	MENOUFIA	1.0				
147	HENOUFIA	33.0	2.0	• 1	• 1	
148	KALUBIA					
149	GIZA	22.0	1.0		• 1	
150	BENI-SUEF	14.0	1.0	• 1		
151	FAYOUM	13.0	3.0			
152	MINIA	17.0	1.0			
153	LET UTV	50.0	3.0	• 2	• 1	
154	ASSIOUT					
155		35.0	5.0	• 1		
156	NEW-VALLEY	1.0				
157	SOHAG	20.0	1.0			
158	QUENA	8.0				
200	ASWAN	8.0				

Consumption and demand data (contd.)

160						
161						
162	TAB	LE ALPHA	NUTRIENT	CONTENT		
163						
164		N	P205			
165						
166	UREA	• 46				
167	CAN-260	•26				
168	CAN-310	• 31				
169	CAN-335	•335				
170	AMM-SULF	•206				
171	DAP	•18	• 46			
172	SSP-155		•15			
173	C-250-55	•25	•055			
174	C-300-100	•30	.10			
175						
176	PARAMETERS	CN75	CONSUMPTIO	N OF NUTRIENTS	1974-75 (1000	TPY);
177						
178	CN75(J,CQ)	=	SUM(CF, AL	PHA(CF,CQ)*CF7	5(J,CF));	
179	CN75 ("TOTA	L'', CQ) =	SUM(J, CN7	5(J,CQ));		
180	•	-				
181	DISPLAY CN	75;				

Transportation data

			N.D. DEGRUNARA	(11)(0)		
184 185	TABLE	ROAD RU	DAD DISTANCES	(KH5)		
185		ABU-KTR	KAFR-EL-ZT	TALKHA	ABU-ZAABAL	HELWAN
187		mpo nin				
188	ALEXANDRIA	16	119	187	210	244
189	BEHERA	76	42	120	50	184
190	GHARBIA	150	20	55	65	122
191	KAFR-EL-SH	145	20	35	105	162
192	DAKAHLIA	208	58	3	138	152
193						
194	DAMIETTA	267	131	66	216	233
195	SHARKIA	240	78	58	60	110
196	ISMAILIA	365	241	146	142	173
197	SUEZ	370	246	298	224	178
198	MENOUFIA	157	33	90	154	109
199						
200	KALUBIA	190	66	81	97	76
201	GIZA	287	133	146	48	9
202	BENI-SUEF	359	248	261	163	105
203	FAYOUM	341	230	243	145	88
204	MINIA	384	372	386	288	230
205						***
206	ASSIOUT	616	504	518	420	362
207	NEW-VALLEY	815	703	717	619	561
208	SOHAG	715	603	617	519	461
209	QUENA	858	746	760	- 662	604
210	ASWAN	1134	1022	1036	938	880
211		01150	1007010			
212 213	+	SUEZ	ASSIOUT.	ASWAN		
213	ALEXANDRIA	362	607	1135		
214	BEHERA	288	547	1065		
216 .	GHARBIA	200		1003		
217	KAFR-EL-SH	266	525	1043		
218	DAKAHLIA	219	515	1033		
219						
220	DAMIETTA	286	596	1114		
221	SHARKIA	214	473	991		
222	ISMAILIA	89	536	1054		
223	SUEZ		541	1059		
224	MENOUFIA	213	472	990		
225						
226	KALUBIA	180	439	957	•	
227	GIZA	169	372	890		
228	BENI-SUEF	270	257	775		
229	FAYOUM	252	308	826		
230	MINIA	394	132 -	650		-
231						
232	ASSIOUT	527		518		
233	NEW-VALLEY	726		519		
234	SOHAG	626		419		
235	QUENA	769		276		
236	ASWAN	1045	518			

J. Bisschop and A. Meeraus / A general algebraic modeling system

Transportation data (contd.)

238	TAI	BLE RAIL I	NTERPLANT RAI	L DISTANCES	(KMS)
239		VAED_FI	4811	HET WAN AS	SIOUT ASWAN
240	ABU-ZAABAL	85	ADU-CAADAL	NELWAN AL	SIGOI ASWAN
241	HELWAN	142	57		
242	ASSIOUT	504	420	362	
243		1022	938	880	518
244	ASWAN	1022	930	880	510
245					
246	7.41		ORT DISTANCES	(WWC)	
247	14	DLC IMPD IMP	JAI DISIANCES	(KHS)	
248		BARGE	ROAD		
249		DAKGD	KORD		
250	KAFR-EL-ZT	104	6		
251 252	ABU-ZAABAL		•1		
252	HELWAN	183	• •		
253	ASSIOUT	583			
254	ASWAN	1087	10		
255	ASWAN	1007	10		
257					
258	PARAMETERS	MUF TRANS	PORT COST (LE	PER TON):	FINAL PRODUCTS
259					IMPORTED FINAL PRODUCTS
260					INTERPLANT SHIPMENT
261					IMPORTED RAW MATERIALS ;
262					
263	RAIL(I.I	P) = RAIL(I)	IP) + RAIL(IH	P.I):	
264			= ROAD (J."/		
265				···· ,,	
266	MUF(I,J)	= (.5 +	.0144*ROAD(J	I.I))\$ROAD(J,I);
267	MUFV(J)				<pre>(S"))\$ROAD(J,"IMPORT-PTS");</pre>
260	MUI(I,IP	= (3.5 +	.0300*RATT.	(TP))SRAIL(I.TP);
269	MUR(I)	= (1.0 +	.0030*IMPD()	"BARGE"))\$IMPD(1,"BARGE")
270		+ (.5 +	.0144*IMPD(1	"ROAD"))SIMPD(I, "ROAD ");
271				,	,,,,, ,,,
272	DISPLAY M	UF, MUFV, MUI.	MUR:		
273					

Technology data

276 277	TAI	BLE A INP	UT-OUTPUT	COEFFIC	IENT		
278 279		SULF-A-S	SULF-A-	P NITR-	ACID	AMM~ELEC	AMM-C-GAS
280	EL-ASWAN					-12.0	
281	COKE-GAS					-12.00	-2.0
282	PYRITES		82	6			-2.0
282	EL-SULFUR	334	-•02	.0			
284	SULF-ACID	1.0	1.0				
285	AMMONIA	1.0	1.0		292	1.0	1.0
286	NITR-ACID			1.			
287					-		
288	ELECTRIC	-50	-75	-2	31		-1960
289	BF-GAS			_	•		-609
290	WATER	-20	-60		6		-700
291	STEAM				-		-4
292							
293	+	SSP-155	CAN-310	CAN-335	AMM-	SULF	
294							
295	PHOS-ROCK	62					
296	SULF-ACID	41				76	
297	AMMONIA		20	21		26	
298	NITR-ACID		71	76			
299	LIMESTONE		12	04			
300	SSP-155	1.0					
301	CAN-310		1.0				
302	CAN-335			1.0			
303	AMM-SULF				1	• 0	
304							
305	BAGS	-22.	-23.	-23.	-22	•	
306	WATER	-6.	-49.	-49.	-17	•	
307	ELECTRIC	-14.			-19	•	
308	STEAM		4	4			
309							
310							
311	TA	BLE B CAP	ACITY UTI	LIZATION	COEF	FICIENT	
312							
313		SULF-A-S	SULF-A-	-P NITR-	ACID	AMM-ELEC	AMM-C-GAS
314							
315	SULF-A-S	1					
316	SULF-A-P		1				
317	NITR-ACID			1			
318	AMM-ELEC					1	<u>.</u>
319	AMM-C-GAS						1
320		00D 155		0.1X 0.05			
321	+	SSP-155	CAN-310	CAN-335	AMM	-SULF	
322	C C D	,					
323 324	SSP C-AMM-NITR	1	,	1			
325	AMM-SULF		1	1		1	
رےد	Arin-SULF					1	

Prices

328	PARAMETER	PV IM	PORT	PRICE	(CIF	US\$	PER	TON	1975)	
329										
330	PYRITES	17.	5							
331	EL-SULFUR	55								
332										
333	UREA	150								
334	CAN-260	75								
335	CAN-310	90								
336	CAN-335	100								
337	AMM-SULF	75								
338	DAP	175								
339	SSP-155	80								
340	C-250-55	100								
341	C-300-100	130								
342										
343										
344	TAI	BLE PD	DOM	ESTIC I	RAW M.	ATERI	LAL E	RICI	ES	
345										
346		LIMEST	ONE	COKE-0	GAS	EL-AS	SWAN	PHO	DS-ROCK	
347	*	LE/	TON	LE/MN	CF	LE,	/ MWH		LE/TON	í
348										
349	KAFR-EL-ZT								5.0	r
350	ABU-ZAABAL								4.0	1
351	HELWAN		1.2		16					
352	ASSIOUT								3.5	
353	ASWAN		1.2				1			
354										
355										
356	PARAMETER	PMISC	MIS	C. MAT	ERIAL	COST	r,	1		
357										
359	ELECTRIC	.007	LE/K	WН						
360		.007	LE/C							
361		.031	LE/C							
362		.25	LE/T							
363		.28	LE/U							
365			/-						/;	
366									.,	
367										
368	PD(I,CR)\$	PMISC(CR) =	PMISC	(CR):					
369	, , , - , - , + , +		,		,,					
370	DISPLAY P	D:								
371	52010011	-,								

/

Capacity data

374	TAB	LE DCAP	DESIGN C	APACITY OF PL	ANTS (T/DAY	`)
375 376			C CUTE A	-P NITR-ACID	ANN ELEC	
376		SULF-A-	S SULF-A	-P NIIK-ACID	AMM-ELEC	AMM-C-GAS
378	ASWAN			800	450	
379	HELWAN			282	420	172
380	KAFR-EL-ZT	200	50	202		172
381	ASSIOUT	250	0			
382		242	227			
383	ADG-2AADAD	242	227			
384	+	SSP C-	AMM-NTTR	AMM-SULF		
385	•	551 0	AUTO ATTA	MIMI OODI		
386	ASWAN		1100			
387	HELWAN		364	24		
388	KAFR-EL-ZT	600	501			
389	ASSIOUT	600				
390	ABU-ZAABAL					
391						
392						
393	PARAMETER K	INITIA	CAPACITY	(1000 TPY);	K(M,I) = .3	3*DCAP(I.M):
394				••••••		
395	SCALARS EK	EXCHAI	NGE RATE	1.4/		
396	UTI	L UTILA	ZATION			
397						
398	SETS MPOS	PRODI	JCIIVE UNI	TS POSSIBILIT	IES	
399	PPOS	PROC	ESS POSSIE	ILITIES		
400	CPOS	COMM	DITY POSS	IBILITIES		
401	CPOSF	COMMO	DITY PROD	UCTION POSSIB	ILITIES	
402	CPOSN	COMM	DDITY CONS	UMPTION POSSI	BILITIES ;	
403						
404	MPOS (M,	I) = K(I)	1,1);			
405	PPOS (P,	I) = SUI	4(M\$(NOT M	IPOS(M,I)), B(M,P) NE O)	EQ 0 ;
406			,"HELWAN")			
407	PPOS ("C	AN-335"	,"ASNAN")=	=NO;		
408				P,I), A(C,P) G		
409				P,I), A(C,P) L		
410	CPOS(C,I	C = C P	OSP(C,1) 4	- CPOSN(C,I) ;		
411						
412	DISPLAY MPC	os, ppos	, CPOSP, C	CPOSN, CPOS ;		

Equations

415 416 417 418 419 420 421 422 423 424	VARIABLES	PSIL	PROCESS LEVEL(1000 TPY)DOMESTIC SHIPMENT ACTIVITY: FINAL PRODUCTS(1000 TPY)DOMESTIC SHIPMENT ACTIVITY: INTERMEDIATES(1000 TPY)IMPORTS: FINAL PRODUCTS(1000 TPY)IMPORTS: RAW MATERIALS(1000 TPY)DOMESTIC RAW MATERIAL PURCHASES(1000 TPY)DOMESTIC RAW MATERIAL PURCHASES(1000 LE)DOMESTIC RECURRENT COST(1000 LE PER YEAR)TRANSPORT COST(1000 LE PER YEAR)IMPORT COST(1000 LE PER YEAR)
425 426 427 428 429 430 431 432	EQUATIONS	MBD MBDB MB CC	OBJECTIVE FUNCTION (1000 LE DISCOUNTED) MATERIAL BALAMCE ON DEMAND: NUTRIENT (1000 TPY) MATERIAL BALANCE ON DEMAND: MATERIAL (1000 TPY) MATERIAL BALANCE (1000 TPY) CAPACITY CONSTRAINT INTERPLANT SHIPMENT FIX
432 433 434 435 436		AP AL AI	ACCOUNTING: DOMESTIC RECURRENT COST(1000 LE PER YEAR) ACCOUNTING: TRANSPORT COST (1000 LE PER YEAR) ACCOUNTING: IMPORT COST (1000 LE PER YEAR) ;
438	MBD(CQ,J)	SUM (C)	F, ALPHA(CF,CQ)*(SUM(I\$CPOSP(CF,I), XF(CF,I,J))
439			+ VF(CF,J))) =G= CN75(J,CQ);
440			
441	MBDB(CF,J)\$CF	75(J,C	F)
442 443	SUM(1\$CPOSP	(CF,I)	, XF(CF,I,J)) + VF(CF,J) =G= CF75(J,CF);
442 443 444		-	<pre>, XF(CF,I,J)) + VF(CF,J) =G= CF75(J,CF); OS(P,I), A(C,P)*Z(P,I))</pre>
443	MB(C,I) SU	M(P\$PP	
443 444	MB(C,I) SU	M(P\$PP) M(IP, 3	OS(P,I), A(C,P)*Z(P,I))
443 444 445	MB(C,I) SU + SU	M(P\$PP) M(IP, 3	OS(P,I), A(C,P)*Z(P,I)) XI(C,IP,I)\$(CPOSP(C,IP)*CPOSN(C,I))
443 444 445 446	MB(C,I) SU + SU + (V	M(P\$PP) M(IP, : - : R(C,I)	OS(P,I), A(C,P)*Z(P,I)) XI(C,IP,I)\$(CPOSP(C,IP)*CPOSN(C,I)) XI(C,I,IP)\$(CPOSN(C,IP)*CPOSP(C,I)))\$CS(C)
443 444 445 446 447	MB(C,I) SU + SU + (V	M(P\$PP) M(IP, : - : R(C,I)	GS(F,I), A(C,P)*Z(P,I)) XI(C,IP,I)\$(CPOSP(C,IP)*CPOSN(C,I)) XI(C,I,IP)\$(CPOSN(C,IP)*CPOSP(C,I)))\$CS(C) \$PV(C) + U(C,I)\$(PD(I,C)))\$(CR(C)*CPOSN(C,I))
443 444 445 446 447 448	MB(C,I) SU + SU + (V - SU	M(P\$PP) M(IP, 1 - 1 R(C,I) M(J\$CP)	GS(F,I), A(C,P)*Z(P,I)) XI(C,IP,I)\$(CPOSP(C,IP)*CPOSN(C,I)) XI(C,I,IP)\$(CPOSN(C,IP)*CPOSP(C,I)))\$CS(C) \$PV(C) + U(C,I)\$(PD(I,C)))\$(CR(C)*CPOSN(C,I))
443 444 445 446 447 448 449	MB(C,I) SU + SU + (V - SU	M(P\$PP) M(IP, 1 - 1 R(C,I) M(J\$CP)	OS(F,I), A(C,P)*Z(P,I)) XI(C,IP,I)\$(CPOSP(C,IP)*CPOSN(C,I)) XI(C,I,IP)\$(CPOSN(C,IP)*CPOSP(C,I)))\$CS(C) \$PV(C) + U(C,I)\$(PD(I,C)))\$(CR(C)*CPOSN(C,I)) OSP(C,I), XF(C,I,J))\$CF(C) =G= 0 ;
443 444 445 446 447 448 449 450	MB(C,I) SU + SU + (V - SU XIFIX(CS,I,IP	M(P\$PP) M(IP, : R(C,I) M(J\$CP) \$(CP0)	OS(F,I), A(C,P)*Z(P,I)) XI(C,IP,I)\$(CPOSP(C,IP)*CPOSN(C,I)) XI(C,I,IP)\$(CPOSN(C,IP)*CPOSP(C,I)))\$CS(C) \$PV(C) + U(C,I)\$(PD(I,C)))\$(CR(C)*CPOSN(C,I)) OSP(C,I), XF(C,I,J))\$CF(C) =G= 0 ;

24

J. Bisschop and A. Meeraus / A general algebraic modeling system

Equations (contd.) OBJ., PSI =E= PSIP + PSIL + PSII : 454 455 AP.. PSIP =E= SUM((CR,1)\$CPOSN(CR,I), PD(I,CR)*U(CR,I)); 456 457 AL., PSIL =E= SUM(CF, SUM((I,J)\$CPOSP(CF,I), MUF(I,J)*XF(CF,I,J)) 458 459 + SUM(J, MUFV(J)*VF(CF,J))) + SUM((CS,I,IP)\$(CPOSP(CS,I)*CPOSN(CS,IP)), MUI(I,IP)*XI(CS,I,IP) 460 + SUM((CR,1)\$(CPOSN(CR,1)\$PV(CR)), MUR(1)*VR(CR,1)); 461 462 AI., PSII/ER =E= SUM((CF,J), PV(CF)*VF(CF,J)) 463 + SUM((CR.I)\$CPOSN(CR,I), PV(CR)*VR(CR,I)); 464 465 MODEL STAT1 / MBDB, MB, XIFIT, CC, OBJ, AP, AL, AI / STAT2 / MBDB, MB, CC, OBJ, AP, AL, AI / STAT4 / MBD, MB, CC, OBJ, AP, AL, AI /; 467 468 469 470 SOLVE STAT1 MINIMIZING PSI USING APEX1 ; 471 472 DOMESTIC SHIPMENT ACTIVITY : FINAL PRODUCTS (1000 TPY) PARAMETERS RXF 473 TOTAL DOMESTIC SUPPLY : FINAL PRODUCTS (1000 TPY) 474 TDS TOTAL IMPORT : FINAL PRODUCT (1000 TPY) 475 TIF TRANSPORTATION LOAD (1000 TON_KM) ; 476 TI. 477 RXF(I,J,CF) = XF.L(CF,I,J);478 TDS = SUM((CF,I,J), XF.L(CF,I,J)); TIF = SUM((CF,J), VF.L(CF,J)); 479 480 TL("RAIL") = SUM((CS,I,IP), RAIL(I,IP)*XI.L(CS,I,IP)); TL("ROAD") = SUM((CR,I), VR.L(CR,I)*IMPD(I,"ROAD")) 481 482 + SUM((CF, I, J), XF.L(CF, I, J)*ROAD(J, I)) 483 + SUM((CF,J), VF.L(CF,J)*ROAD(J,"IMPORT-PTS")); TL("BARGE") = SUM((CR,I), VR.L(CR,I)*IMPD(I,"BARGE")); 484 485 486 DISPLAY MBDB.LO, MBDB.M, MB.M, CC.UP, CC.M, RXF, TDS, TIF, VF.L, Z.L, VR.L, 487

U.L, TL ;

Reference maps

VARIABLES TYPE REFERENCES

A	PARAM	REF	408	409	444	DEFINED	276	DCL	276		
AI	EQU	REF	467	468	469	DEFINED	463	DCL	435		
AL	EQU	REF	467	468	469	DEFINED	458	DCL	434		
ALPHA	PARAM	REF	178	438	DEFINED	162	DCL	162	474		
AP	EQU	REF	467	468	469	DEFINED	456	DCL	433		
В	PARAM	REF	405	452	DEFINED	311	DCL	311	435		
С	SET	REF	408	409	2*410	444	3*445	4*446	6*447	3*448	DEFINED
		3*103	CONTROL	408	409	410	444	DCL	103	3.440	DEFINED
CC	EQU	REF	467	468	469	2*487	DEFINED	452	DCL	430	
CF	SET	REF	2*178	3*438	439	441	4*442	432	2*458	459	0+//0
		478	479	480	483	484	DEFINED	67	CONTROL	103	2*463
		438	441	458	463	478	479	480	483	484	178
		67			.55	470	- / /	400	403	404	DCL
CF75	PARAM	REF	178	441	442	DEFINED	106	DCL	106		
CI	SET	DEFINED	79	CONTROL	103	DCL	79	500	100		
CN75	PARAM	REF	179	181	439	DEFINED	178	179	DCL	176	
CPOS	SET	REF	412	DEFINED	410	DCL	400	175	DCL	170	
CPOSN	SET	REF	410	412	445	446	400	450	456	460	461
		464	DEFINED	409	DCL	402		450	4.20	400	401
CPOSP	SET	REF	410	412	438	442	445	446	448	450	
		460	DEFINED	408	DCL	401		440	440	450	458
CQ	SET	REF	178	179	438	439	DEFINED	62	CONTROL	178	170
		438	DCL	62	100	437	BOT INGD	02	CONTROL	170	179
CR	SET	REF	2*368	447	3*455	3*461	3*464	482	485	DEFINED	87
		CONTROL	103	368	456	461	464	482	485	DEFINED	87
CS	SET	REF	446	3*450	3*460	481	DEFINED	85	CONTROL	450	460
		481	DCL	85	2 . 30	.51			SOUTHOL	4.20	400
DCAP	PARAM	REF	393	DEFINED	374	DCL	374				
ER	PARAM	REF	463	DEFINED	395	DCL	395				
I	SET	REF	101	2*263	2*266	2*268	2*269	2*270	393	404	405
		408	409	2*410	2*438	2*442	2*444	2*445	2*446	404	2*448
		2*450	4*452	3*456	3*458	3*460	3*461	2*464	478	479	2*448 2*481
		2*482	2*483	2*485	DEFINED	4	CONTROL	263	266	268	2*481
		368	393	404	405	408	409	410	438	442	
		450	452	456	458	460	461	410	438	442	444
		482	483	485	DCL	400	401	404	470	479	481
IMPD	PARAM	REF	2*269	2*270	482	485	DEFINED	247	DCL	247	
IP	SET	REF	2*263	2*268	2*445	2*446	2*450	247 3*460	2*481		0 ()
		268	445	450	460	481	DCL	101	2*481	CONTROL	263
		200	442	4.50	400	401	10.7	101			

,

J. Bisschop and A. Meeraus/A general algebraic modeling system

~~

Reference	e maps (contd.)										
J	SET	REF	178	179	264	2*266	2*267	438	2*439	441	3*442
		448	2*458	2*459	463	478	479	480	2*483	2*484	DEFINED
		13	CONTROL	178	179	264	266	267	438	441	448
		458	459	463	478	479	480	483	484	DCL	13
к	PARAM	REF	404	452	DEFINED	393	DCL	393			10
м	SET	REF	393	404	2*405	3*452	DEFINED	39	CONTROL	393	404
		405	452	DCL	39						
MB	EQU	REF	467	468	469	487	DEFINED	444	DCL	429	
мвб	EQU	REF	469	DEFINED	438	DCL	427				
MBDB	EQU	REF	467	468	2*487	DEFINED	441	DCL	428		
MPOS	SET	REF	405	412	452	DEFINED	404	DCL	398		
MUF	PARAM	REF	272	458	DEFINED	266	DCL	258			
MUFV	PARAM	REF	272	459	DEFINED	267	DCL	259			
1U I	PARAM	REF	272	460	DEFINED	268	DCL	260			
1UR	PARAM	REF	272	461	DEFINED	269	DCL	261			
)BJ	EQU	REF	467	468	469	DEFINED	454	DCL	426		
,	SET	REF	405	2*408	2*409	3*444	3*452	DEFINED	50	CONTROL	405
		408	409	444	452	DCL	50				
PD	PARAM	REF	370	447	456	DEFINED	344	368	DCL	344	
PMISC	PARAM	REF	2*368	DEFINED	356	DCL	356	5.0		2.14	
POS	SET	REF	408	409	412	444	452	DEFINED	405	406	407
		DCL	399								407
PSI	VAR	REF	454	471	DCL	421			•		
SII	VAR	REF	454	463	DCL	424					
SIL	VAR	REF	454	458	DCL	423					
SIP	VAR	REF	454	456	DCL	422					
v	PARAM	REF	447	461	463	464	DEFINED	328	DCL	328	
RAIL	PARAM	REF	2*263	2*268	481	DEFINED	238	263	DCL	238	
ROAD	PARAM	REF	264	2*266	2*267	483	484	DEFINED	184	264	DCL
		184					,.,	0011100	104	204	001
XF	PARAM	REF	487	DEFINED	478	DCL	473				
TAT1	MODEL	REF	471	DEFINED	467	DCL	467				
STAT2	MODEL	DEFINED	468	DCL	468						
STAT4	MODEL	DEFINED	469	DCL	469						
DS	PARAM	REF	487	DEFINED	479	DCL	474				
[]F	PARAM	REF	487	DEFINED	480	DCL	475				
ſL	PARAM	REF	488	DEFINED	481	482	485	DCL	476		
r	VAR	REF	447	456	488	DCL	405	000	470		
TIL	PARAM	REF	452	DEFINED	396	DCL	396				
F	VAR	REF	439	442	459	463	480	484	487	DCL	418
R	VAR	REF	447	461	464	482	485	487	DCL	419	410
F	VAR	REF	438	442	448	452	485	487	483	DCL	416
I	VAR	REF	445	446	448	458	478	DCL	483	DCL	410
IFIX	EQU	REF	467	DEFINED	450	DCL	431	006	417		
2	VAR	REF	444	452	487	DCL	415				

.

J. Bisschop and A. Meeraus/A general algebraic modeling system

Reference maps (contd.)

,	
SETS	
-	ALL COMMODITIES
C	FINAL PRODUCTS (FERTILIZERS)
CF	
CI	INTERMEDIATE PRODUCTS
CPOS	COMMODITY POSSIBILITIES
CPOSN	COMMODITY CONSUMPTION POSSIBILITIES
CPOSP	COMMODITY PRODUCTION POSSIBILITIES
	NUTRIENTS
CQ	DOMESTIC RAW MATERIALS AND MISCELLANEOUS INPUTS
CR	
CS	INTERMEDIATES FOR SHIPMENT
I	PLANT LOCATIONS
IP	ALIAS FOR I
J	DEMAND REGIONS
	PRODUCTIVE UNITS
M	PRODUCTIVE UNITS POSSIBILITIES
MPOS	
P	PROCESSES
PPOS	PROCESS POSSIBILITIES
PARAMETERS	
	INPUT-OUTPUT COEFFICIENT
A	
ALPHA	NUTRIENT CONTENT
В	CAPACITY UTILIZATION COEFFICIENT
CF 75	CONSUMPTION OF FERTILIZER 1974-75 (1000 TPY)
CN75	CONSUMPTION OF NUTRIENTS 1974-75 (1000 TPY)
DCAP	DESIGN CAPACITY OF PLANTS (T/DAY)
ER	EXCHANGE RATE
IMPD	IMPORT DISTANCES (KMS)
	INITIAL CAPACITY (1000 TPY)
K	
MUF	TRANSPORT COST (LE PER TON): FINAL PRODUCTS
MUFV	TRANSPORT COST (LE PER TON): IMPORTED FINAL PRODUCTS
MUI	TRANSPORT COST (LE PER TON): INTERPLANT SHIPMENT
MUR	TRANSPORT COST (LE PER TON): IMPORTED RAW MATERIALS
PD	DOMESTIC RAW MATERIAL PRICES
PMISC	MISC. MATERIAL COST
PV	IMPORT PRICE (CIF US\$ PER TON 1975)
	INTERPLANT RAIL DISTANCES (KMS)
RAIL	, ,
ROAD	ROAD DISTANCES (KMS)
RXF	DOMESTIC SHIPMENT ACTIVITY : FINAL PRODUCTS (1000 TPY)
TDS	TOTAL DOMESTIC SUPPLY : FINAL PRODUCTS (1000 TPY)
TIF	TOTAL IMPORT : FINAL PRODUCT (1000 TPY)
TL	TRANSPORTATION LOAD (1000 TON KM)
UTIL	UTILAZATION
UIID	UIIDADATION
VARIABLES	
PSI	TOTAL COST (DISCOUNTED) (1000 LE)
PSII	IMPORT COST (1000 LE PER YEAR)
PSIL	TRANSPORT COST (1000 LE PER YEAR)
PSIP	DOMESTIC RECURRENT COST (1000 LE PER YEAR)
U	DOMESTIC RAW MATERIAL PURCHASES (UNITS)
VF	IMPORTS: FINAL PRODUCTS (1000 TPY)
VR	IMPORTS: RAW MATERIALS (1000 TPY)
XF	DOMESTIC SHIPMENT ACTIVITY: FINAL PRODUCTS (1000 TPY)
XI	DOMESTIC SHIPMENT ACTIVITY: INTERMEDIATES (1000 TPY)
Z	PROCESS LEVEL (1000 TPY)
5	
FOULT	
EQUATIONS	
AY	ACCOUNTING: IMPORT COST (1000 LE PER YEAR)
AL	ACCOUNTING: TRANSPORT COST (1000 LE PER YEAR)
AP	ACCOUNTING: DOMESTIC RECURRENT COST (1000 LE PER YEAR)
CC	CAPACITY CONSTRAINT
MB	
	MATERIAL BALANCE (1000 TPY)
MBD	MATERIAL BALANCE ON DEMAND: NUTRIENT (1000 TPY)
MBDB	MATERIAL BALANCE ON DEMAND: MATERIAL (1000 TPY)
OBJ	OBJECTIVE FUNCTION (1000 LE DISCOUNTED)
XIFIX	INTERPLANT SHIPMENT FIX

Reference maps (contd.)

MODELS

STAT1 STAT2 STAT4

UNIQUE ELEMENTS IN ENTRY ORDER

1 11 21 31 41 51 61	ASWAN DAMIETTA NEW-VALLEY SSP C-300-100 BF-GAS RAIL	HELWAN SHARKIA SOHAG CAN-310 AMMONIA WATER	ASSIOUT ISMAILIA QUENA CAN-335 SULF-ACID STEAM	KAFR-EL-ZT SUEZ SULF-A-S SSP-155 EL-ASWAN BAGS	ABU-ZAABAL MENOUFIA SULF-A-P N COKE-GAS TOTAL	ALEXANDRIA KALUBIA NITR-ACID P205 FHOS-ROCK ABU-KIR	BEHERA GIZA AMM-ELEC UREA LIMESTONE TALKHA	GHARBIA BENI-SUEF AMM-C-GAS CAN-260 EL-SULFUR BARGE	KAFR-EL-SH FAYOUM C-AMM-NITR DAP PYRITES ROAD	AMM CHITP	schop and A. Meeraus
UNIQUE ELEMENTS IN SORTED ORDER											lus

1	ABU-KIR	ABU-ZAABAL	ALEXANDRIA	AMMONIA	AMM-C-GAS	AMM-ELEC	AMM-SULF	ASSIOUT	ASWAN	BAGS	<u>م</u>
11	BARGE	BEHERA	BENI-SUEF	BF-GAS	CAN-260	CAN-310	CAN-335	» COKE-GAS	C-AMM-NITR	C-250-55	8e)
21	C-300-100	DAKAHLIA	DAMIETTA	DAP	ELECTRIC	EL-ASWAN	EL-SULFUR	FAYOUM	GHARBIA	GIZA	ne
31	HELWAN	IMPORT-PTS	ISMAILIA	KAFR-EL-SH	KAFR-EL-ZT	KALUBIA	LIMESTONE	MENOUFIA	MINIA	N	a
41	NEW-VALLEY	NITR-ACID	PHOS-ROCK	PYRITES	P205	QUENA	RAIL	ROAD	SHARKIA	SOHAG	a
51	SSP	SSP-155	STEAM	SUEZ	SULF-ACID	SULF-A-P	SULF-A-S	TALKHA	TOTAL	UREA	180
61	WATER										ġ

References

- [1] I. Adelman and S. Robinson, Income distribution policy in the developing countries: A case study of Korea (Oxford University Press, Oxford, 1978).
- [2] J. Bisschop and A. Meeraus, "Selected aspects of a general algebraic modeling language", in: A.V. Balakrishnan and M. Thoma, eds., Lecture Notes in Control and Information Sciences 23 (Springer-Verlag, Berlin, 1980).
- [3] H.B. Chenery and R. Weaving, "An overview of research at the World Bank", World Bank Research News 1 (1) (1980) 1-9.
- [4] A.M. Choksi, A. Meeraus and A.J. Stoutjesdijk, The planning of investment programs in the fertilizer industry (Johns Hopkins University Press, London, 1980).
- [5] K. Dervis and S. Robinson, "A general equilibrium analysis of the causes of a foreign exchange crisis", Journal of Political Economy, to appear.
- [6] J.H. Duloy, G. O'Mara, S. Ting and A. Brooke, "Programming and designing investment: The Indus Basin—A preliminary report on validation of and some water allocation experiments with the Indus Basin Model", Development Research Center, World Bank, mimeograph (1979).
- [7] L.M. Goreux and A.S. Manne, Multi-level planning case studies in Mexico (North-Holland, Amsterdam, 1973).
- [8] S. Gupta, A. Schwartz and R. Padula, "The World Bank model for global interdependence: A quantitative framework for the World Development Report", *Journal of Policy Modeling* (1979) 179-200.
- [9] D. Kendrick and A. Stoutjesdijk, The planning of industrial investment programs: A methodology (Johns Hopkins University Press, London, 1979).
- [10] F.G. Pyatt and J.I. Round, "Social accounting matrices for development planning", The Review of Income and Wealth 23 (1977) 339-364.

- No. 289. J. B. Knight and R. H. Sabot, "Educational Expansion and the Kuznets Effect," *The American Economic Review*
- No. 290. Malcolm D. Bale and Ulrich Koester, "Maginot Line of European Farm Policies," *The World Economy*
- No. 291. Danny M. Leipziger, "Lending versus Giving: The Economics of Foreign Assistance," World Development
- No. 292. Gregory K. Ingram, "Land in Perspective: Its Role in the Structure of Cities," World Congress on Land Policy, 1980
- No. 293. Rakesh Mohan and Rodrigo Villamizar, "The Evolution of Land Values in the Context of Rapid Urban Growth: A Case Study of Bogotá and Cali, Colombia," *World Congress on Land Policy*, 1980
- No. 294. Barend A. de Vries, "International Ramifications of the External Debt Situation," The AMEX Bank Review Special Papers
- No. 295. Rakesh Mohan, "The Morphology of Urbanisation in India," *Economic and Political* Weekly
- No. 296. Dean T. Jamison and Peter R. Moock, "Farmer Education and Farm Efficiency in Nepal: The Role of Schooling, Extension Services, and Cognitive Skills," *World Development*
- No. 297. Sweder van Wijnbergen, "The 'Dutch Disease': A Disease after All?" *The Economic Journal*
- No. 298. Arne Drud and Wafik M. Grais, "Macroeconomic Adjustment in Thailand: Demand Management and Supply Conditions," *Journal of Policy Modeling*
- No. 299. Shujiro Urata, "Factor Inputs and Japanese Manufacturing Trade Structure," *The Review* of Economics and Statistics
- No. 300. Dipak Mazumdar, "The Rural-Urban Wage Gap Migration and the Working of Urban Labor Market: An Interpretation Based on a Study of the Workers of Bombay City," Indian Economic Review
- No. 301. Gershon Feder and Roger Slade, "Contact Farmer Selection and Extension Visits: The Training and Visit Extension System in Haryana, India," *Quarterly Journal of International Agriculture*
- No. 302. James Hanson and Jaime de Melo, "The Uruguayan Experience with Liberalization and Stabilization, 1974–1981," *Journal of Interamerican Studies and World Affairs*
- No. 303. Nancy Birdsall and Dean T. Jamison, "Income and Other Factors Influencing Fertility in China," *Population and Development Review*
- No. 304. Graham Donaldson, "Food Security and the Role of the Grain Trade," *American Journal* c;^c Agricultural Economics
- No. 305. William F. Steel and Yasuoki Takagi, "Small Enterprise Development and the Employment-Output Trade-Off," Oxford Economic Papers
- No. 306. Oli Havrylyshyn and Engin Civan, "Intra-Industry Trade and the Stage of Development: A Regression Analysis of Industrial and Developing Countries," *Intra-Industry Trade: Empirical and Methodological Aspects*
- No. 307. Mateen Thobani, "A Nested Logit Model of Travel Mode to Work and Auto Ownership," *Journal of Urban Economics*

Issues of the World Bank Reprint Series are available free of charge from the address on the bottom of the back cover.