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Abstract

We compare the diameter of a graph with the directed
diameter of its Eulerian orientations. We obtain posi-
tive results under certain symmetry conditions.

An Eulerian orientation of a graph is an orientation
such that each vertex has the same indegree and
outdegree. A graph is wertex-transitive if its vertices
are equivalent under automorphisms.

We show that the directed diameter of an Eulerian
orientation of a finite vertex-transitive graph cannot be
much larger than the undirected diameter; our bound
on the directed diameter is O(dAlnn) where d is the
undirected diameter, A is the (out)degree of the ver-
tices, and n is the number of vertices. This implies that
for Eulerian orientations of vertex-transitive graphs of
bounded degree, the gap between the two diameters is
at most quadratic.

As a consequence, we are able to compare the word
length and the positive word length of elements of a
finite group in terms of a given set of generators; we
show that the gap is at most nearly quadratic, where
the term “nearly” refers to a factor, polylogarithmic in
the order of the group.

It follows that recent polynomial bounds on the di-
ameter of certain large classes of Cayley graphs of the
symmetric group and certain linear groups automati-
cally extend to directed Cayley graphs. The result also
shows that the directed and undirected versions of long
standing conjectures regarding the diameter of Cayley
graphs of various classes of groups, including transi-
tive permutation groups and finite simple groups, are
equivalent.

We also show that for edge-transitive digraphs, the
directed diameter is O(dInn).

On the other hand, if we weaken the condition of
vertex-transitivity to regularity (all vertices have the
same degree), then the directed diameter is no longer
polynomially bounded in terms of the undirected diam-
eter and the maximum degree (and Inn = O(d1In A)).

Our upper bounds on the diameter raise the al-
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gorithmic challenge to find paths of the length guar-
anteed by these results. While for undirected graphs,
most (but not all) relevant proofs are algorithmic, our
bounds for the directed diameter are obtained via a
pigeon-hole argument based on expansion and yield ex-
istence only.

1 Introduction

Imagine a mean traffic engineer who tries to make
motorists’ lives hard by adversarially choosing the
direction of one-way streets. In other words, given an
undirected graph, the engineer will orient the graph
such as to make travel difficult. We use the diameter
to measure the engineer’s success.

The directed diameter dT of a digraph is the max-
imum directed distance between pairs of vertices. The
undirected diameter d of a digraph is the diameter of the
undirected graph obtained by symmetrizing the edges.
Clearly, d < d*. Note that d < oo if the digraph is
weakly connected; dT < oo if the digraph is strongly
connected.

Obviously, we need to impose some rules on the
engineer; otherwise travel may become impossible.
Requiring that the orientation be strongly connected
is clearly necessary. But this is far from sufficient; even
if the graph is a bounded degree expander and therefore
has logarithmic diameter, the directed diameter can be
exponentially worse (O(n)).

A natural condition to impose on the engineer is
to make the orientation Fulerian: each vertex has the
same indegree as outdegree. We permit an edge to be
oriented both ways, so vertices of odd degree will not
preclude a solution.

The symmetrization of a digraph X is the undi-
rected graph X obtained by adding the reverse of each
edge to X.

We shall use the term “partial orientation” of the
graph Y to describe any digraph X whose symmetriza-
tionis X =Y.

If a partial orientation is Eulerian, this guarantees
that from any set of vertices, the in-flow is equal to
the out-flow, a good rule to avoid cars piling up in a
district. It follows that the undirected and the directed



edge-expansion rates differ in a factor < 2. It seems
therefore reasonable to hope that Eulerian orientation
will not make the diameter increase by too much.

This hope is false, though. We shall see that even
for regular digraphs (all in- and outdegrees equal), the
directed diameter d* cannot be bounded by a polyno-
mial of d and the maximum degree A (Theorem 5.1).
(Note that we do not need to include In n, the logarithm
of the number of vertices, among the variables in this
statement, since Inn = O(dIln A).)

It may then be surprising that there is any natural
class of graphs where the engineer’s success is polynomi-
ally limited. A natural symmetry condition, however,
turns out to suffice.

A (di)graph X is vertez-transitive if for every pair
(v,w) of vertices, there is an automorphism (X — X
isomorphism) which takes v to w.

We note that vertex-transitive graphs include Cay-
ley graphs, an important source of efficient intercon-
nection networks. Cayley graphs also arise in the con-
text of Rubik’s cube-type puzzles and card shuffling.
In all these contexts, bounds on diameter are critical.
The implications of our results to Cayley graphs are
explored in the next section.

In this paper we demonstrate that for any Eulerian
partial orientation of a vertex-transitive graph, the gap
d" /d is surprisingly small: d*/d = O(Alnn) where A
is the (out)degree and n is the number of vertices.

THEOREM 1.1. Let X be a finite Eulerian digraph with
n vertices, undirected diameter d and directed diameter
dt. Let A be the mazimum outdegree of the vertices of
X. Assume the symmetrization X is vertex-transitive.
Then

(1.1)

The precise inequality we obtain is this:

(1.2) dt <2(d+1)(A+1)Inn.

d*t = O(dAInn).

In view of the inequality n < (2A + 1)?, the following
is immediate.

COROLLARY 1.2. Under the conditions of Theo-
rem 1.1,
(1.3) dt = O(d*Aln A).

Noting that if X is vertex-transitive then so is its
symmetrization, we obtain the following corollary.

COROLLARY 1.3. Let X be a finite vertex-transitive
digraph with n wvertices, undirected diameter d and
directed diameter d¥. Let A be the outdegree of the
vertices of X. Then inequalities (1.2) and (1.3) hold.

In two important subcases we are able to get rid
of the dependence on the degree A. The first of these
concerns Cayley digraphs (see Definition 2.1) and has
direct applications to group theory, to be discussed in
Section 2.

THEOREM 1.4. Let X be a finite Cayley digraph with
n vertices, undirected diameter d and directed diameter
d*. Then

(1.4) dt = 0(d*(Inn)?).

(For the proof, see Theorem 2.15.) In applications to
groups, the number n (the order of the group) tends
to be exponentially large compared to the input size,
so reducing the exponent of InG in inequality (1.4)
would be significant. Such reduction is possible in
the context of word length in groups for the worst
diameter for hereditary classes of sets of generators (see
Corollary 2.4).

Another question arising from Theorem 1.4 is
whether it generalizes to vertex-transitive digraphs (see
Conjecture 6.1).

The second case in which the dependence on A can
be eliminated concerns Eulerian orientations of edge-
transitive graphs. A (di)graph X is edge-transitive if
for every pair (e, f) of edges, there is an automorphism
which takes e to f.

Many important networks, including the toroidal
square grid and the Hamming cube over a finite alpha-
bet are edge-transitive.

THEOREM 1.5. Let X be a finite Fulerian digraph with
n vertices, undirected diameter d, and directed diameter
dt. Assume the symmetrization X is reqular and edge-
transitive. Then

(1.5) d™ <2(1+8d)Inn.

If in addition X is oriented (the reverse of an edge is
never an edge) then

(1.6) d™ <2(1+4d)Inn.

2 Applications to word length in groups

2.1 Cayley digraphs. Generators of a finite group
G generate G as a semigroup, i.e., using positive words
only (no inversions). The question arises, what increase
in word length does generation as a semigroup require.

DEFINITION 2.1. Let G be a group and T' C G a set
of generators of G. The Cayley digraph I'(G,T) has G
for its set of vertices; the ordered pair (z,y) is an edge



if yx=! € T. We obtain an undirected Cayley graph if
the set of generators is symmetric, i.e., T'= T~!. Note
that Cayley digraphs are vertex transitive (G acts on
I'(G,T) by right translations).

The positive word length of a group element g € G
(in terms of a given set T of generators) is exactly the
directed distance from the identity to ¢ in the directed
Cayley graph T'(G,T).

We refer to [BHKLS| for additional result and
references on the diameter of Cayley graphs.

2.2 Complexity of word length and diameter.
A permutation group of degree n is a subgroup of the
symmetric group S,,. For computational purposes, we
represent such a group by a list of generators.

Distance in and diameter of Cayley graphs of per-
mutation groups are computationally hard parameters.
We note that the problem of determining the diameter
of the Rubik’s Cube Cayley graph is still wide open in
spite of considerable efforts (see Korf [Ko]). Jerrum [Je]
has shown that it is PSPACE-hard to determine the
length of the shortest positive word representing a given
permutation o € G < S, in terms of generators of the
permutation group G. Even and Goldreich [EG] have
shown that determining the diameter of a Cayley graph
of a permutation group is NP-hard even in the case of
elementary abelian 2-groups (in this case, all Cayley
graphs are automatically undirected). Their proof, in
combination with [ABSS], implies that even the approx-
imate word-length is NP-hard to find.

2.3 Comparison of word length and positive
word length: worst generators. The following re-
sult is an immediate consequence of Corollary 1.3.

COROLLARY 2.2. Let G be a finite group and T a set
of generators. If every element of G can be represented
by words of length < d over T then every element of
G can be represented by positive words of length less
than 2(d+ 1)(|T| + 1) In |G| over T.

This result implies that a number of results and
conjectures regarding the word length extends to posi-
tive word length. We give a selection of these below.

We define the diameter of a group G, diamy.x(G),
as maxy d(I'(G,T)) where T ranges over all sets of
generators of G. Similarly, the directed diameter of G,
diam}, (G), is defined as maxy d*(T'(G,T)) where T
ranges over all sets of generators of GG. Note that these
are “worst case” diameters.

Corollary 2.2 implies that the gap between these

two quantities is small.

COROLLARY 2.3. Let G be a finite group. Then

(2.7) diam}, (G) < 3diam,.(G)(In|G|)2.

max
The actual constant we obtain is 2/1n2 ~ 2.885.

The < (less than or asymptotically equal to) rela-
tion in Corollary 2.3 refers to a (1 4+ o(1)) factor omit-
ted on the right-hand side. This factor approaches 1
as |G| — oo. An introduction to this notation, ex-
tended to not necessarily positive quantities, can be
found in [Ba3].

Corollary 2.3 follows from Corollary 2.2. Rather
than giving the direct proof, we shall infer the result
from a more general statement below (Corollary 2.4).

2.4 Weakly hereditary classes of sets of gener-
ators. We prove a more general result about classes of
sets of generators satisfying a weak hereditary condi-
tion.

Let C be a class (set) of pairs (G,T) where G is a
finite group and T is a set of generators of G. Let k =
k(G) be a function which associates positive numbers
with finite groups. We say that the class C is k(G)-
hereditary if for every pair (G,T) € C there is a pair
(G,T") € Csuch that 77 C T and |T"| < k(G). Let G(C)
denote the set of those groups G for which (G,T) € C
for some set T of generators of G. For G € G(C), let
diamy,ax (G, C) denote maxr d(I'(G,T) : (G,T) € T.
We define diam;’,, (G, C) analogously.

max

COROLLARY 2.4. Let C be a k-hereditary class of pairs
(G, T). Then, for G € G(C),

(2.8)

diam, (G, C) < 2(diam .y (G,C) +1)(k(g) + 1) In|G|.

Proof. Let T be a “worst” set of generators with
respect to the directed diameter, i.e., let (G,T) € C
and diam}, (G,C) = d*(G,T). We may assume
|T| < k(G); otherwise we replace T' by T’ (omitting
redundant generators cannot decrease the diameter).
Consequently, by Corollary 2.2, d¥(G,T) < 2(1 +

d(G,T)(1+K(G))In|G|. O

Corollary 2.3 follows by letting C consist of all
pairs (G,T) where G is a finite group and T a set
of generators; and setting k(G) = log, |G| (because
every nonredundant set of generators has < log, |G|
elements). Inequality (2.8) yields

diam, (G) < 2(diamp.(G) + 1)(logy |G| +

max

1) In|G| £ (2/1n2) diamy,. (G)(In|G])?, as claimed.

2.5 Simple groups. The following conjecture was
proposed in [BS2].



CONJECTURE 2.5. ([BS2]) If G is a nonabelian finite
simple group then diamy,..q)y = O((In|G|)¢ for some
absolute constant c.

Corollary 2.3 implies that if this conjecture is true
for undirected Cayley graphs then it remains true for
directed Cayley graphs; the exponent c¢ increases by
<2

In major progress announced recently, Conjec-
ture 2.5 has been confirmed by Harald A. Helfgott [He]
for 2-dimensional linear groups over fields of prime or-
der:

THEOREM 2.6. (HELFGOTT [HE])
diamy,ax (SL2(Z/pZ)) = O((logp)©).

Corollary 2.3 immediately extends this result to the
directed worst-case diameter of the groups SLo(Z/pZ),
adding only 2 to Helfgott’s astronomical exponent c.

We note that Helfgott’s proof is based on expansion
and therefore is non-algorithmic; this is one of the very
few cases this author is aware of when the proof of a
diameter bound for a class of undirected Cayley graphs
does not yield an algorithm.

A major open case in Conjecture 2.5 concerns the
alternating (and symmetric) groups which we discuss
in the next subsection.

2.6 Permutation groups. Permutation groups of
degree n are subgroups of the symmetric group 5, .

LEMMA 2.7. ([Bal]) Every nonredundant set of gen-
erators in a permutation group of degree m has size
< 2n.

This follows from the result that S, has no subgroup
chain of length 2n [Bal].

COROLLARY 2.8. If G < S, is a permutation group of
degree n then

diam?

max

(2.9) (G) £ 4diampax (G)n1n|Gl.

Proof. We apply Corollary 2.4 to the class C consisting
of all pairs (G,T) where G is a permutation group and
T a set of generators of G. If G < 5, then we can set
k(G) = 2n by Lemma 2.6. O

For permutation groups G < S, we have
diampax(G) < exp(vVnlnn(l 4+ o(1))) ([BS1, BS2]).
Corollary 2.3 shows that this bound extends to Cay-
ley digraphs.

COROLLARY 2.9. Let G < S,, be a permutation group
of degree n. Then all Cayley digraphs of G have directed
diameter < exp(vnInn(l + o(1))).

Proof. Indeed, by Corollary 2.8, the directed diameter
adds at most a factor of O(nln(n!)) = O(n?Inn) to the
undirected diameter; this factor is is subsumed by the
little-oh term in the exponent. O

A transitive permutation group is a permutation
group G < S, such that for every x,y in the permuta-
tion domain, some element of G moves x to y.

20 years ago, Kornhauser et al. [KMS] asked the
following question:

PROBLEM 2.10. ([KMS]) Do all Cayley graphs of
transitive permutation groups of degree n have diam-
eter, polynomially bounded in n?

The most important special case was stated as a
conjecture in [BS1]:

CONJECTURE 2.11. All Cayley graphs of the symmet-
ric groups Sy, and the alternating groups A,, have poly-
nomially bounded diameters (as a function of n).

It is shown in [BS2] that Conjecture 2.11 implies
that all transitive permutation groups of degree n have
quasipolynomial (< exp((logn)®)) diameters (C =
34 0(1)), linking Conjecture 2.11 to a positive answer
to Problem 2.10.

Regarding these problems, Corollary 2.8 implies
that the directed version follows from the undirected
version. In particular, we obtain the following:

COROLLARY 2.12. A positive answer to Problem 2.10,
if true, remains wvalid for the directed diameters of
Cayley digraphs of transitive permutation groups.

The strongest result to date regarding Conjec-
ture 2.11 has been the undirected version of the fol-
lowing.

THEOREM 2.13. If G= S, or A, and T C G contains
a permutation that fizes at least 67% of the permutation
domain then the diameter of the Cayley digraph T'(G,T)
is at most ecn® where ¢,C are absolute constants.

The undirected version of this result was proved
by Babai, Beals and Seress in [BBS]. The directed
version follows by applying Corollary 2.4 to the class C
consisting of all pairs (G,T) where G is a permutation
group and T a set of generators of G which includes a
permutation that fixes at least 67% of the permutation



domain. If G < S, we can set k(G) = 2n by
Lemma 2.6. The only caveat is that in the course of
deleting redundant generators, we must retain at least
one generator that fixes at least 67% of the permutation
domain. O

We note that the proof in [BBS] strongly relies on
commutators and therefore on the undirected nature of
the graph and a direct extension of those methods to
cover the directed case does not seem evident.

Again using commutators, Babai and Hayes [BH]
proved the undirected version of the following result.

THEOREM 2.14. If o and 7 are two permutations of
{1,...,n} selected randomly from S, and G is the group
generated by o and T then with probability approaching
1 as n — oo, the diameter of the Cayley digraph
[(G,{o,7}) is at most n® for some absolute constant

C.

We note that the group G in this result is almost
always either S,, or A,, by Dixon’s classical result [Dix].

The directed version of Theorem 2.14 follows from
the undirected version by applying Corollary 2.4 to
the class C of those pairs (G,T) where G = S,
(n = 1,2,...), T is a pair of generators of G, and
d(T'(G,T)) < n®. By Theorem 2.14, for every n, almost
all pairs T' C S,, will occur in pairs (S,,T) € C.

2.7 Arbitrary Cayley digraphs: a near-
quadratic bound. Corollary 2.3 shows that the gap
between the directed and undirected worst diameters
is nearly linear, and Corollary 2.4 extends this ob-
servation to the worst diameters over groups with k-
hereditary classes of sets of generators.

In this section we use the term “nearly” to indi-
cate factors of < (log|G|)¢ for some constant c.

We shall show that the gap is at most nearly
quadratic for arbitrary sets of generators; this is the
main result of this section.

THEOREM 2.15. Let G be a finite group, T C G a set
of generators, and let d be the undirected diameter of
the Cayley digraph T'(G,T). Then the directed diameter
of T(G,T) is O(d*(log |G])3).

(The constant implied by the big-oh notation is
absolute.)

All our previous arguments relied on removing
redundant generators; we were somehow assured that
this step would only moderately increase the diameter.
(E.g., this is why we had to take care not to remove
a generator that fixes 67% of the permutation domain
in the proof of the directed version of Theorem 2.13.)

The following result shows that one can always reduce
the set of generators to “reasonable” size without a
significant penalty in increased undirected diameter.

LEMMA 2.16. Let G be a finite group of order n, T C
G a set of generators, and let d be the diameter of
the Cayley graph T'(G, T UT~1). Set ¢ = |logyn +
3logy logy n|. Then T has a subset S such that |S| < ¢d
and the diameter of the Cayley graph T'(G,S U S™1) is
at most ¢d.

Proof. Tt is shown in [BE] that G has a sequence of £
elements, g1, ..., ge, such that all elements of G can be
written as subproducts gi*,...,g;° (g € {0,1}). Let
us represent each g; as a word w; of length < d over T7;
let T; be the set of those elements of 7" which occur in
this word. Set S = Ule T;. Note that |S| < ¢d. Since
every element of G can be written as a word of length
< /£ in the g; and each g; is a word of length < d over
S, we conclude that the (undirected) diameter of the
Cayley graph T'(G, S U S71) is at most ¢d. O

We can now complete the proof of Theorem 2.15.

Proof. Use Lemma 2.16 to replace T by a subset
S C T of size O(dlog|G|) such that the undirected
diameter of I'(G, S) remains O(dlog|G|). Now infer
from Corollary 1.3 that the directed diameter of I'(G, S)
is O(d?(log|G|)?). This is then an upper bound on the
directed diameter of I'(G,T). O

In this section we made a number of claims of the
form that if certain Cayley digraphs have polynomially
bounded undirected diameters then they have polyno-
mially bounded directed diameters. Note that all these
claims are special cases of Theorem 2.15 as far as poly-
nomiality concerns. However, in all cases except The-
orem 2.15, the dependence of the directed diameter on
the undirected was in fact linear; only the generic reduc-
tion of generators required a quadratic increase. This
quadratic increase would be removed if the following
conjecture holds.

CONJECTURE 2.17. Let G be a finite group, T C G a
set of generators, and let d be the diameter of the Cayley
graph T(G, TUT™Y). Then T has a subset S such that
IS| < (log |G|)€ and the diameter of the Cayley graph
(G, SUS™Y) is O(d(log|G|)€) where C is an absolute
constant.

3 Expansion of vertex-transitive digraphs

For a digraph X = (V,E), let X~ = (V,E~) be the
reverse digraph, defined by E~ = {yx|zy € E}. Let



X = (V, E) be the symmetrized version of X, defined
by E=EUE".

For a vertex x in a digraph, deg®(z) denotes
its outdegree and deg™ (z) its indegree. A digraph
is Eulerian if for each vertex x we have deg®(z) =
deg™ (z). Note that finite vertex-transitive digraphs are
Eulerian.

For a digraph X = (V,F) and a subset S C V,
let 51 (S) denote the set of edges from S to V' \ S and
07 (S) the set of edges from V' \ S to S.

OBSERVATION 3.1. If X = (V,E) is an Eulerian di-
graph and S CV then |67(S)| = |6 (S)|.

Proof. Indeed, for all digraphs, |67(S)| — |67 (S)| =
ers(deg+ (z) — deg™ (x)). For Eulerian digraphs, the
right-hand side is zero. O

It follows, in particular, that if an Eulerian digraph
is weakly connected then it is strongly connected.
Therefore if the left-hand side of inequality (1.1) is
infinite then so is the right-hand side, so Theorem 1.1
covers this case. Henceforth we assume that X is
(strongly) connected and so d and d are finite.

For a graph X = (V,E) and a subset S C V, let
87(S) denote the out-boundary of S, i.e.,

O (S)={yeV\S|(3BxeS)(zycE)}.
The in-boundary 0~ (S) is defined analogously:
0~ (S)={yeV\S|(3Fx el (yz € E)}.
We define the boundary 0(S) as the union of these:
9(S) =0T (S)u o (9).

The following isoperimetric inequality was proved
in [BSz].

THEOREM 3.2. Let X = (V, E) be an undirected con-
nected finite wvertex-transitive graph of diameter d.
Then for any subset S C V such that 0 < |S| < |V]/2
we have

0S| _ 2

S| = 2d+1°

(3.10)

This result appears in [BSz] as Corollary 2.3. Previ-
ously Aldous [Al] proved a slightly weaker lower bound,
1/2d, for Cayley graphs; that bound was extended to
all vertex-transitive graphs in [Ba2]. The more elegant
approach of [BSz] then yielded the stated bound.

We shall need a directed version of this inequality.

COROLLARY 3.3. Let X = (V, E) be a connected finite
Eulerian digraph with mazimum outdegree A and undi-
rected diameter d. Assume X, the symmetrization of

X, is vertex-transitive. Then for any subset S C V
such that 0 < |S| < |V|/2 we have

075
S| = (A+D@d+1)

(3.11)

The proof of Corollary 3.3 is a combination of Theo-
rem 3.2 with the following observation.

LEMMA 3.4. Let X = (V,E) be an FEulerian digraph
with mazimum indegree A. Let S CV. Then

(3.12) 0S| < (A +1)|0(S).

Proof. [5-(8)| = [67(S)| <
(S| < 107(S)| + |97 (S)] <
(A+1)0*(5)]. O

A0+ (S)|. Therefore
07 (S) + [67(9)] <

As a digression, we mention a corollary to this observa-
tion which may not have previsouly been pointed out.

The expansion rate (X) of a digraph X = (V, E)
is the minimum, over all subsets S C V such that 0 <
|S| < |V]/2, of the isoperimetric ratio |07 (S9)|/|S]. An
infinite family of digraphs X,, is a family of expanders
if inf,, e(X,,) > 0. Of particular interest are families of
bounded degree expanders.

COROLLARY 3.5. A family of Eulerian digraphs X,, of
bounded degree is a family of expanders if and only if the
symmetrized versions X, form a family of expanders.
O

PROPOSITION 3.6. Let € > 0. Suppose that for every
subset S of the vertex set of the digraph X = (V, E)
satisfying 0 < |S| < |V|/2 we have |07 (S)|/|S| > € and
|0~ (S)|/|S| > €. Then the directed diameter of X is
dt <2lnn/In(l+¢) < 2(1+1/¢)Inn, where n = |V|.

Proof. Let u and v be arbitrary vertices. Starting from
u, in < ¢ steps, at least min{(n+1)/2, (1+¢)'} vertices
can be reached along directed paths. Consequently,
more than n/2 vertices are reached in Inn/In(1 + €)
steps. Similarly, from v, more than n/2 vertices can be
reached in ¢t < Inn/In(1 + ¢) steps in X~ (the reverse
of X). These two sets of more than n/2 vertices must
overlap, say at a vertex z, so the directed distance from
u to z is at most ¢ and from z to v is also at most ¢. O



REMARK 3.7. A slight improvment of the bound fol-
lows for digraphs of large degree noting that in at most
one step we can reach 1+ A vertices, where and A is the
minimum of the indegrees and outdegrees of all vertices.
The bound becomes 2+ 2In(n/(1 4+ A))/In(1 + €).

We are now in the position to complete the proof
of Theorem 1.1. We note that if X is a finite connected
digraph with vertex-transitive symmetrization, then ac-
cording to Corollary 3.3, the conditions of Proposi-
tion 3.6 hold with ¢ = 2/(A + 1)(2d + 1). Therefore,
by Proposition 3.6,

(3.13)
dt <(1+(A+1)(2d+1))Inn <2(A+1)(d+1)Inn.O

4 Edge-transitive digraphs
In this section we prove Theorem 1.5.
For edge-transitive (undirected) graphs, the follow-

ing isoperimetric inequality appears as Corollary 2.6 in
[BSz].

THEOREM 4.1. Let X = (V, E) be an undirected con-
nected finite edge-transitive graph of diameter d. Then
for any subset S C V' such that 0 < |S| < |V|/2 we
have
10(S) o

|S] 2d
where r denotes the harmonic mean of the mazximum
and minimum degrees: r = 2/(1/ deg, . +1/ deg i)

(4.14) >

It follows that if the symmetrization X of an
Eulerian digraph X is regular and edge-transitive then
deg

07(S)| _ deg

S| — 4d
where deg denotes the undirected degree. Since
(4.16) 5 (S)] < AJ*(5)

(where A is the maximum indegree), we infer the
following vertex-expansion bound.

(4.15)

COROLLARY 4.2. If the symmetrization X of an Eule-
rian digraph X is regular and edge-transitive then

+
04(S)] _ des/A 1

S| = 4d T 4d

We also note that for oriented digraphs (no out-

neighbor is an in-neighbor), deg /A = 2 and therefore

+
05(8)| 1

S|~ 2d
To complete the proof of Theorem 1.5, we combine

Corollary 4.2 with Proposition 3.6. We use inequal-
ity (4.18) for the oriented case. O

(4.17)

(4.18)

5 Regular digraphs: negative results

In this section we address the question whether the
main results of this paper extend to regular digraphs,
without the vertex-transitivity condition on their sym-
metrization.

Unless expressly stated otherwise, all digraphs will
be without parallel edges, so a digraph can be described
asapair G = (V, E) where E C V' xV. While this was a
tacit assumption in this entire paper, it was immaterial
in the preceding sections; permitting parallel egdes
would not change the validity of the positive results
discussed so far. The negative results to be discussed
in this section would, however, change significantly if
parallel edges were permitted (see Proposition 5.6).

An edge of the form (x,x) is called a loop. We
permit loops (at most one per vertex). A loop adds
one to both the indegree and the outdegree of a vertex
and has no influence on either the directed or the
undirected diameter. If we delete all loops from an
Eulerian digraph, it remains Eulerian.

A digraph is regular if all indegrees and all outde-
grees are equal. For instance, finite vertex-transitive
digraphs are regular. Note that every regular digraph
is Eulerian.

Corollary 1.2 asserts that for Eulerian digraphs X,
if the symmetrization X is vertex-transitive then the
directed diameter d* is bounded by a polynomial of
the undirected diameter d and the maximum degree A.
It is natural to ask if such a polynomial bound holds
if the condition of vertex-transitivity of X is relaxed
to regularity. Below we give a negative answer to this
question.

THEOREM 5.1. For infinitely many values of n, there
exist reqular digraphs with n vertices, outdegree 2, and
logarithmic undirected diameter (d = O(logn)) such
that the directed diameter is d™ = Q(y/n).

Another natural question is whether the directed
diameter d* is bounded by some function of the undi-
rected diameter d for vertex-transitive digraphs. We are
unable to answer this question (see Problem 6.4). How-
ever, if we weaken the condition of vertex-transitivity
to regularity then the answer is negative.

THEOREM 5.2. For infinitely many values of n, there
exist reqular digraphs with n vertices, undirected diam-
eter d =3, and directed diameter Q(n'/?).

Both theorems will follow from the following
lemma.



LEMMA 5.3. Let X be an wundirected graph with m
vertices and e edges. Let G be a reqular digraph of
outdegree r with e vertices. Then there exists a reqular
digraph D with ne vertices, outdegree r + 1, undirected
diameter < (d(X)+1)(d(G)+1), and directed diameter
>m—1.

Proof. Let [m] = {1,...,m}. For a permutation 7 :
[m] — [m], consider the digraph P(w) on the vertex set
[m] with edges (z,z™) for all z € [m)].

For 1 <1 < 7 < m, consider the cyclic permutation
7(i,j) = (i,i+1,...,7). Call the corresponding digraph
P(i,7); it consists of a cycle of length j — ¢ + 1 and
m — j 4+ i — 1 loops. Note that P(i,7) is regular of
outdegree 1.

Let now X = ([m], E) be an undirected graph on
the vertex set [m].

Consider the digraph D; (X)) with vertex set [m]x E
defined as the disjoint union of the digraphs P(i, j) for
all pairs {i,j} € F, i < j. Here P(i,j) appears on the
vertex subset [m]x {{4,j}}. Note that D;(X) is regular
of outdegree 1.

Let G be a regular digraph of outdegree r on the
vertex set E. (So the edges of X will label the vertices of
G.) Let D2(G) denote the union of m disjoint copies of
G. Each layer {i} x FE (i € [m]) will serve as the vertex
set of a copy of G; so V(D2(G)) = [m]x E = V(D1(G)).

Let, finally, D(X,G) = D1 (X) U Ds(G).

Note that D(X, G) is a regular digraph of outdegree
r 4+ 1 with n = m|FE| vertices.

CLAM 5.4. d(D(X,G)) < (d(X) + 1)(d(G) + 1) — 1.

Indeed, to get from vertex (h, {i,j}) to (W', {i',5'})
in D(X,G), consider a path h = {lo,l,..., 0y =
B in X where f < d(X). Counsider the sequence
ve = (b, {ls,l11}) of vertices in D(X,G) (t =
0,1,...,f—1). By definition, v; is adjacent to w41 :=
(Le+1, {0, le11}) in the symmetrization of D(X, G). Set
wo = (h,{3,7)}) and wy = (I, {,5'}). Let P, be
a shortest undirected path between w; and v, (¢t =
0,...,f). The length of P; is at most d(G). Now, by
alternating between these f + 1 path and the f edges
{ve, wes1} we obtain a path of length < (f+1)d(G)+f,
proving the Claim. m]

Cram 5.5. d"(D(X,GQ)) > m — 1.

Indeed, D(X,G) has m layers and every edge goes at
most one layer up so going for any two edges 21, 22 € F,
moving from vertex (1,2z1) to (m, z2) in D(X, G) takes
at least m — 1 directed steps. O

Now to prove the main results of this section, we
choose different pairs of graphs (X, G).

If we choose X to be the complete graph K,, and
G the complete graph K () (viewed as a digraph by

orienting every edge in both directions) then D(X,G)
is a regular digraph with n = m?(m — 1)/2 vertices,
outdegree A = (') —1 = ©(n*?), and from our Claims
we obtain d(D(X,G)) = 3 and dT(X,G) > m —1 >
(2n)/3 — 1, verifying Theorem 5.2.

If we choose X to be a regular graph of de-
gree 3 with logarithmic (O(logm)) diameter, and G
to be a regular digraph with 3m/2 vertices, outde-
gree 2 and logarithmic (O(logm)) directed diameter,
then D(X,QG) is a regular digraph with n = 3m?/2
vertices, outdegree A = 3, and from our Claims
we obtain d(D(X,G)) = O(logm) = O(logn) and
dT(D(X,G)) >m—1=/2n/3 — 1. This verifies The-
orem 5.1 with outdegree 3 rather than 2. To reduce the
outdegree to 2, we replace each vertex by a directed
3-cycle and distribute the 3 incoming and 3 outgoing
edges arbitrarily between the 3 new vertices, one in-
coming and one outgoing edge to each new vertex. This
operation triples the number of vertices; it at most dou-
bles the undirected diameter; and it does not decrease
the directed diameter. O

We remark that if we permit parallel edges then
Theorem 5.2 can be trivially strengthened:

PROPOSITION 5.6. If we permit parallel edges then for
every n, there exists a reqular digraph on n vertices, of
undirected diameter 1 and directed diameter n — 1.

Proof. Take the union of the (g) digraphs P(i,j) (1 <
i < j < n) defined in the previous proof (setting
m := n) viewing the edge set as a multiset. O

Let us now return to our convention that parallel
edges are not permitted. Then, in contrast to Proposi-
tion 5.6, undirected diameter 1 implies directed diam-
eter < 2 for Eulerian digraphs.

PROPOSITION 5.7. If an Eulerian digraph X has undi-

rected diameter d(X) = 1 then its directed diameter is
dt(X) < 2.

Proof. We may assume X has no loops. If X has n
vertices and d(X) = 1 then for every vertex x we have
deg™t(x) = deg™ (x) > (n — 1)/2. Take two vertices x,y
such that there is no edge from x to y. Consider the
set NT(x) of out-neighbors of x and the set N~ (y)
of in-neighbors of y. Each of these sets are subsets of
V(X)\{z,y}; therefore they must overlap, proving that

there is a directed path of length 2 from z to y. O



The combination of Theorem 5.2 and Proposi-
tion 5.7 leave the case of undirected diameter 2 open.
This gap is closed for Eulerian (not necessarily regular)
digraphs by the following result.

THEOREM 5.8. For infinitely many values of n, there
exist Eulerian digraphs with n vertices, undirected di-
ameter d = 2, and directed diameter Q(n'/3).

Proof. Let m > 3, and let p be the smallest prime
greater than (m) Consider the following digraph
Fy(m) with vertex set [m] x Z/pZ. So Fy(m) has n :=
mp ~ m?/2 vertices. Let f : E(K,,) — (Z/pZ)* be an
injection, where the asterisk indicates the multiplicative
group (zero omitted). For 1 < ¢ < j < m and
x € Z/pZ, let (i, j,x) denote the directed cycle of
length j — i+ 1 starting at vertex (i,2) and moving up
one layer at a time at slope of f(i,7) until it reaches
layer j; then completes the cycle in a single jump back
to its start. So the cycle will traverse the vertices
ve(i,j,2) == (i +t,x +tf(i,5)) for t = 0,...,7 in this
order. Let F}(m) be the union of all cycles 9 (i, j, z) for
1<i<j<mandzxeZ/pZ.

By a “horizontal shift” by s € Z/pZ of the vertex
set of Fj(m) we mean the map (i,z) — (i,z + s).
Clearly, Fy(m) is invariant under horizontal shifts.

It is clear that in this union, no edge is repeated:
the slope of an edge determines the entire cycle from
which the edge comes, up to a horizontal shift.

Let Fy(m) be the union of m disjoint copies of
the complete graph K, each copy placed on a layer
{i} x (Z/pZ). So Fi(m) and F5(m) have the same set
of vertices. These two digraphs share no edges since all
edges of F(m) are horizontal while none of the edges
of Fy(m) is.

Let F'(m) = Fy(m) U Fy(m).

Clearly, F(m) is Eulerian. As in the proof of
Lemma 5.3, we have d*(F(m)) > m —1 = Q(n'/?)
because edges go at most one layer up.

We now have d(F(m)) = 2. Indeed, to reach
vertex (j,y) from vertex (i,z) (i < j), we first move
to v;—;(4, j, ) which is a common neighbor of the two.
(If i = j, then (i,z) and (j,y) are neighbors.) O

6 Open problems

The main open question is how to make our upper
bound proofs algorithmic. For instance, the recent
result that almost all undirected Cayley graphs of
Sy, have polynomially bounded diameter ([BH]) comes
with an algorithm that actually constructs paths of
length O(nC) in time O(n"). Our results imply that a
polynomial bound extends to almost all directed Cayley

graphs of S,; but we have no algorithm to actually
find directed paths of polynomially bounded length.
Our bound on the directed diameter is obtained via
a pigeon-hole argument based on expansion and yields
existence only.

There is little hope to make the general result
algorithmic but its special consequences such as that
about almost all directed Cayley graphs might be
provable algorithmically. Such algorithms, however,
will require substantial new ideas since the algorithms
for undirected diameter heavily rely on commutators
which involve orientation reversal.

In Theorem 1.1 it would be desirable to eliminate
the dependence on the degree A. The following conjec-
ture addresses this problem.

CONJECTURE 6.1. There exists a polynomial bound on
the directed diameter of vertex-transitive digraphs as a
function of the undirected diameter d and logn where
n is the number of vertices. I e., d™ < f(d,logn) for
some polynomial f.

We note that such a bound exists for Cayley di-
graphs (d* = O(d?(logn)?), Theorem 2.15) as well as
for edge-transitive digraphs (dt = O(dlogn), Theo-
rem 1.5).

The related question for Eulerian oriantations of
vertex-transitive graphs may have a different answer.

PROBLEM 6.2. Does there exist a polynomial bound
on the directed diameter of FEulerian orientations of
vertex-transitive graphs as a function of the undirected
diameter d and logn where n is the number of vertices?
Le., isd™ < g(d,logn) for some polynomial g?

It would be desirable to reduce the exponents in
the d* = O(d?*(logn)?) bound for Cayley digraphs
(Theorem 1.4). We state a conjecture in this direction.

CONJECTURE 6.3. For  wertex-transitive
dT = O(d(logn)¢) for some constant c.

digraphs,

For Cayley digraphs, Conjecture 6.3 would follow
from Conjecture 2.17. Note that Conjecture 6.3 is true
for regular edge-transitive digraphs (dt = O(dlogn),
Theorem 1.5).

PROBLEM 6.4. (a) Does there exist a bound on the
directed diameter of vertex-transitive digraphs which
depends on the undirected diameter only? I e., does
there exist a function f such that dt < f(d) for
all wvertex-transitive digraphs? (b) Is there such a
polynomial bound (f is a polynomial)?



Note that the answer to all questions above will be
negative if the condition of vertex-transitivity is relaxed
to regularity (Theorems 5.1 and 5.2).

PROBLEM 6.5. Does there exist a bound on the length
of the shortest directed cycle in a verter-transitive
digraph, depending only on the undirected diameter?

Of course a positive answer to Problem 6.4 (a) implies
a positive answer to Problem 6.5.

PROBLEM 6.6. Is Corollary 1.2 tight for wvertez-
transitive digraphs in the following sense: is there an
infinite family of connected finite vertex-transitive di-
graphs of bounded degree for which the directed diame-
ter d* grows (nearly) quadratically with d?

PROBLEM 6.7. What is the answer to Problem 6.5
for connected finite Eulerian digraphs (with no vertex-
transitivity assumption on their symmetrization)?
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