
ON THE DIFFERENTIAL GEOMETRY OF CLOSED 
SPACE CURVES 
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L The subject of this lecture, the study of the differential geomet
ric properties of a space curve which depend on the assumption that 
the curve is closed, is a rather modest chapter of the differential 
geometry in the large. The results are often comparatively elementary 
and seem to be isolated. On the other hand, the intuitive character of 
the statements and the lack of a general method of approach make the 
field attractive, and in the latest years several authors have con
tributed to it. Therefore, it might be justified to give a survey of its 
actual state. In an attempt to gather some results and problems from 
a common point of view it turned out that the differential geometry 
of space curves becomes more satisfactory if it is developed under 
slightly weaker assumptions than those usually adopted. Furthermore 
it proves to be useful to attach more importance to the simple geo
metrical relations between the spherical indicatrices of a curve and to 
the kinematical interpretation initiated by G. Darboux. Though 
many of the results are or can be generalized to curves in a euclidean 
space of arbitrary dimension, the following exposition is restricted to 
the case of the ordinary space, and it will not be possible to mention 
all contributions to the subject. 

2. Let s, 0 g s ̂  /, denote the arc length and r(s) the position vector 
of a variable point of a space curve K. Differentiation with respect 
to s is indicated by a prime. Our assumptions are the following: The 
coordinates of r(s) are functions of class 4. To every point r(s) is 
attached an osculating plane, that is, a plane containing the vectors 
t — r' and r " such that its suitably oriented normal unit vector b(s), 
the binormal vector of K, has coordinates which are functions of 
class 2.1 The vectors t' and bf do not vanish simultaneously. For the 
sake of simplicity we further assume that they vanish only at a finite 
number of points. This implies that no arc of K is contained in a 
plane. 

By this formulation we avoid the usual assumption that r " and, 

An address delivered before the Berkeley Meeting of the Society on April 29, 
1950, by invitation of the Committee to Select Hour Speakers for Far Western Sec
tional Meetings; received by the editors May 18, 1950. 

1 Actually we are given an osculating strip in the sense of Blaschke [l, p. 72]. 
(Numbers in brackets refer to the references at the end of the paper.) 
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hence, the curvature never vanish. Define now the principal normal 
vector by 

(1) n = bXt 

(X denoting the vector product) and the curvature K and the torsion 
r by 

(2) t' = *n, b' = - rn 

which is possible since these derivatives are perpendicular to both t 
and 6. From the definition of n follows 

(3) n' = - Kt + rb. 

Hence Frenet's formulae are valid in the usual form, but here the 
curvature may vanish and even be negative. Of course, only a change 
of the sign of /c, not the sign itself, has a geometrical meaning; for, 
b (for all s) and, hence, n may be replaced by the opposite vectors. 
From the above assumptions we have 

CO = («2 + r2)l /2 > 0. 

A point of K where either K or r changes sign is called a point of 
inflection. If necessary we distinguish between K-inflections and r-
inflections. The number of these points is finite. 

3. If the trihedral t, b, n is laid off from the origin 0, the vectors 
t, bf and n describe three curves 7\ J5, and iV, the spherical indica
trices of the tangent, of the binormal, and of the principal normal of 
K. With s considered as the time, the motion of the trihedral is a 
rotation about 0 with the angular velocity co=co(s) and an instantane
ous axis of rotation which must lie in the plane £>, t, because it is per
pendicular to the velocity vectors (2). Let c be the unit vector on this 
axis such that its sense together with the sense of the rotation form a 
right-handed screw. Since c is perpendicular to the velocity vector (3) 
we then have 

(4) toe = n X n' = Kb + rt. 

Let 0=<£(s) denote the angle from b to c measured in the sense of 
the shortest rotation which brings b into t. Then we have 

K = w cos #, r = co sin <f>. 

Besides the fixed unit sphere 5, consider a moving unit sphere S* with 
center O rigidly attached to the trihedral. The two loci of the in
stantaneous center of rotation on 5 and on 5* respectively are called 
the fixed centrode and the moving centrode of the motion of 5*. It 
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is well known that this motion is obtained by letting the moving 
centrode roll on the fixed centrode. In our case the fixed centrode 
is the curve C described by c = c(s) on 5 and the moving centrode is 
the great circle determined by t and b. Hence the motion of the tri
hedral about O is obtained by letting this great circle roll on C. 
From this it follows that the indicatrices T and B are spherical in
volutes of C. They are described by two points of the rolling great 
circle which have the spherical distance w/2 (Fig. 1). 

FIG. 1 

4. A line element on the unit sphere is by definition a pair consist
ing of a point on S and an oriented great circle through this point. 
The spherical polarity is an involutory mapping of the set of all line 
elements onto itself which maps an oriented great circle on that one of 
its poles which lies on its left-hand side seen from the exterior of the 
sphere. To every spherical curve—considered as the set of its line 
elements, point and tangent great circle—corresponds a unique polar 
curve, and this correspondence is involutory. The tangent vectors at 
corresponding points of two polar curves are opposite. To a point of 
inflection of one of the curves corresponds a cusp of the first kind of 
the other. In order to preserve complete duality we take the arc 
length on a spherical curve with a sign in such a way that the differ
ential of the arc changes sign at a cusp. The infinitesimal lengthof 
the arc between two neighboring points of a curve then equals the 
angle between the corresponding tangent great circles of the polar 
curve, this angle being taken with a sign in the usual way. From this 
it follows that polar curves have reciprocal geodesic curvatures. 

(1) and (2) yield that T and B are mutually polar and (4) that C 
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and N are polar. 
As mentioned in §3, T is an involute of C; it is described by a point 

which is fixed on a great circle rolling on C. The dual of this construc
tion must lead from N to B, By means of the above remarks it is 
easily seen that B is obtained as the envelope of a family of half great 
circles emanating from the points of N and being parallel along N in 
the sense of Levi-Civita's surface parallelism. Analogously T is en
veloped by the half great circles obtained by turning those enveloping 
B through w/2 about their initial points on N. 

Introducing the notation 

a(s) = | w 
J o 

(s)ds, 

we have for the arc lengths of the curves T, B, N, C measured from 
the points corresponding to s = 0 

ads = I o) cos <t>dsy SB = I rds = I w sin <f>ds, 
0 J 0 " 0 J 0 

(6) î\r = <r($), ^c = 0W ~ 0(0), 

and for their geodesic curvatures (with respect to the sphere) 

(7) 

(8) 

7r = tan <t>, 

4/ d<t> 
yif = — = — > 

o) aa 

7B = cot 0, 

<r' da 
yc = — = — 

A /c-inflection of K [where <f> passes one of the values 0 s T/2 (mod T) ] 
corresponds to a cusp of T and to an inflection of B. A r-inflection of 
K [where </> passes one of the values 0 == 0 (mod w) ] corresponds to an 
inflection of T and to a cusp of B. The curve N has no cusps and C 
has no inflections (co>0). Inflections of N and cusps of C do not cor
respond to singularities of K. At these points 0, hence r//c, is station
ary and K behaves locally like a helix. 

S. I t follows from the Frenet formulae that there exists one and 
(up to a rigid motion) only one curve K with prescribed functions 
K(S) and r{s) [or œ(s) and 0(s)] . As a main problem of the differential 
geometry of closed curves I should like to formulate: To find neces
sary and sufficient conditions for the curvature and the torsion as 
periodic functions of s with period / in order that the curve be closed. 
Probably there is no simple answer to this problem, and so far only 
a few necessary conditions are known. 

However, the problem splits up in a natural way. The Frenet sys-
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tern of differential equations determines the indicatrices T, B, Nt 

and from T the curve K itself is found by a simple integration 

(9) = | tds - I (l/ic)tdsT. 
Jo J o 

Instead of the arc length s of K we introduce as a new parameter 
the arc length <X = SN of iV, which is an increasing function of s. Then 
the Frenet system becomes 

it 
= n cos <£ 

(10) = — t cos <t> + b sin 0 
Jo-

Jb 
— n sin <£ 

which shows that the indicatrices are already determined if the single 
function 0 = 0(o-) is given. Since (8) yields 

(11) *(<r) =4>(0) + T Y ^ C T 
J o 

we see that T, B, N are determined if a constant 0(0) and the geo
desic curvature JN of iV as a function of the arc length of N are given. 
Elimination of t and b from (10) yields the equation 

d2n dn 
(12) ~= -n + yxnX—-

d<rz d<r 

which determines the curve N (up to a rotation about 0) when its 
geodesic curvature ^N is given as a function of the arc length a. 

Summarizing we are led to the following problems: 
I. To find conditions which a periodic function Yj\r(<r) must satisfy 

in order that the spherical curve for which a is the arc length and 
JN the geodesic curvature be closed. 

No contributions to this problem seem to exist. The analogous 
problem for plane curves is trivial since the differential equation cor
responding to (12) can be solved explicitly in terms of simple inte
grals. 

I I . To find conditions which a closed spherical curve must satisfy 
in order that it be: (1) the indicatrix of the tangents; (2) the indica-
trix of the binormals; (3) the indicatrix of the principal normals of a 
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closed space curve. 
We are going to discuss this last problem, which is considerably 

more elementary than I. For, from the geometrical relations between 
the indicatrices described in §4 we get 

dn dn db 
t = cos <j> + n X sin 0, t = b X 

da dcr dsB 
Together with (9) this shows that, given any one of the indicatrices 
T, By N, the curve K can be obtained by the simple integrations 
(9), (11), a fact which, of course, has been known for a long time [13]. 

6. A necessary condition which the tangent indicatrix T of a closed 
curve K must satisfy is easily derived. Consider any plane which does 
not intersect K. Then the tangents at those points of K which have 
maximal and minimal distance from the plane are parallel to that 
plane. Transferred to the unit sphere this means that T is inter
sected (at least twice) by every great circle,2 in other words, the 
center 0 of the unit sphere is an inner point of the convex hull to 
T. This condition has also been shown to be sufficient [6; 17; 9] . If 
it is satisfied, there exists a great variety of closed curves K which 
have the given tangent indicatrix T. These curves have everywhere 
positive curvature if T has no cusps. 

From the necessity of this condition several conclusions may be 
drawn. The "absolute length" / |ds:r | is greater than or equal to 2x. 
Hence, for the total absolute curvature of a closed curve K with 
length / we have 

(13) I | K | ds è 2TT. 
J o 

This has been proved in different ways [5; 11; 15; 3; 4 ] . In B. 
Segre's proof (refound by Rutishauser and Samelson [12]) it is de
duced from the following lemma: A spherical curve with length less 
than or equal to 2ô<27r is contained in a circle with spherical diam
eter ô. I mention that (13) also follows from a formula which is proved 
in integral geometry [2, p. 81]: Let L be the (absolute) length of a 
spherical curve and let n(x) be the number of points in which the 
great circle with the pole x intersects the curve, then 

(14) L = — f n{x)da 

where da denotes the area element described by x and where the 
2 As far as I know this remark is due to C. Loewner (see [5]). 
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integration is extended over the whole sphere. According to our con
dition for T we here have n^2. 

By means of Schwarz's inequality we obtain from (13) 

( 2 T T ) 2 ^ ( f \K\ds\gl f Ms, 

hence for the length / of an arbitrary closed space curve 

max | K | 

a theorem due to H. A. Schwarz.8 

If the class of curves K or the class of spherical curves T con
sidered is restricted, sharper or different results may be obtained. 

Answering affirmatively a question by K. Borsuk [3], I. Fâry [4] 
recently proved that if the curve K is knotted we have 

(15) f Ijt |<feè4*-. 
Jo 

His proof is based on the interesting remark that the total (absolute) 
curvature of a space curve K is the mean value of the total (absolute) 
curvatures of the orthogonal projections of K on the planes through 
a fixed point. Under our (stronger) assumptions (IS) can also be 
derived from (14). Let P be any plane not intersecting a closed 
curve K without multiple points. Suppose that the distance from P 
to a point of K as a function of s has only 2 extremals. Then K may 
be divided into two arcs such that the distance increases on one of 
them and decreases on the other. Hence every plane P' parallel to P 
and intersecting K intersects in exactly two different points. Join 
these points by a segment. Then these segments for all planes Pf con
sidered make up a surface bounded by K and homeomorphic to a cir
cular disk. Hence K cannot be knotted. For a knot K it follows that 
the distance of its points from P has at least 4 extremals, that is, at 
least 4 tangents of K are parallel to an arbitrary plane. This means 
that every great circle intersects T in at least 4 points. Hence n §: 4 
in (14), which yields (IS).4 

7. We consider now the indicatrix B of the binormals. By means of 
3 For references and related results see [l, §31 ]. 
4 (Added December 1950.) Since this paper was written, important new results 

concerning the total curvature of knots have been published: J. W. Milnor, On the 
total curvature of knots) R. H. Fox, On the total curvature of some tame knots, Ann. of 
Math. vol. 52 (1950) pp. 248-257, 258-260. 
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the spherical polarity in which T and B correspond to each other we 
get at once as a necessary and sufficient condition that a closed 
spherical curve B be the binormal indicatrix of a closed curve K, the 
following: the tangent great circles of B cover the whole sphere, that 
is, from every point of the sphere a tangent great circle to B can be 
drawn. 

FIG. 2 

Of course, there is no positive lower bound for the total (absolute) 
torsion 

I | r | ds = I | dsB I 

of Kf that is, the absolute length of B. But even if we assume that K 
and r are positive at all points of K, that is, that B has neither inflec
tions nor cusps, there is no such bound. For, a small spherical curve 
of the shape sketched in Fig. 2 has these properties and its tangent 
great circles obviously cover the whole sphere. Hence there exist 
closed curves with everywhere positive curvature and everywhere 
positive torsion whose total torsions are arbitrarily small. The study 
of the example of Fig. 2 seems to indicate that if K > 0 and r > 0 are 
assumed there may be a lower bound greater than 27r for the sum of 
the total curvature and the total torsion. 

From his lemma mentioned in §6, B. Segre [16] has derived an 
estimate for the total absolute torsion. If B is contained in a hemi
sphere, let ô be the spherical diameter of the circumscribed circle of 
B; put ô=7T otherwise. Then 

f \r\ds>2è. 
Jo 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



52 WERNER FENCHEL [January 

That this inequality is sharp for any given ô (even under the restric
tions K > 0 , r > 0 ) follows from the fact that a spherical curve B of 
the shape sketched in Fig. 3 satisfies oyr conditions and may have a 
length which deviates arbitrarily little from 25. 

FIG. 3 

8. Finally we consider the indicatrix N of the principal normals 
and, at the same time, its polar, the centrode C. Here a necessary 
condition results from the periodicity of K and r which implies 

(16) 4,(1) - 0(0) = 2m 

for some integer p, which is called the nutation of the curve K (W. 
Scherrer [14]). Hence, we conclude from (6) that the total length of 
the centrode C is 2TV. This is just the condition that every point of a 
great circle rolling on C describes a closed curve, in other words, that 
the involutes of C, hence T and B, are closed. For the curve N we get 
from (8) 

/» IN 

(17) I yNda = 2wv. 
Jo 

This means that if a tangent vector to the sphere at a point of N is 
displaced along N by Levi-Civita's surface parallelism it will return 
to its initial position after the curve has been traversed once. We see 
again that (16) implies that T and B are closed, and conversely. 

An immediate consequence of (16) is that <l>(s) for O ^ s ^ / passes 
a value congruent to TT/2 (mod 7r) a t least 2v times and likewise a 
value congruent to 0 (mod TT) at least 2v times. Hence we have: 

A closed space curve with the nutation v has at least 2v /(-inflections 
and at least 2v r-inflections, 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



i95i] THE DIFFERENTIAL GEOMETRY OF CLOSED SPACE CURVES 53 

If K > 0 is assumed, we have P = 0. If, in addition, N has no multi
ple points, (17) and the Gauss-Bonnet formula yield Jacobi's theo
rem [8; 7 ] : The indicatrix of the principal normals of a closed space 
curve bisects the surface of the unit sphere. The connection of this 
theorem with his concept of parallelism has been observed by T. 
Levi-Civita [10], and the more general form (17) has been stated by 
W. Scherrer [ l4] .6 

In order to discuss the question whether condition (17) for N is 
sufficient I recall that if N is given, T (and B) is obtained as the 
envelope of a system of half great circles which are parallel along N. 
The direction of one of these circles may be prescribed arbitrarily 
according to the choice of the constant 0(0), 0 ^ < ^ ( 0 ) < 2 7 T . Hence 
there is a one-parameter family of curves each of which may be taken 
as T or B if it satisfies the corresponding condition discussed in §§6 
and 7 respectively. Consequently the condition (17) for N will be 
sufficient if the following statement is true : For every closed spherical 
curve satisfying (17) at least one of these envelopes is intersected by 
every great circle; or (formulated for B) for every such curve a family 
of great circles exists which covers the whole sphere and is obtained 
from one of the great circles by parallel displacement along N. 

I conclude my lecture with this open question. I hope that I have 
been able to show that the differential geometry of closed curves, 
though elementary, comprises interesting problems. 
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