
https://helda.helsinki.fi

On the development of IoT systems

Taivalsaari, Antero

IEEE

2018

Taivalsaari , A & Mikkonen , T J 2018 , On the development of IoT systems . in 2018 Third

International Conference on Fog and Mobile Edge Computing (FMEC) . IEEE , Piscataway,

NJ , pp. 13-19 , International Conference on Fog and Mobile Edge Computing , Barcelona ,

Spain , 23/04/2018 . https://doi.org/10.1109/FMEC.2018.8364039

http://hdl.handle.net/10138/321570

https://doi.org/10.1109/FMEC.2018.8364039

acceptedVersion

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.



On the Development of IoT Systems

Antero Taivalsaari

Nokia Technologies, Tampere, Finland

antero.taivalsaari@nokia.com

Tommi Mikkonen

University of Helsinki, Helsinki, Finland

tommi.mikkonen@helsinki.fi

Abstract—A typical IoT system consists of four distinct archi-
tectural elements: devices, gateways, cloud and apps. All these
elements require special skills in their development. In order
to write safe, secure IoT systems, developers must be trained
and experienced in four different areas of software development:
embedded, cloud, web and mobile. In addition, given the dis-
tributed nature of IoT systems, distributed programming skills
play a critical role. In this paper we examine the challenges in
IoT system development, and summarize our observations and
experiences on the necessity and co-presence of different types
of software development skills in the design of IoT systems.

I. INTRODUCTION

By now it is clear that computing environments are under-

going a major disruption. The importance of personal com-

puters is decreasing, mobile computing has matured, and web

applications and Software as a Service (SaaS) have become

commonplace. The emergence of the Internet of Things (IoT)

is bringing us connected devices that are an integral part of

the physical world. Advances in hardware development and

the availability of powerful but very inexpensive integrated

chips will make it possible to embed connectivity and full-

fledged virtual machines and dynamic language runtimes

virtually everywhere. As a consequence, everyday things in

our surroundings will become connected and programmable.

The impact of this Programmable World disruption [1] will

be every bit as significant as the mobile application revolution

that was sparked when similar technological advances made it

possible to open up mobile phones for third-party application

developers in the early 2000s.

In this paper we reflect upon our experiences on IoT system

development both from technical and educational viewpoints:

what skills software developers must acquire and master when

they start their journey towards IoT system and application

development. These experiences are based on a variety of IoT

product development efforts that we have carried out in the

past four years at Nokia and Mozilla.

The key tenet in this paper is that this area is much more

complex than people tend to assume. Those skills that are

most prevalent among the majority of software developers

today, such as familiarity with web development or mobile

development for Android or iOS devices, do not suffice.

Rather, IoT development projects require skills at least in

four different areas of software development, reflecting the

end-to-end nature of IoT systems: embedded, cloud, web

and mobile software. In addition, given the fundamentally

distributed nature of IoT systems, a good understanding of the

key challenges in distributed systems development is a must.

The faster deployment cycles that are characteristic of today’s

cloud-based software systems result in additional challenges

and complexity as well.

II. COMMON END-TO-END ARCHITECTURE FOR THE

INTERNET OF THINGS

Fundamentally, the Internet of Things is all about turning

physical objects and everyday things into digital data products

and services – bringing new value and intelligence to previ-

ously lifeless things. Effectively this means taking previously

unconnected devices, connecting them to the Internet, and

adding a backend service and web and/or mobile applications

for viewing, analyzing and controlling those things to intro-

duce new value and convenience. In short, an informal formula

for IoT system development can be presented as follows:

Thing X + Internet + Service + Apps = Smart Thing X

Given the connected nature of smart things and the need

for a backend service, IoT systems are end-to-end (E2E)

systems that consist of a number of architectural elements that

are nearly identical in all IoT systems. In our recent IEEE

Software article, we pointed out that a common, generic end-

to-end (E2E) architecture for IoT systems has already emerged

[1] (see Fig. 1).

As depicted in Fig. 1, IoT systems generally consists

of Devices, Gateways, Cloud and Applications. Devices are

the physical hardware elements that collect sensor data and

may perform actuation. Gateways (also sometimes known

as Hubs) collect, preprocess and transfer sensor data from

devices, and may deliver actuation requests from the cloud

to devices. Cloud has a number of important roles, including

device management, data acquisition, data storage and access,

real-time and/or offline data analytics, and device actuation.

Applications range from simple web-based data visualization

dashboards to highly domain-specific web and mobile apps.

Furthermore, some kind of an administrative web user in-

terface is typically needed. Granted, IoT product offerings

have their differentiating features and services as well, but

the overall architecture typically follows the high-level model

shown in Fig. 1.

III. DOMINANT TECHNOLOGIES IN DIFFERENT PARTS OF

THE END-TO-END ARCHITECTURE

At the surface, software development for IoT systems does

not differ much from any other form of software development.

When developers are working on their first IoT development



Fig. 1. Common generic end-to-end (E2E) IoT architecture.

project, they typically target a simple system that consists

of a single device or board – perhaps an Arduino (https:

//www.arduino.cc/), Tessel (https://tessel.io/), or some version

of a Raspberry Pi (https://www.raspberrypi.org/) – or a small,

relatively homogeneous combination of such devices. Fig. 2

depicts some of today’s IoT development chips and boards.

When dealing with individual devices or a handful of

devices at most, IoT development does not stand significantly

apart from traditional embedded or mobile software develop-

ment projects. However, real-world IoT systems tend to be

much more complex, consisting of hundreds or thousands or

in some cases even millions or billions of IoT devices and

multiple gateway solutions as well as complex cloud and

analytics backends. At that level, IoT system development is

very different from conventional web or mobile application

development in which the developer is usually concerned only

with a single mobile device or a single browser or PC at a time.

The majority of challenges in IoT development arise from

the distributed nature of the system and from intermittent, po-

tentially unreliable connectivity and long latencies. In complex

systems, the number of IoT devices can also vary dynamically.

The potentially unpredictable, highly dynamic nature of the

E2E system places a lot of additional burden on the developers,

as we will discuss later in Subsection IV. Furthermore, the

significantly faster deployment cycles [2] and DevOps develop-

ment methods [3] that are characteristic of today’s cloud-based

software systems result in additional complexities as well,

especially if thousands of geographically distributed devices

need to be updated in unison.

Before diving into those challenges, let us first take a look

at each of the elemental four areas in the E2E architecture,

starting from (1) Devices, and progressing via (2) Gateways to

(3) Cloud and (4) Applications. Unlike many papers in the IoT

area that focus on communication technologies and protocols,

the focus in this paper is primarily on software technologies

and software development methods.

A. Software Technologies for IoT Devices

The first, leftmost element in the common end-to-end

IoT architecture depicted in Fig. 1 are the Devices. In this

subsection we will summarize the software technologies and

solutions used in this area.

Low-end IoT devices are driven by real-time operating

systems or no operating system at all. The vast majority

of today’s IoT devices tend to be relatively simple. For

instance, IoT devices such as lightbulbs, thermostats, remotely

controlled electricity plugs, automated door locks, or air

quality sensors do not commonly require complex software

stacks. In order to implement a simple sensing and actuation

interface, a basic microcontroller based hardware architecture,

complemented with basic drivers for sensors and actuation,

will suffice. For slightly more capable devices supporting a

richer set of sensors a real-time operating system (RTOS)

such as FreeRTOS (http://www.freertos.org/), Nucleus (https://

www.mentor.com/embedded-software/nucleus/) or QNX (http:

//www.qnx.com/) may be required. Typical development lan-

guage for low-end systems is C or C++, although even

assembly code might be used in some areas.

The availability of inexpensive stock hardware is driving

the industry towards ”overly capable” IoT devices. In

simple IoT devices, there is no need for dynamic programming

support or third-party application development support in the

devices themselves. Basically, all the software updates are

performed by doing a firmware update, e.g., by reflashing

the device. However, given the rapidly increasing hardware

capabilities at low price points, dynamic programming capa-

bilities are becoming increasingly feasible and common even

in low-end devices. For instance, the popular Raspberry Pi

boards (https://www.raspberrypi.org/) can provide support for

a full Linux-compatible operating system at very reasonable

prices. It may often be simpler and more affordable to buy

such stock hardware instead of building custom HW solutions

– even though stock hardware may be an overkill for the actual

technical needs. For all except those IoT device solutions that

require utmost attention to smallest possible size and/or lowest

possible power consumption, stock hardware may offer the

fastest path to success.

There are many different levels of software stacks for

IoT devices. There are actually many levels of software stacks

for IoT devices based on the expected programming capabili-



Fig. 2. Typical IoT development chips and boards in the mid-2010s.

ties, power budgets and underlying hardware requirements. In

addition to simple ”No OS” or RTOS based software stacks,

there are IoT development boards that provide support for

a specific built-in language runtime or virtual machine. For

instance, the popular Espruino (https://www.espruino.com/) or

Tessel 2 (https://tessel.io/) IoT development boards provide

built-in support for JavaScript applications, while Pycom’s

WiPy boards (https://pycom.io/development-boards) support

Python development. The next level up are devices such as the

aforementioned Raspberry Pi that are powerful enough to run

a full (typically Linux-based) operating system. Compared to

low-end RTOS-based or ”No OS” solutions, the memory and

CPU requirements (and power consumption requirements) of

these more capable ”Full OS” stacks are significantly higher.

For instance, the desire to run a Linux-based operating system

in a device bumps the minimum RAM requirements from

a few tens or hundreds of kilobytes (for an RTOS-based

solution) to several megabytes.

High-end wearable device platforms have software

stacks that are comparable to recent mobile software

platforms. At the high end of the IoT device spectrum,

there are wearable device platforms such as Android Wear

(https://www.android.com/wear/) and Apple watchOS (https:

//www.apple.com/watchos/) that are in many ways comparable

to mobile software platforms from 3-5 years ago. These

systems provide very rich third-party developer APIs – but also

bump up the minimum hardware requirements considerably.

For instance, the minimum amount of RAM required by

Android Wear and Apple watchOS is half a gigabyte (512

MB) – over 10,000 times more than the few tens of kilobytes

of RAM required by simple IoT sensor devices (!). Node.js

(https://nodejs.org) based IoT devices are also becoming in-

creasingly popular. For instance, the aforementioned Tessel 2

board is capable enough to run the Node.js stack, and thus

serve as a standalone web server.

As can be determined from the discussion above, there is a

broad range of software stacks for IoT devices, depending on

the expected usage, power budget and the need to support

dynamic programming and/or third-party development. The

development skills required by the devices thus also vary

considerably. Perhaps the most important observation here

is that IoT device development is bringing back the need

for embedded, small memory software development skills [4].

This is an interesting trend, since in the past 10-15 years

many universities – at least in Europe – have scaled back

their courses on embedded systems development, focusing

on presumably more modern and desirable areas such as

mobile software development instead. A recent Development

Economics survey reports strongly confirms the demand and

focus on higher-level programming skills [5].

B. Software Technologies for IoT Gateways

The second element in the common end-to-end IoT architec-

ture depicted in Fig. 1 are the Gateways. Gateway devices have

a central role in IoT systems today. The primary role of gate-

ways is to serve as the connectivity bridge between IoT devices

and the cloud, allowing the data collected by IoT devices to be

uploaded to the cloud, and passing the actuation requests from

the cloud to devices. Basically, since most IoT devices today

only support near-range (local) connectivity technologies such

as Bluetooth LE (https://www.bluetooth.com/specifications)

or Zigbee (http://www.zigbee.org/download/standards-zigbee-

specification/), the IoT devices themselves are unable to

communicate with the cloud directly. Thus, an intermediary

gateway solution is required for cloud connectivity.

In addition to handling cloud connectivity and data upload-

ing, gateways may perform preprocessing of data and run

analytics algorithms to filter out and preselect most relevant

data before data is uploaded. They may also generate alerts

when data values exceed certain predefined ranges. In general,

since gateways typically have more computing power and

other resources than IoT devices, more computing intensive

functionality that needs to be carried out in the edge of the

end-to-end solution is usually handled by gateways.

Today’s gateway solutions can be divided broadly into two

categories based on the use of the IoT system.

(1) Consumer-oriented IoT solutions typically use smart-

phones as gateways. IoT solutions intended for consumers

often utilize the consumer’s smartphone as the gateway solu-

tion. For instance, smartwatches or sports watches are usually



paired with the user’s smartphone, leveraging the smart-

phone for data uploading and device updates. Even in those

consumer-oriented solutions in which there is a dedicated

gateway device – such as a ”set-top home box” for controlling

the user’s smart home appliances – the smartphone is still used

for complementing the overall end-to-end solution.

(2) Professional IoT solutions commonly use dedicated

gateway devices. Professional IoT solutions tend to have

special requirements that necessitate specialized gateway so-

lutions. For instance, in industrial applications (e.g., in ware-

houses, factories, or mines) there may be a need for tamper-

proof, waterproof, dustproof and/or vibration-resistant devices,

or solutions that are embedded in moving equipment such as

assembly lines or forklifts.

As can be determined from the discussion above, the

software technologies required for gateway development range

from mobile development to embedded system development.

Computational requirements of gateways are highly dependent

on whether gateways are used simply for collecting and

passing data onto the cloud, or whether gateways are expected

to perform significant computation, e.g., by running complex

analytics libraries and algorithms.

C. Software Technologies for IoT Cloud and Analytics

The third element in the common end-to-end IoT archi-

tecture depicted in Fig. 1 is the Cloud. Cloud development

has evolved considerably in the past decade. Cloud computing

became a hot area during the Internet boom in the late 1990s.

Back in those days, developers would have to set up their own

physical servers and operate their own data centers. Apart from

web server and database software, pretty much all the software

development had to be done from scratch.

Nowadays, nearly all the necessary implementation com-

ponents are available for free as open source components.

Furthermore, the availability of public cloud services such as

Amazon Web Services (AWS) (https://aws.amazon.com/), IBM

Cloud (https://www.ibm.com/cloud/, formerly IBM Bluemix)

or Microsoft Azure (https://azure.microsoft.com/) has made it

effortless to set up cloud environments without having to buy

or own any physical server hardware.

The central elements of a typical IoT cloud backend so-

lution are presented in Fig. 3 that is based on some of our

industrial IoT development projects. Nowadays, nearly all

the component areas depicted in Fig. 3 can be constructed

from open source technologies. For instance, in setting up

the security perimeter, developers commonly use HAProxy

(http://www.haproxy.org/) or NGINX (https://nginx.org/). For

data acquisition, Apache Kafka (https://kafka.apache.org/) is a

popular solution. For data analytics, there are various solutions

depending on whether the primary focus is on real-time or

offline analytics; for the former area, developers commonly

use Apache Storm (http://storm.apache.org/) or Apache Spark

(https://spark.apache.org/), whereas offline analytics is dom-

inated by Apache Hadoop (http://hadoop.apache.org/). For

logging and monitoring, solutions such as Graphite (https:

//graphiteapp.org/) and Icinga (https://www.icinga.com/) are

popular. Given the availability and maturity of open source

components, the role of backend developers today could be

characterized more as software composition or orchestration

instead of traditional software development. In such develop-

ment, the code written by the developers themselves forms

only the ”tip of the iceberg”, while the majority of the system

comes from open source code written by third parties.

Instead of building the IoT cloud solution from available

open source or commercial components, it is also possible to

rent the entire IoT backend as a service. There are popular IoT

cloud services such as Amazon AWS IoT (https://aws.amazon.

com/iot/), Microsoft Azure IoT Hub (https://azure.microsoft.

com/en-us/services/iot-hub/) and Nokia IMPACT IoT Platform

(https://networks.nokia.com/solutions/iot-platform) that can be

used for connecting IoT devices for a recurring fee. There are

also ”white label” IoT cloud service providers that can set up

IoT clouds for specific customers, and operate those clouds on

behalf of the customers.

In general, IoT backend development has become a very

popular area in recent years. As presented above, the cloud

development landscape is dominated by open source technolo-

gies. According to studies, 91% of IoT developers uses open

source software at least one part of their development stack [6].

The availability of open source component technologies and

public clouds has led to a proliferation of IoT clouds. A recent

study pointed out that there are more than 120 commercial

IoT cloud solutions [7]. Given the large number of essentially

identical systems, we expect significant convergence to occur

in this area in the coming years.

D. Software Technologies for IoT Apps

The fourth central element in the common E2E IoT system

architecture are the Applications, or Apps for short. By apps,

we refer to the applications that are used for visualizing the

data collected by IoT devices as well as for managing and

controlling the devices. These apps can be divided broadly

into three categories: mobile, web and PC apps. Mobile

applications run on mobile devices such as Android or Apple

iOS phones. Web applications run in a standards-compatible

web browser such as Mozilla Firefox or Google Chrome. PC

applications run on personal computers such as Windows,

MacOS or Linux laptops.

Given that the web browser has effectively become the de

facto execution environment for end-user software on personal

computers, the development of traditional PC applications has

been on the wane in recent years. Therefore, it is really only

the first two categories of apps – mobile apps and web apps

– that matter these days, since the majority of activities on

personal computers nowadays are performed using the web

browser instead of traditional installed desktop applications.

Consequently, IoT app development landscape is dominated

primarily by popular mobile ecosystems – especially the

Android and iOS development toolchains – as well as popular

web development frameworks such as React.js or Angular. Fig.

4 illustrates the dominant software development technologies



Fig. 3. Overview of a typical IoT cloud backend architecture.

required for each of the four areas in the end-to-end IoT

architecture.

IV. MASTERING IOT – BEYOND THE EXPECTED TOPICS

Based on the observations presented in previous section, it

is obvious that IoT development requires a broad spectrum of

development technologies, languages and skills, ranging from

embedded software development to cloud backend develop-

ment technologies as well as mobile and web client software.

For creating a complete E2E system, the development project

must have people with skills in most of these areas.

Today, the vast majority of application developers have been

trained to do either mobile development or web development

[5]. Many of these developers tend to assume that their skills

would be directly applicable to IoT development. However,

this is not really true, as IoT systems have many characteristics

that do not apply to mobile or web applications at all. In

addition to the embedded nature of IoT devices and gateways,

the distributed nature of the overall E2E system places special

requirements. In the following subsections we will take a look

at some areas that go above and beyond the expected topics.

A. Distributed Computing

IoT developers must consider several factors that are unfa-

miliar to most mobile and client-side web application devel-

opers today. Such factors include:

• multidevice programming;

• heterogeneity and diversity of devices;

• intermittent, potentially unreliable connectivity;

• the distributed, highly dynamic, and potentially migratory

nature of software;

• the reactive, always-on nature of the overall system; and

• the general need to write software in a fault-tolerant and

defensive manner.

In general, a typical IoT application is continuous and reac-

tive. On the basis of observed sensor readings, computations

get triggered (and retriggered) and eventually result in various

actionable events. The programs are essentially asynchronous,

parallel, and distributed.

The presence of these qualities may not be so obvious in

the first generation IoT systems in which sensor devices are

relatively simple and the majority of data processing takes

place in the cloud. However, as IoT systems evolve from

mere sensor data acquisition and cloud-based data analytics to

comprehensive E2E systems that leverage the processing and

storage capacity of the edge devices and gateways, the need

for system-level thinking becomes apparent. The element of

distribution is probably the single largest complicating factor

in the IoT domain as the size of the overall system grows.

The fallacies of distributed computing are a set of assump-

tions that L. Peter Deutsch, James Gosling and other people

at Sun Microsystems wrote down in the 1990s to summarize

the assumptions that programmers will invariably make when

writing software for distributed applications and systems for

the first time [8], [9]:

1) The network is reliable.

2) Latency is zero.

3) Bandwidth is infinite.

4) The network is secure.

5) Topology doesn’t change.

6) There is one administrator.

7) Transport cost is zero.

8) The network is homogeneous.

These assumptions commonly result (1) in the failure of

the system to operate as planned, (2) a substantial reduction

in system scope, and/or (3) in large unplanned expenses

required to redesign the system to meet its original goals.



Fig. 4. Development technologies for each area in the E2E architecture.

Common examples include, e.g., applications that are written

with little attention to evolving data structures or to error

handling on networking errors. During a network outage, such

applications may stall or infinitely wait for an answer packet,

permanently consuming memory or other resources. When the

failed network becomes available, those applications may also

fail to retry any stalled operations or require a (manual) restart.

The hidden costs of building and maintaining software for

distributed systems are almost always underestimated. Accord-

ing to some studies, verification and validation activities and

checks amount to 75% of the total development costs for

critical software [10]. As a result of the additional code needed

for preparing for the fallacies of distributed computing, the

actual logic of the applications gets buried under a lot of ”boil-

erplate” code, making programs much harder to understand

and maintain. At this point, there are no good solutions for

this area, except for educating IoT developers on the fallacies

and pitfalls associated with distributed computing.

B. Deployment-in-the-Large and Rapid Deployment Cycles

In contrast with traditional software systems, IoT systems

can consist of tens or even hundreds of thousands of in-

dependently running computing units. The large number of

IoT devices and their complex topologies, interactions and

different connectivity mechanisms pose interesting challenges

for software development, e.g., by making it difficult to

perform data format or API updates in a coordinated fashion.

In order not to disrupt the behavior of the entire system (e.g.,

a sensor system controlling factory or greenhouse operations),

deployments of software updates may have to be tiered and

then delayed and synchronized in such as fashion that updates

do not take effect until all the impacted devices are known to

have received and processed the updates. Also, it should be

kept in mind that many devices may have intermittent con-

nectivity and may thus be unreachable or offline for extended

periods of time; such devices may be unable to receive updates

until much later. These kinds of situations pose challenges not

only for software development but system operations as well.

IoT development is complicated further by novel software

development approaches and assumptions that rely on rapid

deployment cycles and small increments that are constantly

taken to use. Continuous delivery and deployment technologies

and DevOps methodologies [2], [11], [3] have redefined the

expected behavior of software systems, resulting in updates

that can potentially take place several times a day. Such an

approach builds on an automated pipeline that starts from a

development environment where programmers make changes,

and ending in public deployment of the new system, with

everything tested automatically along the way. The various

phases of this pipeline include compilation, integration, test-

ing, staging, deployment (potentially to a large number of

independently running computing devices), and finally op-

erations. Today, this way of working is well understood in

the context of web-based online services. However, its full

adoption in complex IoT systems can be difficult and more

akin to challenges presented by process automation systems

[12] than those challenges that are present in conventional PC

or smartphone application deployment.

C. Other Important Emerging Trends and Predictions

Although in this paper our focus is on software development

technologies and the overall IoT system architecture, we wish

to briefly highlight important advances in communication

technologies that will have a significant impact on the overall

IoT system and software architecture.

Cellular IoT radio technologies will eliminate the need

for gateways. In many ways, the presence of gateways in

IoT systems can be viewed as a nuisance. Ideally, IoT de-

vices should just work anywhere and out-of-the-box without

any special installation or startup steps (such as setting up

Bluetooth pairing or Wi-Fi security passwords). There are

emerging Cellular IoT radio technologies such as NB-IoT



and LTE-M that will be deployed to existing cellular radio

networks, providing nationwide coverage for IoT devices [13].

Ultimately, such low-power wide area network (LPWAN)

technologies will eliminate or at least substantially reduce the

need for gateways, enabling direct communication between IoT

devices and the cloud at reasonable cost and energy efficiency.

Intelligence will increasingly move from the cloud to-

wards the edge. Historically, IoT systems were very cloud-

centric, with the majority of computation taking place centrally

in the cloud. However, in recent years there has been a

noticeable trend towards edge computing, i.e., systems in

which the edge of the network (devices and gateways) plays a

key role in filtering and processing the data. This will increase

the importance of mesh networking technologies that allow IoT

devices to perform actions and processing in a peer-to-peer

(P2P) fashion with very low latencies. Together, the emergence

of LPWAN and mesh networking technologies can be expected

to significantly alter the topologies and the overall architecture

of IoT systems.

Isomorphic IoT system architectures will emerge. Ear-

lier in this paper, we argued that the software development

technologies required for different parts of the IoT systems

are very different. However, given the rapidly increasing

computing and storage capacities of IoT devices, we foresee

that within the next 5-10 years IoT devices will be able to

host considerably more capable software stacks. Ultimately,

this may lead us to isomorphic IoT system architectures in

which the devices, gateways and the cloud will be able to run

the same applications and services, allowing flexible migration

of code between any element in the overall system.

Isomorphic architectures can be seen as the ”holy grail” in

IoT development. Instead of having to learn many different

incompatible ways of software development, in an isomorphic

architecture one base technology will suffice and will be able

to cover all aspects of E2E development. At this point it is still

difficult to predict which technologies will ”rule them all”, so

to speak. Container-based architectures such as Docker (https:

//www.docker.com/) or CoreOS rkt (https://coreos.com/rkt/)

seem like good guesses at this point, even though their memory

and computing power requirements may seem exorbitant from

the viewpoint of today’s IoT devices. Amazon’s Greengrass

system (https://aws.amazon.com/greengrass/) also points out

to a model in which the same development technology can be

used both in the cloud and in IoT devices; in Greengrass, the

programming platform is Amazon’s Lambda.

Isomorphic IoT systems will dilute the roles of the cloud

and the edge, leading us to ”soup computing”. Although

fully isomorphic IoT systems are still years away, their arrival

may ultimately dilute or even dissolve the boundaries between

the cloud and its edge. Isomorphic systems will allow compu-

tations to be transferred dynamically and performed in those

elements that provide the optimal performance, storage, net-

work speed, latency and energy-efficiency characteristics, thus

enabling the overall behavior of the IoT system to be optimized

based on a ”soup” of available, diverse computational elements

in the overall end-to-end system.

V. CONCLUSIONS

The Internet of Things (IoT) represents the next significant

step in the evolution of the Internet. We believe that this evolu-

tion will ultimately result in the creation of a Programmable

World in which even the simplest things and most ordinary

artifacts are connected to the Internet and can be controlled

and programmed remotely. The possibility to connect, manage,

configure and dynamically reprogram remote devices through

local and global cloud environments will open up a huge

variety of new use cases, services, applications and device

categories, and enable entirely new product ecosystems.

In this paper we have taken a look at IoT development and

argued that this area is much more complex than people tend

to assume. While at the surface IoT development may not

seem all that different from mobile or web development, in

reality the development of end-to-end IoT systems requires

an unusually broad spectrum of development technologies and

skills. These skills cover nearly all aspects of modern software

development, ranging from embedded software to web and

mobile application development as well as cloud backend

development, including analytics and machine learning. IoT

system development is further complicated by the distributed

nature of the end-to-end architecture as well as the general

drive towards continuous delivery and deployments. Therefore,

in summary, in its present form the development of end-to-end

IoT systems is perhaps the most complex form of software

development.

REFERENCES

[1] Taivalsaari, A., Mikkonen, T.: Roadmap to the Programmable World:
Software Challenges in the IoT Era. IEEE Software, Jan/Feb 2017 34(1)
(2017) 72–80

[2] Humble, J., Farley, D.: Continuous Delivery: Reliable Software Releases
through Build, Test, and Deployment Automation. Pearson Education
(2010)

[3] Debois, P.: DevOps: A Software Revolution in the Making. Journal of
Information Technology Management 24(8) (2011) 3–39

[4] Weir, C., Noble, J.: Small Memory Software: Patterns for Systems with
Limited Memory. Addison-Wesley (Software Pattern Series) (2000)

[5] VisionMobile: Developer Economics State of the Developer Nation, Q1
2016. http://www.visionmobile.com/reports/developer-economics-state-
developer-nation-q3-2016 [Online; accessed 18-March-2017].

[6] VisionMobile: Cloud and Desktop Developer Landscape.
http://www.visionmobile.com/product/cloud-and-desktop-developer-
landscape/ [Online; accessed 5-March-2016].

[7] Postscapes: IoT Cloud Platform Landscape (2016)
[Online; accessed 18-March-2017].

[8] Rotem-Gal-Oz, A.: Fallacies of Distributed Computing
Explained. http://www.rgoarchitects.com/Files/fallacies.pdf
[Online; accessed 20-April-2016].

[9] Deutsch, L.P.: Fallacies of Distributed Computing. White Paper
[Online; accessed 28-October-2017].

[10] Laprie, J.C.: Dependable Computing: Concepts, Limits, Challenges.
In: Proceedings of the 25th IEEE International Symposium on Fault-
Tolerant Computing, IEEE (1995) 42–54

[11] Fitzgerald, B., Stol, K.J.: Continuous Software Engineering: A Roadmap
and Agenda. Journal of Systems and Software 123 (2017) 176–189

[12] Love, J.: Process Automation Handbook: A Guide to Theory and
Practice. Springer-Verlag London (2007)

[13] Wang, Y.P.E., Lin, X., Adhikary, A., Grövlen, A., Sui, Y., Blankenship,
Y., Bergman, J., Razaghi, H.S.: A Primer on 3GPP Narrowband Internet
of Things. IEEE Communications Magazine 55(3) (2017) 117–123


