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On the diameter of the set of satisfying assignments in random

satisfiable k-CNF formulas

Uriel Feige∗ Abraham D. Flaxman† Dan Vilenchik‡

December 20, 2008

Abstract

It is known that random k-CNF formulas have a so-called satisfiability threshold at a density
(namely, clause-variable ratio) of roughly 2k ln 2: at densities slightly below this threshold almost
all k-CNF formulas are satisfiable whereas slightly above this threshold almost no k-CNF formula
is satisfiable. In the current work we consider satisfiable random formulas, and inspect another
parameter – the diameter of the solution space (that is the maximal Hamming distance between
a pair of satisfying assignments). It was previously shown that for all densities up to a density
slightly below the satisfiability threshold the diameter is almost surely at least roughly n/2
(and n at much lower densities). At densities very much higher than the satisfiability threshold,
the diameter is almost surely zero (a very dense satisfiable formula is expected to have only
one satisfying assignment). In this paper we show that for all densities above a density that is
slightly above the satisfiability threshold (more precisely at ratio (1+ε)2k ln 2, ε = ε(k) tending
to 0 as k grows) the diameter is almost surely O(k2−kn). This shows that a relatively small
change in the density around the satisfiability threshold (a multiplicative (1 + ε) factor), makes
a dramatic change in the diameter. This drop in the diameter cannot be attributed to the fact
that a larger fraction of the formulas is not satisfiable (and hence have diameter 0), because the
non-satisfiable formulas are excluded from consideration by our conditioning that the formula
is satisfiable.
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†UW Institute for Health Metrics and Evaluation. E-mail: abie@u.washington.edu.
‡UC Berkeley. E-mail: vilenchi@eecs.berkeley.edu.
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1 Introduction

The computational complexity of Boolean formula satisfiability has been the focus of intensive
research for decades. Recently, a promising approach to understanding the algorithmic difficulty
of k-SAT has emerged, in the form of rigorous analysis of the structural properties of formulas
drawn at random from certain distributions. For example, a natural distribution which has been
studied extensively is the uniform distribution over k-CNF formulas with exactly m clauses over n
variables. We denote this distribution by Fn,m,k. Despite its simple description, many fundamental
properties of this model are yet to be understood. For example, the computational complexity of
deciding if a random formula is satisfiable and of finding a satisfying assignment are both major
open problems [15, 22].

The clause to variable ratio m/n of a formula is referred to as the density of the formula.
The random model Fn,m,k exhibits a “phase transition” in satisfiability, where sparse formulas are
likely to be satisfiable whereas dense formulas are unlikely to be satisfiable. Moreover, this phase
transition happens at a very short density interval. There exists a satisfiability threshold dk = dk(n)
such that k-CNF formulas with density m/n > dk are not satisfiable whp1, while formulas with
m/n < dk are satisfiable whp [18]. A first-moment-method calculation provides an upper-bound of
dk ≤ 2k ln 2, and the threshold is conjectured to be within a constant distance of this upper-bound
(for all values of k). A lower-bound of 2k ln 2 − O(k) was established rigorously using a weighted
second-moment-method in [3].

For a satisfiable k-CNF formula F , let rmax(F ) be the maximal Hamming distance between a
pair of satisfying assignments of F . In this paper we study the behavior of rmax(F ) as a function
of the density. Specifically, we will consider random satisfiable formulas, and ask what the typical
value of rmax is likely to be at various densities. Observe that as one adds more clauses to a formula,
the set of satisfying assignments can only decrease, and hence also rmax can only decrease. This
indicates that the typical value of rmax should decrease as the density increases. However, when the
formula becomes unsatisfiable, the formula is discarded from consideration. Since the formulas of
lowest diameter (diameter 0) are those discarded from consideration, and their proportion increases
as the density increases, this may conceivably lead to a situation in which as the density increases
the expected diameter increases rather than decreases. In particular, there does not seem to be an
a-priori reason why the threshold for satisfiability should correspond to a threshold behavior also
with respect to the diameter of satisfiable formulas.

Let us review what is known about rmax(F ) at densities below the satisfiability threshold.
For m/n ≤ 2k−1 ln 2 we know that all but o(1)-fraction of the formulas satisfy rmax(F ) = n
(this is because they are satisfied as NAE-k-SAT instances [2]). The results in [4] imply that for
m/n = (1 − δ)2k ln 2, δ ∈ (0, 1/3), for all but o(1)-fraction of satisfiable k-CNF formulas rmax(F )

is at least (1
2 − 5δ1/2

6 − 2
k )n (this is true for k ≥ k0, k0 = k0(δ)). This large diameter is due to

the existence of many small clusters of satisfying assignments, which are “spread” in the space
of all 2n possible assignments. Physicists conjecture that this picture persists up to the so-called
condensation point at 2k ln 2 − ck, for some constant ck, at which point the number of remaining
clusters drops to polynomial and then maybe to constant. True or not, this conjecture does not
imply that rmax(F ) becomes small, because it can remain of value roughly n/2 even when there are
only two clusters. For densities much higher than the satisfiability threshold (by a factor of roughly
log n), the typical value of rmax(F ) is 0, because such formulas, if satisfiable, are likely to have only
one satisfying assignment (see for example [8] for the case of 3-CNF). This shows that the diameter

1We say a sequence of events holds with high probability (whp) to mean with probability tending to 1 as n tends
to infinity.

2



of random satisfiable formulas does undergo a phase transition as the density increases (starting
at n, and eventually reaching 1), but it is not clear whether there is any density that serves as a
threshold around which there is a sharp drop in diameter.
In this paper we show that:

Theorem 1. For all k ≥ 20 and m/n ≥ (1 + 0.99k)2k ln 2, all but a o(1)-fraction of satisfiable

k-CNF formulas F with m clauses over n variables satisfy

rmax(F ) ≤ 50k2−kn.

Our result proves that there occurs a transition from a typical structure of satisfying assign-
ments which are wide-spread in the n-dimensional binary cube, to a structure where all satisfying
assignments are typically contained in a ball of small diameter. The window in which this phase
transition occurs is contained in [(1 − ε1)2

k ln 2, (1 + ε2)2
k ln 2], where both ε1, ε2 tend to 0 as k

grows.
Here are a few interesting observations regarding this phase transition.

1. The threshold phenomenon in rmax occurs at a window of densities that lies around 2k ln 2,
and whose width is a low-order term w.r.t. 2k. Since we are considering only satisfiable
k-CNF formulas (below or above the threshold), there is no a-prior reason for this threshold
to be found in the vicinity of the satisfiability threshold (as the latter is irrelevant for such
formulas). Still, as our result shows, this is the case.

2. Since we are looking at satisfiable formulas, this is not a product distribution. Therefore some
methods for establishing threshold behaviors (such as [18]) are not applicable.

3. Consider the property of having a diameter of at least r. This is not necessarily a monotone
property of the density (at least we are not aware of an easy proof that it is). Again, this
shows that some approaches to prove the existence of such threshold (such as [18]) may not
be applicable.

4. Typically rmax = n for m/n < 2k ln 2/2. This is because at those ratios most formulas are
satisfiable as NAE-k-SAT formulas [2] (in which case for every satisfying assignment in the
NAE manner, also its complement at distance n is satisfying). Numerical calculations using
tools from statistical physics predict that at 2k ln k/k there is a phase transition from a typical
structure of a big connected ball of satisfying assignments into many small balls of satisfying
assignments (which are called clusters). Observe that 2k ln k/k < 2k ln 2/2 for all k ≥ 3,
therefore while there is a major change in the structure of the solution space, rmax is not
affected.

Let us briefly discuss what happens for k < 20. Our approach assumes that (2 · 0.99)k is a
low-order term compared with 2k. This is however not true (or not relevant) when k is small. Also,
the fact that we have a constant like 50 in the bound on rmax makes the result trivial for small
values of k. On the other hand, for fixed k (say k = 3) one can numerically estimate the value of
rmax (via the same methods used in the proof of Theorem 1, just figuring out the exact numerics
instead of a rigorous, less tight, estimation that we perform). For example, for k = 3 the numerics
show that typically rmax < 0.2n for density m/n = 7.625 (which is ∼ 1.375 · 2k ln 2 for k = 3).

Questions regarding the structure of the solution space guided the development of algorithms
in similar contexts in the past (two such examples are algorithms that were developed for 3CNF
formulas with a planted solution, and the intuition that served the development of the Survey
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Propagation algorithm). In this paper we limit our study to some structural properties of the
solution space and do not address algorithmic aspects, though hopefully our new insights can serve
the algorithmic perspective at some point as well.

More precisely, while the algorithmic and structural understanding of below-threshold random
formulas and above-threshold (for sufficiently large, yet constant, density) is rather thorough (a
short list for the below threshold regime could be [10, 11, 13, 23, 4, 1] and [21, 8, 17, 14, 7] for the
above threshold), there is no rigorous algorithmic result for clause-variable ratio c > 2k ln 2 when
c is some constant above the satisfiability threshold, but not “sufficiently large”. (For the special
case of k = 3 there are some experimental results in [7].)

1.1 Techniques

One reasonable approach to prove Theorem 1 is to consider the uniform distribution over sat-
isfiable k-CNF formulas with m clauses over n variables, and study rmax(F ) of a random instance
in that distribution. Throughout Un,m,k denotes the uniform distribution. More specifically, we
consider a random formula F from Un,m,k and estimate the expected number of pairs of satisfying
assignments at distance xn from each other. A similar approach was used for example in [3, 23, 4]
for random formulas in the below-threshold regime.

The major additional challenge that we face in this present work is the fact that the uniform
distribution Un,m,k is not a product space, clause appearances are dependent, and it is unclear how
to quantify this dependence. On the other hand, in the below-threshold regime, since whp a random
k-CNF formula is satisfiable, one can study random k-CNF formulas instead of satisfiable ones. This
distribution, which we denoted above by Fn,m,k, is very “close” to a product space (compare with the
distribution where every clause is chosen independently at random with probability p = m/

(

2k
(

n
k

))

,
which is already a product space).

One demonstration of this technical challenge is the difficulty of answering the following ques-
tion: given a fixed assignment ψ, what is the probability that it satisfies a random F? If F is drawn
from Fn,m,k then the answer is simple, Pr[ψ |= F ] = (1 − 2−k)m. If F is drawn from Un,m,k then
giving an explicit expression (as a function of m,n, k) for Pr[ψ |= F ] is still an open question.

We will show that for x ≥ 50k2−k the expected number of pairs of satisfying assignments at
distance xn from each other is much smaller than 1/n. Since there are at most n possible ways
to choose x, we can use the union bound to prove that whp F has the desired properties (since
Un,m,k is the uniform distribution, showing that the property holds whp translates immediately to
a deterministic statement about all but a vanishing fraction of satisfiable formulas).

To derive our estimate on the expected number of pairs of satisfying assignments at distance
xn we first analyze a different distribution which is commonly called the planted distribution,
and we shall denote it by Pn,m,k. To generate a formula according to Pn,m,k, fix an assignment
uniformly at random, then includes m clauses uniformly at random out of

(

2k − 1
) (

n
k

)

clauses that
are consistent with the “planted” assignment.

When working with Pn,m,k, the clauses are nearly independent and calculation is much easier.
We then relate the planted model and the uniform model to obtain the desired result. The idea
of translating bounds from the planted to the uniform model was used in [1, 4, 23] for the below-
threshold regime, and also in [12, 14] but in a different context.

The reader may wonder at this point what happens when m/n < (1+0.99k)2k ln 2? Do typically
all satisfying assignments lie in a low-diameter Hamming ball all the way down to the satisfiability
threshold (or even below it)? Numerical and rigorous (tedious) calculations that we did, whose
details we omit here, suggest that Theorem 1 can be extended (maybe with some changes in the
upper bound on rmax) down to m/n = 2k ln 2 + O(k) (which is an O(k)-additive term from the
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satisfiability threshold). This extension is done using the same technique of going through the
planted distribution. However, when m/n = 2k ln 2 +O(k) this technique breaks. In Section 5 we
discuss this issue and suggest another technique that may prove useful when our first technique
fails. This discussion is part of a more general discussion about the width of the window in which
the phase transition in the values of rmax occurs.

2 Relating the uniform and the planted distributions

Let ux be a random variable counting the number of pairs of satisfying assignments at distance
xn from each other that a random formula in Un,m,k has. Let T to denote the expected number
of satisfying assignments that a random formula in Un,m,k has (that is T =

∑

xE[ux]), and fx

a random variables which denotes the number of satisfying assignments at distance xn from the
planted assignment, had F belonged to Pn,m,k. The following proposition allows us to upper bound
E[ux] via the more accessible quantity E[fx].

Proposition 2. Let F be a random formula sampled according to Un,m,k, then

E[ux] = T · E[fx]/2.

(A similar approach of relating the uniform and the planted distribution can be found in [23],
though in that case the uniform distribution was the non-conditioned one).

Proof. For two satisfying assignments ϕi, ϕj we use δ(ϕi, ϕj) to denote their Hamming distance.
Consider some ordering on the 2n possible assignments, and let Ai be an indicator variable which
is 1 if ϕi satisfies F . Using this terminology,

ux =
1

2

∑

i,j:δ(ϕi,ϕj)=xn

Ai ·Aj .

Linearity of expectation gives

E[ux] =
1

2

∑

i,j:δ(ϕi,ϕj)=xn

Pr[Ai ∧Aj ] =
1

2

∑

δ(ϕi,ϕj)=xn

Pr[Ai|Aj ]Pr[Aj ].

By symmetry, the latter equals

2n · Pr[Aj ]

2
·

∑

i:δ(ϕi,ϕj)=xn

Pr[Ai|Aj ].

It remains to estimate Pr[Ai|Aj ]. Conditioning on the event Aj means conditioning on the fixed
assignment ϕj to be satisfying. In turn, Un,m,k conditioned on ϕj being a satisfying assignment
means that only clauses which are satisfied by ϕj can be included, and by symmetry, every set of
t clauses satisfied by ϕj has the same probability of being included. Observe that for t = m this
is exactly the definition of the planted distribution Pn,m,k. Therefore

∑

i Pr[Ai|Aj ] = E[fx], when
summing over all assignments ϕi at distance xn from ϕj . Furthermore, T =

∑

j Pr[Aj ] (now we
are summing over all 2n assignments), and hence Pr[Aj ] = T/2n. Putting everything together we
derive

E[ux] = T · E[fx]/2.

�
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In [23] this sort of proposition was already enough to estimate E[ux] since T can be easily
calculated when m/n is below the satisfiability threshold. However in Un,m,k, m/n above the
satisfiability threshold, it is not clear how to calculate T . The following lemma is then useful (the
proof can also be found in [14], and is given here for completeness).

Lemma 3. Let W be the expected number of satisfying assignments of a random Pn,m,k instance.

Then always T ≤W .

Proof. Let ti be the number of formulas on n variables andm clauses which have exactly i satisfying
assignments. Let pi be the probability that a formula with exactly i satisfying assignments is
sampled from Un,m,k, and let qi be defined similarly for Pn,m,k. Observe that due to symmetry,
sampling a formula from Pn,m,k is exactly equivalent to sampling a pair (ϕ, F ) uniformly at random
from all pairs such that ϕ is an assignment and F is a formula satisfied by ϕ. Hence:

pi =
ti

∑2n

j=1 tj
, qi =

i · ti
∑2n

i=1 i · ti
.

and

T =
2n
∑

i=1

i · pi =

∑2n

i=1 i · ti
∑2n

i=1 ti
,

W =
2n
∑

i=1

i · qi =

∑2n

i=1 i
2 · ti

∑2n

i=1 i · ti
.

Therefore to prove T ≤W , it suffices to show

(

2n
∑

i=1

i · ti
)2

≤
(

2n
∑

i=1

ti

)

·
(

2n
∑

i=1

i2 · ti
)

.

This is just Cauchy-Schwartz, (
∑

ai · bi)2 ≤
(
∑

a2
i

)

·
(
∑

b2i
)

, with ai =
√
ti and bi = i · √ti. �

3 The Planted Setting

In this section we analyze W and E[fx]. Recall that we use W to denote the expected number of
satisfying assignments that a random formula in Pn,m,k has, and fx counts the number of satisfying
assignments at distance xn from the planted assignment, had F belonged to Pn,m,k.

Our analysis of E[fx] is composed of two regimes. The first is the case x ∈ [0, 1/k]. In this
regime we know that E[fx] changes from ω(1) to o(1). This phenomenon is depicted in Figure
1. The y-axis in the plot is f⋆(x) such that E[fx] = ef

⋆(x)n, the x-axis is the Hamming distance
from the planted. Therefore the transition from E[fx] = ω(1) to E[fx] = o(1) corresponds to f⋆(x)
changing from positive to negative.

To translate our results to the uniform setting, it turns out that we need to have a more precise
control on the rate in which E[fx] decreases once changing to o(1). Therefore the analysis of that
regime is more careful (Proposition 6). Then we analyze the case x ∈ [1/k, 1]. In this regime, for
a suitable choice of ε (recall m/n = (1 + ε)2k ln 2), E[fx] is constantly o(1) (in fact, exponentially
small in n). Therefore a more crude analysis will suffice (Proposition 5). This corresponds in Figure
1 to the fact that the curve is bounded away below the x-axis in that range.

6
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Figure 1: Plot of f⋆(x) for k = 6 and ε = 2−k.

In this section we consider a slight modification of Pn,m,k. Instead of choosing m clauses u.a.r.,
we choose m clauses with repetitions. However, for m/n = O(1), the expected number of pairs
of identical clauses in F (in the modified model) is O(m2/nk). Thus, for k ≥ 3 this quantity is
o(1). Therefore, as standard calculations show, every property that holds with probability q in the
modified model holds with probability q(1 + O(1)) in Pn,m,k. Somewhat abusing notation, we will
denote the modification also by Pn,m,k.

Let us start with formulating E[fx] in a way which is convenient to work with.

Lemma 4.

E[fx] ≤
(

n

xn

)

·
(

1 − 1 − (1 − x)k

2k − 1

)m

.

Proof. Fix an assignment ψ at distance xn from the planted assignment ϕ. The probability that
ψ also satisfies F can be calculated in the following manner. Let A be the set of variables on which
both ψ and ϕ agree. |A| = (1−x)n. Consider a random clause C satisfied by ϕ; if all k variables in

that clause fall in A, then C is surely satisfied by ψ. The probability for that is q =
((1−x)n

k

)

/
(

n
k

)

. If
at least one variable falls out of A, which happens with probability 1−q, then the clause is satisfied
only with probability 2k−2

2k−1
. This is because there is one way to complement the variables which is

not consistent with ψ but is consistent with ϕ. There are
(

n
xn

)

ways to fix ψ, and therefore

E[fx] =

(

n

xn

)(

q · 1 + (1 − q) · 2k − 2

2k − 1

)m

=

(

n

xn

)(

2k − 2 + q

2k − 1

)m

=

(

n

xn

)(

1 − 1 − q

2k − 1

)m

.

Finally, observing that q ≤ (1 − x)k proves the lemma. �

It will be more convenient to work with the following quantity:

f⋆(x) ≡ lnE[fx]

n
. (3.1)
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One can verify that

f⋆(x) ≤ H(x) ln 2 + c ln

(

1 − 1 − (1 − x)k

2k − 1

)

, (3.2)

where H(x) denotes the binary entropy measure,

H(x) = −(1 − x) log2(1 − x) − x log2 x,

and c = m/n = (1 + ε)2k ln 2.

To make use of Proposition 2 we need to obtain tight bounds on W and E[fx]. In terms of
f⋆(x), E[fx] = ef

⋆(x)n, therefore to prove E[fx] = o(1) it suffices to prove f⋆(x) < 0. This is exactly
what the following two propositions formally establish.

Proposition 5. For any k ≥ 20, ε ≥ 0.99k and x ∈ [1/k, 1],

f⋆(x) ≤ −50k2−k

Proof. Throughout, we use the following useful upper bound on ln(1− x).

ln(1 − x) ≤ −x.

We break the interval [1/k, 1] into two subintervals. Let us first consider x ∈ [0.3, 1]. Always
H(x) ln 2 ≤ ln 2, and on the other hand, using log(1 − x) ≤ −x,

c ln

(

1 − 1 − (1 − x)k

2k − 1

)

≤ −(1 + ε)2k ln 2

2k − 1
(1 − (1 − x)k).

Therefore it suffices to prove that (1 + ε)(1 − (1 − x)k) ≥ 1 +
(

50k2−k/ ln 2
)

for every x ∈ [0.3, 1].
Indeed,

(1 − (1 − x)k) ≥ (1 − 0.7k), (1 + ε) ≥ (1 + 0.99k).

One can verify that for k ≥ 20, multiplying these two quantities is always greater than 1 +
(

50k2−k/ ln 2
)

.
Let us now move the the case x ∈ [1/k, 0.3]. H(x) is monotonically increasing until x = 0.5,

therefore it takes its maximal value in this interval at x = 0.3, which gives H(0.3) ≤ 0.266. On
the other hand (1 − (1 − x)k) takes its minimal value at 1/k. Observe that (1 − 1/k)k ≤ e−1, and
therefore

(1 − (1 − x)k) ≥ 1 − 1/e ≥ 0.6 > 0.266 > H(0.3).

In this case we have f⋆(x) ≤ 0.266 − 0.6 ≤ −0.3 < 50k2−k for every k ≥ 20. �

Proposition 6. For any k ≥ 20, ε ≥ 0 and λ ∈ [20, 2k/k], if x = λ2−k then f⋆(x) ≤ −λ2−k.

Proof. For any x, we have
ln(1 − x) ≤ −x,

and, for 0 ≤ x ≤ 1,

1 − (1 − x)k ≥ kx− k2x2

2
.

8



Thus,

H(x) ln 2 + c ln

(

1 − 1 − (1 − x)k

2k − 1

)

= −x lnx− (1 − x) ln(1 − x) + (1 + ε)2k(ln 2) ln

(

1 − 1 − (1 − x)k

2k − 1

)

≤ −x lnx+ x(1 − x) − (1 + ε)2k(ln 2)

(

1 − (1 − x)k

2k − 1

)

≤ −x lnx+ x− (1 + ε)(ln 2)

(

kx− k2x2

2

)

.

Substituting λ2−k for x, this upper-bound becomes

− x lnx+ x− (1 + ε)(ln 2)

(

kx− k2x2

2

)

= λ2−k (k(ln 2) − lnλ) + λ2−k − (1 + ε)(ln 2)
(

kλ2−k − k2λ22−2k−1
)

= −(λ lnλ)2−k + λ2−k − ε(ln 2)
(

kλ2−k − k2λ22−2k−1
)

+ (ln 2)k2λ22−2k−1

= −λ2−k
(

(lnλ) − 1 + ε(ln 2)
(

k − k2λ2−k−1
)

− (ln 2)k2λ2−k−1
)

= −λ2−k

(

(lnλ)

(

1 − (ln 2)k2 λ

lnλ
2−k−1

)

− 1 +
(

ε(ln 2)
(

k − k2λ2−k−1
))

)

.

Observe that λ ≤ 2k/k and thus,
k − k2λ2−k−1 ≥ 0,

and since ε ≥ 0 it suffices to prove that

(lnλ)

(

1 − (ln 2)k2 λ

lnλ
2−k−1

)

− 1 ≥ 1.

Since λ ≤ 2k/k, and k ≥ 5, we have

(ln 2)k2 λ

lnλ
2−k−1 ≤ (ln 2)k2 2k/k

k(ln 2) − ln k
2−k−1 = (ln 2)

1

2((ln 2) − (ln k)/k)
≤ 0.65,

and so it suffices to verify that
lnλ ≥ 2/(1 − 0.65),

which is always true for λ ∈ [20, 2k/k] (for k ≥ 20, 2k/k ≫ 20). �

4 Proof of Theorem 1

Recall Proposition 2 and Lemma 3 which establish together

E[ux] ≤W · E[fx]/2.

W is the expected number of satisfying assignment is the planted model, W =
∑

xE[fx].
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The idea of the proof is to use Propositions 5 and 6 to upper bound W by looking at the largest
x s.t. E[fx] contributes to W (that is, E[fx] is not vanishing with n). We shall use x0 to denote
this number (regardless, observe that x0 is an upper bound on the diameter of the cluster region in
the planted setting). Then, to beat W , we take x1 > x0, so that for every x ≥ x1, E[fx] ·W ≪ 1.
Respectively, x1 uppers bounds the diameter of the cluster region in the uniform setting. It turns
out that x1/x0 = O(k), and since x0 scales down with 2−k, this additional factor is manageable.

Formally, propositions 5 and 6 assert that only x ≤ 20 · 2−k may contribute to the value of W .
Indeed, take x0 = 20 · 2−k, then E[fx] = o(n−1) for every x ≥ x0. For x ≤ x0, the total number of
possible assignments (which obviously bounds the expected number of satisfying assignments) at
distance xn from the planted is

(

n

xn

)

≤
( en

xn

)xn
≤ e(1−ln x)xn.

This quantity is maximized for x ≤ x0 at x0, which gives e(k ln 2+1)2−kn. Therefore, for sufficiently
large n,

W ≤ o(1) +
∑

x≤x0

(

n

xn

)

≤ ne(k ln 2+1)20·2−kn ≤ e40k2−kn.

Now take x1 = 50k2−k (for k ≥ 20, 50k ≤ 2k/k, which is the maximal λ allowed), applying
Propositions 5 and 6 once more gives that for x ≥ x1,

E[fx] ≤ e−50k2−kn.

In turn, for x ≥ x1

E[ux] ≤W · E[fx]/2 ≤ e40k2−kn · e−50k2−kn = e−10k2−kn.

Using Markov’s inequality, for x ≥ x1,

Pr[ux > 0] ≤ e−10k2−kn.

Applying the union bound,

Pr[∃x ≥ 50k2−k, ux > 0] ≤ n · e−10k2−kn = o(1).

5 Moving even closer to the threshold

In the previous sections we showed that when m/n ≥ (1 + 0.99k)2k ln 2, for k ≥ 20, whp there are
no pairs of satisfying assignments at distance greater than 50k2−k from each other (Theorem 1).
Our approach was to consider the planted distribution and estimate E[fx] – the expected number
of satisfying assignments at distance xn from the planted assignment. Then we used Proposition 2
to relate this quantity to E[ux] – the expected number of pairs of satisfying assignments at distance
xn from each other (in the uniform setting). The relation we established was given (in Proposition
2) by

E[ux] ≤W · E[fx].

W is the expected number of satisfying assignments in Pn,m,k.

Observe that W is always at least 1, and therefore using this relation to show that E[ux] = o(1)
makes sense only when E[fx] = o(1). However, using (rather tedious) calculations one can show

10
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Figure 2: Plot of f⋆(x) for k = 6 and ε = −2−k.

that when m/n = 2k ln 2+O(k) there exists x ∈ [0.5−O(2−k), 0.5] such that E[fx] is exponentially
large in n (details omitted). This phenomenon is depicted in Figure 2 . Therefore from this density
downwards our method breaks (observe that E[fx] is monotonically decreasing and continuous in
m/n). This phenomenon is demonstrated in Figures 2 vs. 1.

Compare the plots in those figures. Both depict on the y-axis f⋆(x) ≡ ln E[fx]
n , and the distance

from the planted assignment on the x-axis. To generate the plots we used the estimate on E[fx]
given in Lemma 4. Although Lemma 4 establishes an upper bound on E[fx], in fact for x bounded
away from 0 equality holds (up to a o(1) additive factor inside the parenthesis). Since E[fx] is
monotonically decreasing in m/n and continuous, as m/n gets smaller, the “hunchback” around
x = 1/2 gets closer to the x-axis, and at some ratio crosses it to become positive. This ratio occurs
at m/n = 2k ln 2 + O(k). As k grows, the hunchback (regardless if above or below the x-axis)
becomes narrower, and in general is concentrated in an interval of width O(2−k) around 1/2, with
the maximum occurring at 1/2 − O(2−k). We have validated these claims using a combination of
numerical and rigorous calculations (details omitted here).

In this section we suggest a new technique which refines the one we used. Using our refined
technique we can prove for example that at some settings, even though E[fx] is exponential in n
(which means that our original technique fails), in fact whp fx = 0. Hopefully this refinement can
benefit the uniform distribution as well. We do not discuss this point in the present paper.

The key to the refinement is to replace fx with another quantity which counts maximal satisfying
assignments at distance xn from the planted assignment – fmax

x . This notion is similar to the notion
of minimal satisfying assignments used in [20].

To demonstrate the power of this new technique we describe a setting where E[fx] ≥ 1 (which
means that our original technique fails) for some x ∈ [0.3, 0.6], but E[fmax

x ] = o(1) for all x ∈
[0.3, 0.6], and in that setting this will imply that whp fx = 0. Formally, we prove that:

Proposition 7. There exists a non-empty interval (ε2, ε1) in which for every ε ∈ (ε2, ε1) and F
distributed according to Pn,m,k, m = (1+ ε)2k ln 2, there exists x ∈ [0.3, 0.6] so that E[fx] ≥ 1 while

whp fx = 0 for every x in that interval.
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We choose the value ε2 carefully (we will shortly describe how), and for that ε2 we can verify
numerically that

Assumption 8. Let F be distributed according to Pn,m,k. If m/n ≥ (1 + ε2)2
k ln 2 then whp F

has no satisfying assignments at distance xn from the planted assignment for 0.2 ≤ x ≤ 0.3 or

0.6 ≤ x ≤ 1.0.

Since we are only interested in demonstrating the power of this technique, we do not care in the
context of this present paper about turning it into a rigorous claim.

Let us now formally define the notion of maximal satisfying assignments.

Definition 9. Given a planted instance F with a planted assignment ϕ, we say that a satisfying

assignment ϕ′ of F is maximal if every assignment ψ that disagrees with both ϕ′ and ϕ on some

variable xi does not satisfy F .

In that sense ϕ′ is in a maximal Hamming distance from ϕ. For example, if the complement of
the planted also satisfies F , then it is maximal (in a vacant way). It is easily proven that F has a
satisfying assignment if and only if F has a maximal satisfying assignment.

Let ε1 be the maximal value such that for m/n = (1 + ε1)2
k ln 2 and some x ∈ [0.3, 0.6],

E[fx] ≥ 1.

Let ε2 be the minimal value such that for m/n = (1 + ε2)2
k ln 2 and every x ∈ [0.3, 0.6]

E[fmax
x ] ≤ n−2.

The proof of Propositions 5 and 6 show that ε2 always exists, and we have verified the exis-
tence of ε1 numerically. The condition E[fmax

x ] ≤ n−2 for x ∈ [0.3, 0.6] easily translates to the
following claim: whp there are no maximal satisfying assignments at distance xn for x ∈ [0.3, 0.6].
This follows from Makrov’s inequality, which gives an upper bound of n−2 on the probability that
fmax

x > 0 (for a fixed x). Now take the union bound over at most n possible values of x.

Before proving Proposition 7, we still need to show that the interval (ε2, ε1) is not empty.

Proposition 10. ε2 < ε1

Proof. Fix x ∈ [0.3, 0.6], and consider a random formula F from Pn,m,k. Let Mi be the event that
ϕi at distance xn from the planted assignment ϕ is maximal, and Ai the event that ϕi satisfies F .
Using this terminology:

E[fmax
x ] =

∑

i:δ(ϕi)=xn

Pr[Ai ∧Mi] =
∑

i

Pr[Mi|Ai]Pr[Ai] = Pr[Mi|Ai]E[fx]. (5.1)

In the last step we used the fact that Pr[Mi|Ai] is the same for every ϕi by symmetry, and therefore
we can pull it out in front of the summation. It remains to estimate Pr[Mi|Ai]. Conditioning on
the event Ai in the planted model means conditioning on the fixed assignment ϕi to be satisfying
in addition to the planted assignment. In other words this means that only clauses which are
satisfied by both ϕi and ϕ can be included. By symmetry, every set of t clauses satisfied by both
has the same probability of being included. Observe that for t = m this is exactly the definition of
the doubly-planted distribution (the distribution where to begin with two planted assignments are
respected).
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A standard approach is to consider the following variation of the doubly-planted model: pick
every clause satisfied by both ϕi and ϕ w.p. p, where p satisfies p = m/|S|, S being the set of
clauses which are satisfied by both ϕi, ϕ. For the properties that interest us, it is straightforward
to translate results between these two models. It is also easy to see that |S| ≥ (2k − 2)

(

n
k

)

.
Now consider a variable s in ϕi whose assignment agrees with ϕ, and w.l.o.g. assume it is

TRUE. We call a clause C s-qualifying for ϕi if it takes the form (s∨ ℓy1
∨ ℓy2

∨ . . .∨ ℓyk−1
), where

ℓyj is a FALSE literal (over the variable yj) under ϕi. If ϕi is maximal then at least one of the
(

n
k−1

)

s-qualifying clauses had to be included. The probability that at least one such clause is included is
at most

1 − (1 − p)(
n

k−1
) ≤ 1 − e−km/(n(2k−2)).

Next we observe that ϕi has at least (1 − x)n variables which are assigned according to ϕ. Also
observe that the set of s-qualifying clauses is disjoint from the set of q-qualifying clauses. Finally,
for ϕi to be maximal there must be at least one s-qualifying clause in F for every variable s. The
probability for that is at most

Pr[Mi|Ai] ≤
(

1 − e−km/(n(2k−2))
)(1−x)n

≤
(

1 − (1 − x)e−km/(n(2k−2))
)n

≡ an, (5.2)

for some a = a(k) < 1 (here we assumed that x ∈ [0.3, 0.6] and therefore (1 − x) ∈ [0.4, 0.7]).
Combining Equations (5.1) and (5.2) we derive

E[fmax
x ] ≤ E[fx] · an. (5.3)

We claim that this implies ε1 − ε2 ≥ h for some h = h(k) > 0 (h actually depends on a, but a
depends only on k). Fix some b = b(k) > 1 s.t. b · a < 1 (since a = a(k) < 1, such b exists). Since
E[fx] is continuous and decreasing in m/n, and by the maximality of ε1, we can find h = h(k) > 0
s.t. E[fx] ≤ bn for all x ∈ [0.3, 0.6] when m/n ≤ (1+ε1−h)2k ln 2. On the other hand, as Equation
(5.3) implies, E[fmax

x ] ≤ bn · an = (ab)n ≤ n−2 (for sufficiently large n) for all x ∈ [0.3, 0.6]. By the
minimality of ε2 this in particular implies that ε2 ≤ ε1 − h. �

Proof.(Proposition 7) Fix some ε ∈ (ε2, ε1) and consider a random formula F in Pn,m,k so that
m/n = (1 + ε)2k ln 2. By the choice of ε > ε2, it holds that whp F has no maximal satisfying
assignments at distance xn from the planted assignment for x ∈ [0.3, 0.6]. Assume that indeed this
is the case, and also assume that Assumption 8 holds.

By the choice of ε < ε1 and the maximality of ε1, for some x1 ∈ [0.3, 0.6] indeed E[fx1
] ≥ 1.

We shall now show that fx = 0 for all x ∈ [0.3, 0.6]. Assume by contradiction that fx > 0 for
some x ∈ [0.3, 0.6]. Namely, there exists a satisfying assignment ψ at distance xn from the planted
assignment, ϕ. Construct the assignment ψ′ in the following manner: while possible, flip the
assignment of a variable that agrees with ϕ that leaves the assignment satisfying. By construction
it is clear that ψ′ is maximal. The crucial observation now is that at each iteration of the process we
increase the distance between the current assignment and the planted by exactly one. Specifically,
we start the procedure with an assignment at distance xn for x ∈ [0.3, 0.6], and keep increasing the
distance. If the final distance yn is s.t. y /∈ [0.3, 0.6] then at some point we’ve reached a satisfying
assignments at distance ≥ 0.6n+ 1. This contradicts Assumption 8. Therefore we have that ψ′, a
maximal satisfying assignment already, is at distance yn for y ∈ [0.3, 0.6]. This however contradicts
our assumption that no maximal satisfying assignments exist at that range. �
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