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ABSTRACT 

We examine the following question: 'Given a problem, is it more 

difficult to tell how many solutions the problem has than just deciding 

whether it has a solution?'. We show, that in specific cases, the ques- 

tion can be put into a mathematically meaningful form, namely when we 

can translate 'number of solutions' as 'number of distinct accepting 

computations of a nondeterministic Turing machine' (perhaps with ap- 

propriate weights). In this context, as we show, these questions are 

equivalent to problems about probabilistic machines (in the sense of 

Gill (9)). 

In the first part of the paper we examine time-bounded compu- 

tations, and justify our claim that this formalization is really the ma 

thematical form of the question above by exhibiting a unifying model 

(the treshold machine) which has a special subcases the nondeterministic 

and the probabilistic machines. We show that natural complete problems 

exist and prove some elementary properties of the model. 

In the second part we examine tape-bounded machines. We show 

that probabilistic tape-bounded machines may be simulated by determin- 

istic Turing machines with only a polynomial increase in the amount of 

tape needed. This settles an open problem of Gill's (9). 

This is a very powerful and perhaps unexpected result: it is 

the best known situation in wich we are able to show that powerful 'ex- 

tras' like nondeterminism, get us only a polynomial improvement. The 

result is similar in content to Savitch's celebrated simulation of non- 

deterministic machines (20). The proof is completely unrelated to 

Savitch's (his construction does not work in the probabilistic case) 

and is quite involved, using some powerful recent results in complexity 

theory (i0) (18) (4). 

i.i. INTRODUCTION 

A central question in the theory of computational complexity 
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may be formulated as: 'What is the difference (if any) between the di~ 

ficulty of checking that a proposed solution to a problem is correct 

and the difficult of, given a problem, finding a solution to it?'. Of 

course, the question, as proposed, is meaningless, since we have not 

specified what we mean by 'problem' or by 'checking' 'finding' (i.e. 

we have not given a model of computation). Indeed, it is known, [2~ , 

El8], [i0], that the answer depends crucially on the model of computa- 

tion. Nevertheless, for the 'natural' model, the formalization of the 

question above becomes exactly the celebrated P a NP question. 

In this paper we shall try to formalize another question that 

is intuitively appealing: 'Is it more difficult todecide whether a 

problem has many (or a given number of) solutions than deciding whether 

it is solvable?'. Again, we shall have to give the question a precise 

mathematical meaning. 

This in itself is not always necessarily possible: for ex- 

ample consider 'problem' as meaning 'problem in P'-i.e. problems to 

which the existence of solutions may be decided in time polynomial in 

the length of the imput by a deterministic. Turing machine (dTm) . Then 

there are problems (where by a 'problem' we mean recognition of the 

language which contains the instances of the problem with a 'yes' 

answer - as in (12) p. 211). P1 and P2 such that 

a) It is decidable, in polynomial time by a dTm whether an 

instance of P1 (P2) has a solution; 

b) Given an integer k, and an instance x of PI, is decid- 

able (by a dTm in time polynomial in ikl, I xi whether x 

has k solutions, where Ixl denotes the length of x; 

c) The similar problem for P2 - i.e. determining for an in 

teger m and an instance y of P2 whether y has m solu- 

tions is NP-complete. 

This follows by taking P1 to be 'given graph G, does it have 

a spanning tree?' and P2 to be 'given graph G with integer arc weights, 

does it have a negative cycle?', since there well known easy polynomial 

algorithms for finding negative cycles [141 and spanning trees Ell ; 

the number of spanning trees of a graph may be computed using Kirchoff's 

classical matrix tree theorem [16~, while it is not too hard to reduce 

(in the sense of Cook [~) the problem of determining the number of ne 

gative cycles of a graph to the Hamiltonian cycle problem. 

In the rest of the paper we shall show that there are con- 
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texts within which the question may be meaningfully formulated, and 

that it has interesting relationship to previously studied problems 

[9]. Finally we settle the problem for tape-bounded machines. 

1.2. FORMULATION OF THE PROBLEM 

We shall be very informal. Familiarity with standard termi- 

nology about NP-eomplete problems is assumed to be known (see [I~,EII ] 

for definitions) and definitions will be kept to a minimum. Proofs will 

only be outlined or omitted altogether. 

DEFINITION The m-satisfiability problem is: 'Given a boolean expres- 

sion B and an integer m, are there at least m different assignments of 

the values 'true' and 'false' to B's variables that result in B eva!u 

ating to 'true'?. 

Generally, given a problem Q, we shall denote by m Q the pro 

blem 'does Q have at least m distinct solutions?'. Thus a nondetermin- 

istic Turing machine (ndTm) operating within bound b is said to m-ac- 

cept the string x if there are at least m distinct computation sequen 

ces within bound b(x), that accept x. We shall call this kind of acce~ 

tance 'treshold acceptance with treshold m'. (The same ideas, within an 

algebraic context, have been presented independently in [~). 

DEFINITION Given two families of combinatorial problems A and B, a 

mapping f( ) : A ~ > B is parsimonious iff 

i) Given a problem a C A, f(a) C B has exactly m solutions 

iff a has exactly m solutions. 

2) f(a) may be computed in time polynomial in the size of a 

by a dTm. 

Let A and B families of combinatorial problems and suppose 

there exist parsimonious mappings f( ): A > B and g( ) : B > A. 

Consider the languages m A and m B (mA = {(l,a) la ~ A, a has at least 

£ distinct solutions}). Then 

(Z,a) c mA iff (l,f(a)) £ mB 

and 

(k,b) C mB iff {k,g(b)) E mA 

Thus, the recognition problems of the languages m A and m B 

have the same complexity (within a polynomial). Whenever such f( ) and 
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g( ) exist, we say that mA and mB are related by parsimonious reduc- 

tions, and we use the notation f( ): mA .......... > mB to denote also the 

function (k,a) > (k,f(a)) . 

DEFINITION mNP = {languages k-accepted within polynomial time by 

ndTm with some threshold k}. 

The following theorem shows that for a huge number of combi 

natorial problems, the complexity of the question 'How many solutions 

does the problem have?' is the same (within a polynomial) . We do not 

know what is the time required by a dTm or an ndTm to solve any of 

these problems, but we know that either they are simultaneously in 

P (NP) or all of then are outside of P (NP). 

These sets are the complete sets (in the sense of Karp [15]) 

for the class of languages recognized within polynomial time by tres- 

hold acceptance by ndTm's. Definitions of the combinatorial problems 

may be found in the references. 

THEOREM 1 The following combinatorial problems are related by par 

simonious reductions : 

l) 

2) 

m-SATISFIABILITY 

Treshold acceptance with treshold m by polynomial time 

bounded ndTm's. 

3) m-CLIQUE [ 15] 

4) m-NODE COVER [ 15]. 

5) m-SET PACKING [15] . 

6) m-SET COVER [15] 

7) m(0-1) INTEGER PROGRAMMING [15] 

8) m-E~CT COVER [ 7] 

9) m-HITTING SET [15] 

i0) m-KNAPSACK [15] 

Ii) m-STEINER TREE [ 15] 

12) m-JOB SEQUENCING [15 3 

13) m-PARTITION [ 15] 

14) m-INEQUIVALENT REGULAR EXPRESSION OVER (+,o) [13 3 

15) m-MAX CUT [ 15] 

16) m-MAXIMUM SATISFIABILITY with 2 LITERALS [83 

17) m-MINIMUM NODE NODE DELETION BIPARTITE SUBGRAPH [8] 

18) m-NETWORK FLOW WITH MULTIPLIERS [193 

19) m-DIRECTED HAM!LTONIAN CIRCUIT [15] , [23] 

20) m-UNDIRECTED HAMILTONIAN CIRCUIT [15] , [23] 
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21) m-IMPOSSIBLE PAIRS CONSTRAINED PATHS E63 

The list is not exhaustive, it just purports to show that 

the class of NP-complete problems related by parsimonious reductions 

is quite extensive. In fact the only class of NP-complete problems 

that we tried but were unable to put in the list were the register al 

location problems of Sethi [ 2~, where to each assignment satisfying 

the boolean expression we have corresponding a constant number of pro 

grams, and this is a purely technical difficulty: it is possible to 

define an equivalence relation among the programs so that the rela- 

tionship becomes I:i. 

The proof of the reductions are generally simply a check 

that the original reduction, which shows the problem to be NP-ccmplete, 

is in fact parsimonious. In some cases, when this in not true, alter- 

native parsimonious reductions exist in the literature [23~, E7~, or 

can be constructed. 

Theorem 1 enables us to claim that the intuitive question we 

started with, may be formalized as 

NP a mNP 

Of course, 

P &mNP 

is another important problem. These problems seem very difficult. 

1.3 PROPERTIES OF mNP 

The treshold machine model can be visualized as follows: con 

sider a ndTm M, and an input x. Build a computation tree of M on x the 

directed tree that has as a root the initial ID (instantaneous descri~ 

tion) of M with input x, and where a node representing ID i has as 

sons nodes representing ID s Ji that are valid transitions of M from 

the configuration described by i. Without loss of generality, assume 

that M has at most 2 transitions from any given configuration and that 

M clocks itself (These restriction cause at most a polynomial increase 

of the running time). Thus the computation tree is a finite binary 

tree, where every path from the root to a leaf corresponds to a valid 

computation sequence of M on x and every valid sequence can be so ob- 

tained. The treshold machine accepts x iff the number of leaves cor- 

responding to accepting ID's is greater than the treshold m. Using 

this description, it is easy to prove the following facts about the 

polynomial time bounded treshold languages mNP (languages recognized 
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by polynomial time bounded treshold machines). 

i) mNP ~ PTAPE 

2) NP ~___mNP 

3) co-NP ~ mNP 

Gill defined probabilistic time bounded Tms as Tms that in 

some configurations could probabilistically choose between two equi- 

probable moves. A string is said to be accepted if there is a proba- 

bility p > 1/2 that there will be an accepting computation on the string 

within the desired time bound [9~. 

THEOREM 2 mNP = {languages recognized in polynomial time by proba- 

bilistic Tms}. 

It is clear that treshold machines can simulate probabilistic 

Tms. To prove the other direction we must show that the predicate ~n~re 

than half of the leaves accept' suffices to simulate any other tres- 

hold. This can be proven by padding the computation tree. In fact we 

can prove, using this techniques that the ' > 1/2' predicate can si- 

mulate the predicates > ~ , = ~ , < ~ for positive integers p,q. (i.e. 
q 

a fraction of more than, exactly, or less than p/q of the leaves must 

accept). In particular, we have the 

COROLLARY mNP is closed under complement. 

We do not know whether mNP is closed under union (or equi- 

valently, under intersection), nor whether it is closed under exis- 

tential polynomially bounded quantification (nondeterminism). One may 

define a hierarchy of alternating polynomially bounded quanti~ers (as 

in the Stockmeyer - Meyer polynomial hierarchy [221, [17~) where axis 

tential and 'there exist at least half' quantifiers alternate. The 

u-completion is again PTAPE, and again, not much else can be proven. 

We now examine space-bounded probabilistic Tms. 

2. SPACE-BOUNDED PROBABILISTIC Tms 

Probabilistic Tms with bounded tape were also introduced by 

Gill E9~. Whereas it is ~ that nondeterministic and deterministic 

space bounded computations are polynomially related E20~, the similar 

problem for probabilistic Tms was open. In this section we settle this 

problem. Our result, Theorem 3 states, that 

PTAPE = probabilistic PTAPE 
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i.e., the use of probabilistic Tms enables us to have polynomial sav- 

ings in tape, at most. This is not at all obvious: the straightforward 

simulation may run for indefinitely long time, Savitch's construction 

does not work for probabilistic Tm's, and the best result known was 

that 

probabilistic tape [L(n)3 ~ deterministic tape [2L(n)~. 

The proof proceeds in a very roundeabout way, using heavily 

recent results about random access machines [10J [18 3 and fast algo- 

rithms [4J. It remains an interesting problem to give a direct simula 

tion, or to justify the necessity of such a non-intuitive proof. 

THEOREM 3 There is an integer k, such that for all tape-constructible 

functions L(n) > logn, if a language is recognized within tape L(n) by 

a probabi!istic Tm, it can be recognized within tape (L(n)) k by a de- 

terministic Turing machine. 

COROLLARY probabilistic PTAPE = PTAPE 

The proof of theorem 3 is through a series of lemmas, that 

show how to decide, in time polynomial in L(n), by an MRAM~ whether a 

given string x, Ixl = n is accepted by a probabilistic Tm M. Theorem 3 

then follows from the results in [I0~ that show how such a computation 

can be simulated by a dTm. 

LEMMA 1 Let n = 2 t. Two n × n matrices, the elements of which are 

integers of length at most n may be multiplied in time polynomial in 

t, by MRAM's, if the two matrices are initially stored in two regis- 

ters of the MRAM. 

PROOF All the machinery developed for and-or matrix multiplication 

in [18 3 , [i0] works for ordinary multiplication also, except that 

every element will be represented by a field of n bits. The shifts 

and the expanding and contracting operations require no modification, 

except to change maks ~ of '~' and 'i' by gn and i n. The problem is 

only to obtain in a single operation all the products. More precisely, 

the 'and-or' multiplication of A = (aij) by B = (bij) originally pre- 

sented as 

aoo aol--- aon aloo--aln ..- ann 

* MRAM - Random Access Machine with multiplication. See [10 7 . 
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boo bol-~- bon bnn 

proceeds by reshuffling and duplicating the contents of the registers 

until they contain, for all i,j,k,aij and bjk in corresponding posi- 

tions. Then all products (and's) are computed in a single vector ope- 

ration. Except for this step, the algorithm for integers and for bit 

are the same. To prove the lemma we have to show how to obtain effi- 

ciently the vector 

C = c o c I ... c 
P 

with c i = aibi, given 

A = a O a I ... ap 

B = b ° b I ... bp 

i.e. the ~nentwiSe product of A and B. 

Let the a i and bj have length £, and suppose that the 

are separated by I O's, i.e. 

A 1 = a o 0 £ al 0Z. 

's 
a i 

Represent the elements of B as 

B 1 = b o 0 m b I om... 

with m = 21p. Then in a single multiplication and 0(log p) 'cleanup' 

operations we obtain C. 

As it is generally the case with vector machines, the same 

algorithm can be used to multiply simultaneously k matrices, stored 

concatenated to each other. 

We shall use lemma 1 to compute the probability of accep- 

tance by probabilistic Tm's, by evaluating the limit of their probabi ! 

ity matrices. 

Let M be a probabilistic L(n)-tape-bounded Tm, x its input. 

Then it is possible to compute a IzIL(Ixl )~ , × IzIL(ixl ), 1 matrix P of 

transition probabilities among the Tm configurat!ons. Without loss of 

generality, M will have exactly two transitions from each nonfinal co~ 

figuration, all transitions will have a probability of 1/2, and there 

is a single accepting configuration. Then the elements of P will be 0 

and 1/2 and there will be at most two nonzero elements per row. 

Let p~ = kZ 0= pk 
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Then the probability of M accepting x is the element (P~)if 

of P , where i, f refer to the initial and final state respectively. 

To compute (P) if we first do as follows: 

i) Given M and x compute 2P with the MRAM. (This can be done 

as in [I0] [ii]). 

2) Delete from P all rows (substitute them for g s) corres- 

ponding to configurations from which no sequence of transitions leads 

to the final configuration f. This can be done in polynomial time by 

computing the transitive closure of P. 

1 
Let Q' be the matrix thus obtained and Q = ~ Q' 

Then (Q~)if = (P~)if and 

Q~ = (I - Q)-I 

LEMMA 2 Let Q be an n x n stochastic matrix as above. The elements 

of Q~ are fractions of the form p/q, where p,q < f(n) 

f(n) = 2 cn log n 

for some constant c, independent of Q. 

PROOF 

E4 . 

Analysis of Csanky's first algorithm for evaluating inverses 

LEStMA 3 (Q~)if may be computed in time (log n) k. 

PROOF Csanky [4] proved that for an n x n matrix A, A -I may be com 

puted as 

-i n 
A - tr (~n) Bn 

B n = (A - Tr (A)) (A - ~ tr A) ... (A-tr(A)) 

This can be rewritten as 

B 
n 

1 

2n (n-l) '. 
[ (n-l)C- Z] [ (n- 2)C- Z]...[C- Z] 

where C = 2A, Z = (2Tr A)I 
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so that the elements of C and Z are integers. If A = (I - P), 

Let E = [ (n-l)C - z]...EC - z]. 

A-I = n 1 E - 2nE 

[2n(n_l) ~]-i Tr(AE) 2n(n-l) : Tr(CE) 

To compute E, matrix products may be evaluated using the al- 

gorithm of Lemma 1 and Lemma 2 (to prove that separators that are big 

enough can be inserted between elements). Subtraction may be done in 

parallel, and the products may be evaluated on logn parallel matrix 

multiplications. After we have E, we compute CE, using our matrix pro 

duct, and sum the diagonal elements to obtain Tr(CE) (in O(log n k) 

operations). Multiply Eif by 2n, this gives us the numerator while 

Tr(CE) is the denominator of the expression. 

Now to decide whether M accepts x, compute both the numera- 

tor and the denominator of (Q~)if multiply the numerator by 2 and ac- 

cept if this is greater than the denominator. 

This concludes the proof of the theorem. 

To recapitulate, the simulation works as follows: given pro- 

babilistic Tm M and input x, get an MRAM that 

i) computes the transition matrix, computes its transitive 

closure and eliminates useless entries 

2) evaluates a series by computing an inverse, using 

Csanky's fast parallel inversion method and our programming tricks, 

sketched above. 

3) Checks whether the probability of acceptance is great- 

er than half. 

4) This MRAM, in its turn is simulated by a deterministic 

Tm, using the results of [I0]. 

All steps can be done at a polynomial loss of efficiency, 

proving the theorem. 

As stated before, it is quite unsettling that a basic result 

like the above has such a tortuous proof. We were unable to supply a 

more direct proof. 

CONCLUSIONS We have presented in the first part a model (the tres- 

hold machine) that unifies nicely in a single framework non-determinis 

tic and probabilistic computations, proved some of their properties , 

but were unable to establish any truly nontrivial fact about them. 
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In the second part, we settled an important open problem 

about probabilistic space-bounded computations: that their space re- 

quirements are polynomially related to the tape used by deterministic 

computations. This fact is somewhat surprising, since probabilistic , 

models do seem more powerful. The proof is quite involved and uses in 

an essential manner, properties of MRAM's. It is an interesting que~ 

tion whether this is really necessary, and if so, why. 
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