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A b s tra c t

In th is paper we exploit the  tools of Differential Geometry to  analyse the  finite sam ple lack of 

invariance of th e  W ald S tatistic  to  algebraically equivalent reform ulations of th e  null hypothesis. 

T he  W ald S tatistic  is shown, in general, to  be an im proper geometric quan tity  and  hence is not 

invariant to  reparam eterisations of th e  sta tistical manifold in which i t  is being used. There is 

therefore little  th a t can be done to  rescue th e  Wald statistic  from th is  sensitivity to  the  essentially 

a rb itra ry  algebraic form in which th e  null hypothesis is expressed and the  tes ting  of nonlinear 

restrictions should be carried ou t using invariant approaches such as the  Score or Likelihood Ratio 

procedures instead. T he geometric approach also suggests an alternative invariant te s t based on 

th e  calculation of geodesic distances in curved manifolds. We show how th is  “F isher Geodesic 

S ta tis tic” may be easily calculated and applied in the  case of testing  nonlinear restrictions in the 

general linear model and also when it  will coincide with the  Wald S tatistic . We are also able to 

ex tend  the familiar inequalities relating th e  Wald, Score and Likelihood R atio  S tatistics to  the 

nonlinear case w ith the  fundam ental difference th a t the Fisher Geodesic S tatistic  takes the  place 

previously occupied by the Wald s ta tis tic  in the  relevant inequality. The paper also provides an 

introduction  to  the  m ethods of differential geometry and hopefully dem onstrates its  potential for 

econom etricians.
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1  I n t r o d u c t i o n

T he W ald test, in different forms, is one of the most widely applied in Econometrics 

despite a fundamental deficiency in its finite sample behaviour when testing nonlinear 

restrictions. The problem manifests itself in a lack of invariance to algebraically equiv

alent reformulations of the null hypothesis. This sensitivity to  the essentially arbitrary  

choice of the form of the restriction function means th a t any inference drawn is likely to 

be equally arbitrary  given th a t the relevant finite sample distribution varies w ith  the al

gebraic form chosen to express the null hypothesis '.  Gregory and Veall (1985) concluded 

their M onte Carlo study of a  particular example by emphasising “the need for an  analyt

ical resolution to  the problem of Wald test sensitivity” . In this paper we aim to  provide 

such an  analysis by developing a clear geometric explanation of the invariance issue using 

the tools of differential geometry. In addition we derive from geometric argum ents an 

invariant “Fisher Geodesic” statistic which is a natural, geometrically invariant analogue 

of th e  Wald Statistic and is easily applied in the case of testing nonlinear restrictions in 

the linear model.

There have been considerable developments a t the interface between differen

tial geom etry and statistical inference recently; see for example, the review papers of 

Bamdorff-Nielsen, Cox and Reid (1986) and Kass (1989) and the books by Am ari (1985) 

or M urray and Rice (1993) and Bamdorff-Nielsen and Cox (1994). An im portant mo

tivating factor has been the power of geometric analysis which is particularly apparent 

when considering the issue of invariance. I t  is after all natural when designing inference 

procedures, to  require th a t they should not depend upon the essentially a rb itra ry  way in 

which we choose to label the density functions that constitute our models. In a n  exactly 

analogous way, geometry is concerned w ith those properties of spaces th a t do n o t depend 

upon a  particular coordinate system or the parameterisation used to  label its points. Thus 

bo th  disciplines Eire concerned with quantities that are invariant under reparam etrisation 

and hence it is natural th a t we should use the tools of differential geometry to  analyse 

the lack of invariEince of the Wald statistic.

Two, apparently independent, literatures relate to  the results of th is papier. The 

first has concentrated directly on the lack of invariance of the Wald sta tistic  and ref

erences here include Gregory and Veall (1985), Lafontaine and W hite (1986), Breusch 

and Schmidt (1988), Phillips and Park (1988), Nelson and Savin(1988) and Dagenais and 1

1 S im p ly  prov id ing  a  size ad ju s tm en t for th e  te s t  does not remove th e  p roblem  in th is  case a s  th e  power 

o f such  size ad ju s ted  te s ts  will vary w ith  th e  assum ed  form o f  th e  restric tio n  function .
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Dufour (1991) amongst others2. One difficulty with in terpreting this earlier body of work 

is th a t the non-invariant behaviour of the Wald Statistic has often only been numerically 

illustrated with particular examples using monte-carlo m ethods without providing a clear 

and general explanation or resolution of the problem.

The second body of work relevant to th is paper relates to  the question of te s t 

ing (nonlinear) inequality restrictions; see for instance Gourieroux, Holly and Monfort 

(1982), Gourieroux and Monfort (1989), Kodde and Palm  (1986) and Wolak (1989). 

Somewhat surprisingly the invariance problem, despite its  relevance, has been almost 

completely overlooked in these papers although Gourieroux and Monfort (1989) briefly 

mention it. Wolak(1989), for instance, derives the same statistic  th a t we refer to  as the 

Fisher Geodesic S tatistic below but does so as an approxim ation to  the Likelihood Ratio 

Statistic and relates it to  the distance minimising criterion suggested by Kodde and Palm  

(1986). One benefit of the geometric approach we adopt below is that it clearly estab 

lishes the general principle that underlies these developments; th a t of using the geodesic 

distance between two distributions of interest as a basis for hypothesis testing. This 

justification is independent of any approximation to  the  Likelihood Ratio Statistic and 

thus represents w hat is apparently a distinct approach to  hypothesis testing in general. 

It should however be made clear th a t we see a number of practical and theoretical dif 

ficulties in the application of the Geodesic principle in general nonlinear models and its 

relationship to  the Likelihood Principle is not yet well understood. We are therefore only 

proposing a t this stage, the use of the Geodesic Statistic in the case of testing nonlinear 

restrictions in the context of the general linear model. We note however th a t our geo

metric analysis of the failings of the Wald test is applicable beyond this relatively simple 

case and includes inference in situations th a t involve the more fundamental implications 

of nonlinearity3.

Phillips and Park (1988) provided the first general analysis of the Wald test 

invariance problem and showed, using Edgeworth expansions, how the structure of the 

Wald statistic varies with the form of the restriction function. Their approach explains, to  

a degree, the observed behaviour of the statistic for a given form of the null hypothesis as

’ In  ad d itio n  p ap ers  by  Nelson and  Savin (1986), G riffiths, H ill an d  Pope (1987), and  C a lzorari and  

F ioren tin i (1990) have d iscussed  th e  d irectly  re la ted  problem  of e s tim a tin g  covariance m atrices in  non lin ear 

m odels using  m onte ca rlo  m ethods. T h is la tte r  issue o f  th e  effect o f  cu rv a tu re  on inference h as o f  course 

a  long h is to ry  in s ta tis t ic s  d a tin g  a t  least from  th e  work o f B eale (1960).

3Prob lem s w ith  th e  use o f th e  W ald s ta tis tic  in m ore general n o n lin ear o r curved m odels, such a s  T o b it 

or P ro b it  m odels, have b een  recognised for a  num ber o f years in th e  s ta tis t ic a l  lite ra tu re , see in  p a r tic u la r  

H auck an d  D onner (1977, 1980), M oolgavkar and  Venson (1987), V ea th  (1985) and  m ore recen tly  Le C am  

(1990)).
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the higher order terms in the expansions account for the finite sample deviations from the 

asym ptotic distribution. They also provide correction factors th a t could in principle be 

used to  indicate which particular param etric transformation of the restrictions describing 

the null will lead to a faster or better approximation of the finite sample distribution by 

the asym ptotic distribution. However their analysis is limited to the 0 ( T -1) term s in the 

expansion and hence their corrections are similarly limited unlike the geometric analysis 

and Geodesic Test introduced in this paper and their correction factors vary with the 

true  b u t unknown point on the null hypothesis. Following Phillip» and Park, Dagenais 

and Dufour (1991) identified one essential part of the source of the lack of invariance of 

the W ald Statistic. However it is only when the geometric significance of their algebraic 

result is seen that a complete understanding of the issue becomes clear as explained 

below. Moreover the invariance (or lack thereof) of alternative test statistics, as shown 

in their monte-carlo simulations, can be straightforwardly rationalised from th is broader 

geometric analysis. So our objective in this paper is to complement both these earlier 

studies by providing a geometric perspective that clarifies and extends the conceptual 

basis for their algebraic results.

The organisation and principal results of this paper are as follows. In  Section 2 

we introduce some basic differential geometry. Section 3 uses this geometry to explain the 

behaviour of the Wald statistic and other asymptotically equivalent statistics in broad 

generality. Since the Wald statistic is shown to  be a hybrid geometric quantity we prop>ose 

instead the use of a  “Fisher Geodesic Statistic", FG, which emerges as a geometrically 

na tu ral and hence invariant solution to  the inference problem. We show th a t in the 

sp>ecial case of linear models it is an explicit one-to-one function of the Likelihood Ratio 

Statistic, LR, and hence enjoys the same asym ptotic properties under both the  null and 

alternative. We also derive general inequalities linking the FG statistic to  the LR and to 

the Score or Lagrange Multiplier, LM, statistics which extend the well known inequality 

relationships established by B em dt and Savin (1977) and Wolak(1988) for linear equality 

and inequality restrictions respiectively. T he geometry further indicates when the Wald 

and Fisher Geodesic statistics will coincide. Section 5 links the geometry to a  graphical 

analysis which visually shows how the Wald test will behave for a particular choice of the 

algebraic form of the restriction function representing the null hypothesis. T he Gregory 

and Veall (1985) example is used throughout and a Monte Carlo study is carried out which 

validates our geometric analysis. In Section 6 the considerably more complex issues raised 

by th e  use of geodesic statistics, in general, outside the context of the classical linear 

regression model are briefly discussed before we offer some conclusions.
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2  T h e  W a l d  S t a t i s t i c

We consider a general statistical model M  — [p(x;6)\8 6  0 } , as a set of probability 

density functions, indexed by 6 given the observed d a ta  x  =  ( x i , . . . ,  x n)' on a random  

variable X .  Let 0  C R p denote the param eter space of M  and L(9\x) =  lnp(z; 0) 

denote the corresponding log-likelihood function. We assume throughout th a t standard  

regularity conditions hold, see for instance Amari (1985, Section 2.1).4 The maxim um 

likelihood estim ator 6 of the unknown param eter 6 is distributed, at least asymptotically, 

as multivariate normal, Np(8, I~ 1(0)) where 1(8) represents the Fisher Information M atrix 

given a sample of n, i.i.d. observations. We are concerned with testing the null hypothesis 

specified as the zero level set of a vector valued restriction function g. T hat is

Ho = g - 1(0) = {8 e e \ g ( 8) = 0}

where g : 0  —» R r (1 <  r  <  p) is a vector of real-valued functions; we write g(9) =  

(gi(8) t . . .  ,gr(0))' and assume that Dg is of full rank throughout the domain.

The Wald statistic, W(g), whose asymptotic distribution under the null is X r>'s 

then defined by:

W(g) =  g(0Y(D g(è)I(8)-l D g(8y}-1g(0).

As a quadratic form the Wald Statistic thus appears superficially to  be a m ea 

sure of distance, however as we show below it is not in general a geometric measure 

of distance between the null and the alternative hypotheses since it is not invariant to  

reparam eterisation.

4In  ad d itio n  to  th e  s ta n d a rd  n o ta tio n  for derivatives we use  tw o conventions th a t  m ay  b e  unfam iliar. 

T h e  first ind ica tes  p a rtia l derivatives by  d i j , for exam ple, w here  th e  variables se rv ing  as arg u m en ts  are  

identified by th e  co n tex t. T h e  second convention is to  om it th e  p o in t o f evaluation . T h u s, we m igh t u se  

any  o f th e  expressions

(D 2g )ii  =  at,g  =  a ii9 (0) =  

w hen g : R p —» R . Likewise any  of

D,s = Dff(9) = (ajffd =  ( § : )

w hen g : R p —♦ R r  h as com ponent functions <?i( 0 ) , . . .  t gr (0).
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3  T h e  G e o m e t r i c  M e a s u r e m e n t  o f  D i s t a n c e .

Dagenais and Dufour (1991) suggest three ways invariance may arise:

(a) following a reparam etrisation of the model,

(b) or a reformulation of the null hypothesis,

(c) or a smooth one-to-one transform ation of the variables.

Transforming the variables implies a reparam eterisation and provided no unknown 

parameters are involved in the transform ation case (c) will in general imply case (a). 

In the context of the Wald test, reformulating the null hypothesis in effect chooses a 

reparametrisation, as we show below, and so (b) is also a special case of (a). Hence we 

shall concentrate throughout this paper on the need for a clear geom etric explanation for 

a  lack of invariance in the face of a  reparametrisation of the model; case (a) above.

In this section we introduce sufficient differential geometry to  be  able to analyse 

the behaviour of the Wald test in the face of reparameterisation. T he  m ain objective is 

to  explain a standard way used in differential geometry to  measure th e  distance between 

points; the geodesic distance. It is im portant to recognise th a t the geodesic approach is 

applicable in both linear spaces, which covers standard linear statistical models but also 

in the nonlinear spaces in which m any econometric inference problems fall and moreover 

it is by construction invariant to any reparametrisation of the inference problem. The 

Wald statistic will be shown in Section 4 to  be a non-invariant approxim ation to  this 

squared geodesic distance.

We define a space M  to  be a (p-dimensional) manifold if there  exists an open 

subset of R p, U, and a map

6 : M  -» U C R p

such that 9 is invertible and both  9 and its inverse are sm ooth maps (where by smooth 

we mean infinitely differentiable, although in practice the existence of a finite number of 

derivatives will usually suffice) and we call 6 a parameterisation of M . 5 O ur general 

statistical model M  = {p(x; 9)\9 6  0 }  represents an example of such a manifold and

5For a form al, and m ore general, d efin ition  o f a  m anifold  see A m ari (1985, pag e  15).

5
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hence we are concerned with measuring the distance between two statistical distributions 

in this space.

We shall throughout this section explain the essential geometric concepts using a 

simple but abstract example in R 2 since it would substantially complicate the presenta 

tion to  explain the same ideas in the function space defined by our statistical problem. 

Given th a t geometry is, in general, the study of those quantities which are invariant to 

reparametrisation, th a t is, it studies aspects of a manifold which are the same whether 

we work in the 0-parameterisation, or in some other param eterisation £, we sta rt by 

considering the effects of reparametrisation.

R e p a r a m e t r i s a t io n

Consider the subset of R 2 which in Cartesian coordinates is given by 

R + =  {('71>»?2)'|0I >  0,772 >  0 }.

This same set can be equally well described in polar coordinates:

R +  =  { (r , a ) ' |r  >  0 ,0  <  a  < ir/2 } .

and these two coordinate systems are related by the familiar equations:

and, conversely:

r 2 =  T)i +  and tan  a  — —

rji =  r c o s a  and 772 =  r s in a .

Since (0 ,0 )' ^  R 2 , we have th a t the change of coordinate functions from (771, 7/2) ' —* 

(r07i,% ),a(m ,»fc))' back (r, a ) ' —> (771 (r, a ) , 772(7, a ) ) ' are m utually inverse and 

smooth.

C u r v e s  a n d  t a n g e n t  v e c t o r s .

Now using first the Cartesian, (771, J^ '-coo rd ina te  system, we can define a pa- 

rameterised path or curve in R +  to  be a smooth map
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7  : [0 ,1] -+ R +  

t - >  7 (f) =  (rn(t),»fc(t))'

whose derivative is nowhere zero. O ur geometric definition of distance will be based on 

the  length of such curves. We can also define the same curve in polar coordinates where 

it will be given by

t - + 7 (t) =  ( r ( t) ,a ( t) ) '

where now

**(0 = rh(r(t), a(t))'

We will need the concept of a tangent vector to  a curve in a manifold. In our 

example, the tangent vector to  7 a t th e  point P — 7 (f) is defined to  be

< > > ■ > » '

for each t e  [0, 1].

There are infinitely many curves which pass through any point of a manifold. 

However, in a given param eterisation of the manifold, there are certain curves which play 

an im portant role. In our example, let P  be any point of R +  with coordinates (P i, P2)1 ■ 

Then the curves

7 i (0  =  (^1 + 1, P i)' and 72(f) =  (P i, P 2 +  t)'

pass through P  and have tangent vectors a t P  given by 8 \ =  (1 ,0 )' and  = (0 ,1)' 

respectively. An im portant general result is th a t the set of all tangent vectors through a 

point P , in a p-dimensional manifold, is a p-dimensional real vector space referred to  as 

the tangent space to  M  at P  and denoted by TM p. In our example, since {81, 82} are 

linearly independent, they form a basis for T (R + )p . This is called the natural basis with 

respect to ^-coordinates which generalises in an obvious way to  give the  natural basis 

{8 \ , — dp} for T M p  for any coordinate system 6.

Because of our requirement for invariance, it is im portant to  know how the n a t 

u ral basis, and therefore how any tangent vector, transforms when we change from one
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coordinate system 6 to  another, say In the example, if we change from C artesian to 

polar coordinates, the tangent vector a t P  in (r , a)' coordinates is, by definition

which is related to th a t in (771, ^ '- c o o rd in a te s  by the chain rule of differentiation. 

Explicitly, we have

so that

drji dr(t) dru da(t)

dr dt d a  dt

( d n  1 d 7 j2 \ '  (  c o s a ( t ) —r ( t )  s in  a ( t )  \ f d r  d a V

l  d t  ’ d t  ) \ s i n a ( < ) r ( t )  co s a ( t )  ) \ d t '  I t )

and there is a  similar inverse relation. In the general case, let { 9 i,. . . ,  dp) and {d \ , . . . .  3̂ ,} 

be the na tu ra l bases in the 6 and £-param etrisations respectively. Then we find

di = J 2  B^ a
a = l

and conversely

p

da 1 )  ' Biadi
t=l

where the m atrices with general elements B,a  =  ^  and Bai =  ^  are mutually inverse, 

thus in general =  B^ft and conversely ^  =  B ^ .  This combination of a definition in 

a particu lar coordinate system and a change of basis transformation rule is fundamental 

to  the geometric approach.

M e t r i c  t e n s o r s .

In order to  proceed with our geometric definition of distance, we have to  be able 

to  measure the length of a tangent vector, and to do so in a way th a t is invariant to 

reparam etrisation. The length of a  tangent vector in T M p, and angles between tan 

gent vectors in this space, can be determined by defining a symmetric, positive definite 

quadratic form on it. In a particular param eterisation 6, this form will have a m atrix
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representation G  with respect to  the natural basis {d \ .......dp}. Thus for each tangent

space, T M p, there will be a  m atrix G = G(P) representing the quadratic form which is 

defined on th a t space.

The length invariance requirement will define a transform ation rule between G 

and G, where the  la tte r is the  m atrix representation of the same quadratic form with 

respect to  the natu ral basis { 3 i,...,5 ( ,}  f°r the f-param eterisation. When we require 

also th a t G(P) varies sm oothly with the point P, we say th a t G  is a metric tensor (for 

a general definition see Amari (1985, page 25)).

Using Cartesian coordinates (tji,% ), we define the strictly positive quadrant of 

the plane to be Euclidean by taking G to be the 2 x 2 identity m atrix  for each rj e  R + .  

Thus the length of the tangent vector to  7 a t P = 7 (t) is the nonnegative square root of:

(d m  *?2 \ | | 2 _  (d m  drj2\  f 1 ° \  _  ( d m \ 2 , ( d m V

W t ’ dtyl l  \ d t '  dt ) { o  l )  \ d t ) + { d t )

Each tangent space then has the standard Euclidean norm.

Recall the relationship between the form of a tangent vector in Cartesian and 

polar coordinates,

(d m  d m \ _ p ( d [ _  d a V  
V dt ’ dt )  \ d t '  d t )

where

( cosa{t) - r ( t)  s in a (f)  \  

sin a(t) r(t) cos a(t) )

The representation G (r, a) of the Euclidean metric in polar coordinates is then determined 

by the length invariance requirement that, for all tangent vectors:

2

Combining these two equations and given the form of B  we find that:

G = & B -G;)
9
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T h i s  g e n e r a l is e s  t o  t h e  c a s e  o f  a n  a r b i t r a r y  m e t r ic  G a t  o n c e  t o  g iv e  t h e  t r a n s fo r m a t io n  

r u le

G =  B 'G B

o r  c o n v e r s e ly

G  =  B 'G B

w h e r e  B ia  =  ^  a n d  ^  a s  b e fo r e .

T h e r e  is , h o w e v e r ,  a  v e r y  im p o r t a n t  d iffe r e n c e  b e t w e e n  G (» ? i, 72 )  a n d  G(r, a ).  T h e  

fo r m e r  is  a constant fo r  a ll  t a n g e n t  s p a c e s  w h i le  t h e  s e c o n d  is  a function o f r  a n d  s o  

v a r ie s  w i t h  p o s i t io n .  T h i s  e s s e n t ia lly  a r is e s  b e c a u s e  r  a n d  a  a r e  n o t  j u s t  a ffin e  fu n c t io n s  

o f  rji a n d  rfc. T h e  im p a c t  o f  t h i s  d iffe r e n c e  b e t w e e n  a  c o n s t a n t  m e t r i c  a n d  a  n o n  c o n s t a n t  

m e t r i c  w i l l  b e  fe lt  in  o u r  a n a ly s is  o f  t h e  W a ld  t e s t  b e lo w . N o t i c e  t h a t  t h e  n o r m  o f  t h e  

t a n g e n t  v e c t o r  d e fin e d  b y

<*7(0 2 =  <*7(0 'c <*7(0
dt dt dt

is  in v a r ia n t  b y  c o n s t r u c t io n .  N o t e  t h a t  t h e  m a t r ix  fo r m  o f  t h e  E u c lid e a n  m e t r i c  is  d ia g o n a l  

in  b o t h  c o o r d in a t e  s y s t e m s  c o n s id e r e d .  T h i s  r e fle c t s  t h e  fa c t  t h a t ,  n o t  o n ly  a r e  t h e  

r)i — constant c u r v e s  e v e r y w h e r e  o r t h o g o n a l t o  t h e  %  =  constant c u r v e s ,  b u t  a ls o  s o  a r e  

t h e  c o n s t a n t  c u r v e s  o f  r  a n d  a. W e  a r e  n o w  in  a  p o s i t io n  t o  d e fin e  t h e  G e o d e s ic  D i s t a n c e  

b e t w e e n  t w o  p o in t s  in  M .

G e o d e s i c  d i s t a n c e s .

L e t  7 ( f )  : [0 , 1] —* M  b e  a  p a t h  in  M .  U s in g  a  m e t r ic  t e n s o r  G  o n  M  w e  h a v e  

a n  in v a r ia n t  d e fin i t i o n  o f  t h e  le n g t h  o f  e a c h  t a n g e n t  v e c t o r  ^ ( t ) ,  t  e  [0 , 1]. R e g a r d in g  

t a s  d e n o t in g  t im e ,  w e  c a n  t h in k  o f  t h i s  l e n g t h  a s  t h e  s p e e d  w i t h  w h ic h  t h e  p o in t  7 ( f )  

m o v e s  a c r o s s  M.  I t  w o u ld  t h e n  b e  n a t u r a l  t o  d e fin e  t h e  le n g t h  o f  t h e  c u r v e  7  sis b e in g  t h e  

d i s t a n c e  t r a v e l le d  b y  7 ( f )  a s  t m o v e s  fr o m  0 t o  1. I n  o t h e r  w o r d s  t o  d e fin e  t h e  d i s t a n c e  

t r a v e l le d  t o  b e  t h e  in t e g r a l o f  t h e  s p e e d  o v e r  t h e  t im e  t a k e n .

F o r m a l ly ,  t h e  le n g t h  o f  t h e  c u r v e  7  fr o m  7 ( 0 )  t o  7 ( 1 )  is  d e fin e d  t o  b e  t h e  in t e g r a l
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(1)

In fact, more generally, we allow an integration over any interval where 7  is 

defined. As the integrand is by construction invariant to  any reparam etrisation, so is the 

value of the integral itself and thus we have an invariant definition of path  length.

For any two points P  and Q  on the manifold M,  there  are infinitely many paths 

joining them. Intuitively, we may then define the geodesic distance from P  to  Q  to  be 

the minimum such path  length, and a path which attains th is minimum to be a geodesic 

(curve or path) joining P  and Q. Since we have ju st seen th a t path  length is invariant 

to reparametrisation, so are geodesic distances and geodesic curves. For the applications 

in this paper, th is definition will suffice but notice that for more complex problems this 

definition does not address several im portant issues such as existence and uniqueness. 

The standard geometric definition is made via a local p a th  length minimisation, rather 

than  the global one used above; for details, see Dodson and Poston (1977).

As an example, consider the points P  =  (1 ,1 )' and  Q = (2 ,2)' in R +  in the 

77-param eterisation. To find the geodesic curve joining P  and Q, and its length, when the 

Euclidean metric is used, we must solve the following problem. Find 7 (t) =  (r?i(t), 772(f))' 

which minimises

s u b je c t  t o  t h e  c o n s t r a in t s  t h a t  771(0) =  772(0) =  1 a n d  771 ( 1)  =  7 7 2 ( 1 )  =  2 .

T h i s  is  a  c la s s ic a l p r o b le m  in  t h e  c a lc u lu s  o f  v a r ia t io n s  w i t h  t h e  s o lu t io n :

7? i( f)  =  l  +  «, 772(0  =  1 +  t .

Thus the geodesic curve joining P  and Q  is affine in the 77-coordinates and the  geodesic 

distance between the two points is given by

C  V 2 dt = V 2 .
Jo

In a manifold, M , with a coordinate system 0 for which the  metric is constant for all 

tangent spaces the above result generalises in the following way. The geodesic curve 

between 0 =  (0i , . . . ,  0P)' and 0* =  (0* , . . . ,  0*)' is given by

11
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7 i( t )  =  ( l - t ) 0 i + t 0 * 0 < t <  1

as an affine combination of the  endpoints. Further, there is an explicit closed form 

solution for the geodesic distance. If the metric tensor is given by the constant m atrix G 

then the geodesic distance is given by

the square root of a quadratic function of the difference in the endpoints. Although the 

metric is defined as a  quadratic form on a tangent space it does in this very special case 

of a  constant metric, G, also have a direct in terpretation on the manifold.

However if we move away from the constant metric case, induced for example 

by a nonlinear reparam etrisation, these results will not hold. T hus in general geodesic 

curves are not simply affine combinations of their endpoints. Moreover, squared geodesic 

distances are not in general a quadratic function of differences in endpoints determined 

by a single quadratic form. It is therefore im portant to  notice for our analysis below 

th a t such quadratic functions are not in general invariant to  reparam etrisation. These 

difficulties lie a t the heart of the problem with the Wald test.

We can illustrate these rem arks by again considering polar coordinates in R +  and 

repeating the above exercise. In (r, a)'-coordinates P  =  (\/2 ,w /4 )' and Q  =  (2, 7t / 4)'. By 

invariance, we know th a t the geodesic curve joining them  is, in (r, a)'-coordinates, given 

by r 2(f) =  2(1 + 1)2 and a(t) =  n / 4. This is not an affine function of the endpoints. Using 

invariance again, the squared geodesic distance from one general point P  =  ( r i , a i ) '  to 

Q = (r2l Q2)', will be

which is not a quadratic form in (r 2 — r\,oei -  a i ) '.  In particular, recalling the m atrix 

representation of the Euclidean m etric in polar coordinates, it is not of the form

for any r . Thus a fixed quadratic form using the m etric a t a single point does not give 

an invariant measure of distance in the manifold.

(2)

{Vi{Q) ~  Vi{P)}2 + {m(Q)  -  rj2 (P)}2 = r f + r % -  2rir2 cos(at -  a 2)
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We will need to  consider an im portant generalisation of the definition of the  

distance between two points; th a t is the distance between a point P  and a line, or m ore 

generally, a submanifold, N . We could, for instance, regard the point as th a t representing 

the unrestricted MLE and the submanifold N as representing the null hypothesis. We 

can define th is distance to be the minimum of thcee between P  and Q, where Q €  N .  If 

Qo is the poin t a t which this minimum is attained  then the geodesic joining Qo and P  

cuts N  orthogonally, see Spivak (1981).

Finally given the discussion above we can see th a t the existence of coordinates 

which provide a metric with a constant representation simplifies geometric calculations 

considerably. Such coordinates are called affine and when they exist they are unique u p  

to  a  non-singular affine reparam etrisation. There is an im portant characterisation of this 

case. Given (Af, G), an arbitrary  manifold M  w ith a metric tensor G, we can define a 

tensor R  called the Riemann-Christoffel curvature tensor (see Amari (1985, page 46)). 

This is a function of G and its derivatives with the  property that R (6) s  0 if and only 

if a set of affine coordinates exists for G. Being a  tensor, R  vanishes in one coordinate 

system if and  only if it does in all coordinate systems.

Non-affine coordinates may arise in two ways. First, through a nonlinear re- 

param eterisation of a set of affine coordinates, as in the polar coordinate example above, 

or because R  does not vanish at some point and so all coordinate systems are necessarily 

non-affine. In  Section 4 below, we are largely (although not exclusively) concerned w ith 

normal linear model analysis which falls into the  first category. The general case is 

discussed in Section 6.

4  W a l d  t e s t  G e o m e t r y  a n d  t h e  F i s h e r  G e o d e s i c  S t a t i s t i c .

Recalling the  form of the Wald statistic for a restriction function g given in Section 2 by

W (g) =  g (d ) '{Dg (O)m -l Dg0 y ]- la(0),

we now in terpret the statistic in geometric term s and use the basic differential geometry 

given above to  explain the lack of invariance to  a reformulation of the null hypothesis.

The first geometric observation, going back a t least to Rao (1945), is th a t the 

Fisher information m atrix is a metric tensor. I t is positive definite and symmetric. Let F  

and I  be the m atrix  forms of the Fisher information a t a given point in f  and ^-coordinates 

respectively. Then, when expectations are taken with respect to the distribution for the
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random variable X  a t th a t point, we have 1 <  a, b < p:

9h d l c f y d l  

9 (a dOi d£b 98j ) = E E w

? p

as required. Thus the Fisher information can be used to measure the lengths of vectors 

in the tangent space where it is evaluated.

The second observation is th a t if the Fisher information m atrix  is constant in one 

param eterisation then  it need not necessarily be so in some other nonlinear reparametri- 

sation. This corresponds to  the example in the previous section where the Euclidean 

metric is constant (in fact the  identity matrix) in Cartesian coordinates but varies in 

polar coordinates. We note th a t in the normal linear model y =  X 0  + e, the information 

m atrix 1(0) — o~2(X 'X ) ,  is constant in 0  but in any coordinates which are nonlinear 

functions of 0  it will be nonconstant.

Our th ird  observation is th a t the Wald statistic can be seen to  involve precisely 

th is type of nonlinear reparam etrisation. One well recognised advantage of using the Wald 

statistic as opposed either the LM or LR statistics in the case of nonlinear restrictions 

is that it is not necessary to  estim ate the restricted model since only the unrestricted 

maximum likelihood estim ate is used. Considering the form of the Wald test above we can 

see it uses, with this nonlinear null hypothesis, the restriction function g itself effectively 

as a set of param eters to  make the contrast between the restricted and unrestricted cases 

in place of directly using the relevant param eter estimates. It compares the unrestricted 

estim ated value of th e “p” function with the “g-value” for any point on the null, taken to 

be zero. I t is im portant to realise th a t the value of g will generally not precisely fix the 

position of the unrestricted and restricted param eter estimates as the j-value provides 

only a partial parameterisation of the param eter space unless the number of restrictions 

equals the dimension of the  param eter space. In the case of linear restrictions in the 

normal linear model there is no effective loss of information given the marginalisation 

properties of normal distributions but in the case of nonlinear restrictions this partial 

reparam eterisation will not be sufficient. In order to analyse this case it will be useful 

to  extend the partial param eterisation induced by g to a full param eterisation as we can 

then directly see how a change in the form of the restriction function corresponds to  a 

nonlinear reparam etrisation.

The partial param eterisation g can be extended to  a full param eterisation by 

introducing new coordinates k  where k  completes the coordinate system; 6 —* { =  (g, ft)',
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where k(9) €  R p_r. This full parameterisation will exist in a neighbourhood of the  null 

hypothesis, technically in a tubular neighbourhood, see Spivak (1981). This result follows 

directly from the Implicit Function Theorem and uses the full rank of g.

O ur fourth observation is that the Wald statistic ignores all information contained 

in the k  coordinates.

T he Wald statistic involves the inverse of the Fisher information m atrix  a t 0 the 

unrestricted maximum likelihood estimate. Inverting the m atrix form of the equation 

linking /  and  its reparameterised form F  we find, writing (  = 4(9) and F  = F(£), th a t:

=  (Dg{g)m -'Dg(dy Dg(f ine)-'Dk (9y\

\  D k(9)I(9)~l Dg(9)' D k(9)I(9)~l D k(9)')  

where we have used the relation

T his formula holds for an arbitrary extension of g to  (g, /^-coordinates. I t  is 

possible to  choose k(9) so that, a t 9, the ^-constant lines are always orthogonal to  the 

^-constant lines and hence the m atrix form for F ~1 is block diagonal.6

# _ , =  f  D g 0 )I (9 ) - l Dg(9)' 0 \

V 0 D k(9)I(9)~l D k(9)')

Clearly the Wald statistic, W (g), is a  quadratic form that only involves the top 

left-hand com er of the above partitioned m atrix  F. Writing =  (g(9), k(9))' and £'0 =  

(0, k(9) ') , we see that

W(g) = ( i - S 0y F ( S - i ° ) ,  (3)

which is the  same form as the constant metric case, (2), of the general Geodesic distance 

given in (1). The metric F  is fixed given the particular value for 0.

This brings us to the heart of our diagnosis. Our last observation is th a t, viewed 

geometrically, the Wald statistic is a  hybrid quantity, having features of two differing 

geometric quantities:

6Since th e  W ald s ta tis tic  only involves th is  one p o in t th e re  is no loss o f  generality  here.
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(i) The squared length of a  vector in a tangent space, 

and:

(ii) a squared distance between two points in a manifold.

Individually both of these are genuine geometric objects in th a t they are completely 

invariant to reparam etrisation. Unfortunately, the Wald statistic  does not in general 

coincide with either of these two forms. It is not of the form (i), as (£ -  £„) =  (g(9) — 

g{60), 0) does not transform as a tangent vector and so ({ — {<,) does not lie in the tangent 

space. I t is not a quantity of the second form as it uses a  fixed metric F  where to be 

a squared distance measure in a manifold F  would need in general to vary with f  for 

the reasons explained in Section 3. The two cases only coincide for the special case of a 

constant metric and not in general. As a consequence, the Wald statistic is not a genuine 

geometric object and hence does not remain invariant when a reformulation of the null 

induces a nonlinear reparam etrisation.

The geometric point of view immediately suggests a resolution in that the obvious 

thing to do is replace the hybrid quantity W (g) by one of the pure geometric forms (i) 

or (ii); this will a t least automatically guarantee invariance to reparametrisation. If we 

use approach (i) we find the score statistic or the C (a) statistic recently examined in th is 

context by Dagenais and Dufour (1991). If we use approach (ii), we arrive at the squared 

geodesic distance between 9 and the nearest point on the null hypothesis Ho and, if we 

use the Fisher information m atrix  as the metric tensor, it is not unreasonable to call this 

a Fisher Geodesic statistic and  denote it by FG(8,Hq) or, simply, FG. Notice th a t the 

Likelihood Ratio statistic is invariant because it is simply a comparison of the values of 

the likelihood a t two points in the manifold.

In what follows we note some of the properties of th is Fisher Geodesic statistic in 

the normal linear model and then in Section 5 apply it to  the Gregory and Veall (1985) 

example, both  as a statistic  in its own right and as a geometrically natural reference 

point for the Wald statistic. In Section 6 we briefly consider the general use of geodesic 

statistics outside the context of the general linear model.

Recall th a t in the classical linear regression model y — X(3 + e we have /(/?) =  

<j~2(X 'X )  and because the information m atrix does not depend upon /?, the geodesic 

curves are ju st straight lines in /3-space (in the usual Euclidean sense) and the Fisher 

Geodesic statistic collapses to
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FG  =  min {{fi -  f i ) 'a ~ \X 'X )[ f i  -  fi)}.
p € «  o

W hen <t 2 is unknown we replace it by the unrestricted maximum likelihood es

tim ate <72 to obtain the operational statistic FG. If R S S  denotes the residual sum of 

squares under the restriction fi e  Ho and if L R  denotes the likelihood ratio  sta tistic  for 

this hypothesis, then the simple identity R S S  =  <r2(n +  FG) establishes that

L R  = n ln (l -t-rT^FC )

Thus, in this case, the geodesic statistic is an explicit one-to-one function of the 

likelihood ratio statistic.

Moreover, since n ln ( l  + n -1 a;) ~  x  as n  —► oo, we see th a t L R  and FG  will agree 

asym ptotically under both the null and alternative. In particular they will have the  same 

known asym ptotic x2 distribution. Now, if we let

L M  =
TUT2 F  G

R S S

denote the Lagrange Multiplier statistic for H0 then using ex >  (1 +  x), we see th a t the 

following inequalities hold for any null hypothesis Ho, which in particular need not be 

linear in fi:

L M  < L R <  FG  (4)

These inequalities may be compared with those established between th e  Wald , 

L R  and L M  statistics for testing linear restrictions and inequality constraints by Berndt 

and Savin (1977), Evans and Savin (1982) and Wolak (1988). Hence we see th a t, although 

equivalent asymptotically, in finite samples the Fisher Geodesic test will, in norm al linear 

models, reject Ho whenever the Likelihood Ratio test does if both  statistics are referred 

to  the same distribution.

Finally, in the following proposition, we provide necessary and sufficient condi

tions under which the Fisher Geodesic statistic coincides with the Wald sta tistic . We 

note th a t these conditions are satisfied for linear formulations of linear restrictions on re

gression parameters in the normal linear model and thus, in a sense, the Fisher Geodesic 

test can be seen as a direct generalisation of the Wald test. Notice however th a t Wald
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tests based on a nonlinear formulation of linear restrictions do not obey the conditions. 

We have the following result:

P ro p o s itio n  4.1 Given the basic model of Section 2, under standard regularity condi

tions, the Wald statistic based on g coincides with the Fisher geodesic statistic if:

(i) the Fisher information m atrix does not depend upon 0. i.e.

V 0 e  0 ,  1(0) = I0

for some symmetric, positive definite m atrix Iq. 

and

( ii)  Ho is  t h e  ze r o  s e t  o f  g : 0  —» R r  d e fin e d  b y  g(0) — AO +  6  w i t h  A  h a v in g  fu ll  r o w  

r a n k  r .

P ro o f. We find FG  by essentially geometric considerations. Let R  be the unique sym

metric positive definite square root of / o . Then, under the reparam etrisation 0 —» r) = RO, 

the Fisher information m atrix  becomes the identity, th a t is to  say 77- space is Euclidean. 

Let fj denote RO. Since geodesic distances are invariant to  reparam etrisation, we have 

th a t FG = (fj — fjoY(i) -  fjo) in which fjo is the (Euclidean) orthogonal projection of fj 

onto Hq = (rj e  R p | Crj 4-6 =  0 } where C  =  A H - 1 . Now (fj — fjo) is orthogonal to 

{(77 — 77o)|  V 6  H0}. B ut as fjo 6  Ho, this set is ju st the null space of C.  In other words, 

(fj — fjo) lies in the range space of C .  Writing (fj — fjo) — C A and imposing the condition 

th a t fjo e  Ho, we find th a t A =  (CC')~l (Cfj + b). Hence, as required

FG = g (0 ) '(A I^ A ') - l9(0).

5  A n  a p p l i c a t i o n :  T h e  G r e g o r y  a n d  V e a l l  e x a m p l e .

We now dem onstrate how the geometric approach can be applied to examine the be 

haviour of the Wald statistic  and the Fisher Geodesic sta tistic  using the example due to 

Gregory and Veall (1985). They considered a normal linear model

V i= 0o +  P ixn  +  fo x u  +  e< (i =  1....... n)
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with e, ~  AT(0, a2) and found large differences between the performance of two Wald 

statistics, W (gA) and W {gB), based on the  following alternative formulations of the 

stime null hypothesis:

Hq : gA =  0 where gA(Pi,P i) =  Pi -  P ^1

and

H0B : gB =  0 where gB(Pi , Pi) =  P ifo  -  1

As they are the only param eters involved in Ho, attention focuses on the subvector 

(P i,P i)' which we denote by P and assume to  be strictly positive.

T he monte carlo experiments presented below are based on a2 = 1 and a  similar 

regression model design to the one used by Gregory and Veall except th a t we decided 

to  use a constant n  x 2 m atrix  X  =  (x,j ) across replications. This corresponds to  one 

realisation of the stochastic process used by Gregory and Veall but provides a  constant 

framework for comparison across replications. Of course, X  still varies w ith sample size, 

however the regressors were scaled in order to  achieve similar design R 2 ’s across different 

series lengths. Although not essential to our geometric analysis, for clarity of exposition 

we also ro ta ted  the design so th a t the columns of X  are orthogonal giving

Since it is convenient to  work in Euclidean coordinates we define 771 =  s/a-Pi and 

7/2 =  Vbpi, so th a t 77-space is Euclidean.

5 .1  A  M o n t e  C a r l o  S t u d y .

The normal linear model described above was simulated with 10,000 replications for each 

case w ith three sample sizes of 20, 50 and 100 obseivations. The (a, 6) values in the 

information matrix, I(P), were taken respectively to be (24.6,111.5), (285.2,26.5) and 

(578.4,124.7). The two versions of the Wald statistic corresponding to gA and g B were 

com puted together with the Lagrange M ultiplier, Likelihood Ratio and Fisher Geodesic 

statistics. These, asymptotically x 2( l)  statistics, were then compared a t the 1% and 5% 

levels a t five points on the null hypothesis such that the product of Pi and pi is unity.
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(01, 02)

( 10, 0.1)

(2,0.5)

( 1- 1)

(0.5,2)

(0.1, 10)

Table 1 indicates the number of times H0 was rejected in each case (Ho true). A 

standard binom ial calculation shows th a t the monte carlo standard errors are ±10 and 

±22 a t the 1% and 5% levels respectively.
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T a b l e  1

G r e g o r y  a n d  V e a ll  S im u la t io n s

R e j e c t i o n  f r e q u e n c ie s  o n  
t h e  N u l l  g iv e n  1 0 ,0 0 0  r e p l i c a t i o n s

fa fa n  = 20 50 100

R 2

i% 5% 1% 5% 1% 5%
10 0.1 0.9923 0.9983 0.9983

WA 1448 1960 2666 3288 1292 1829
WB 272 836 165 655 144 568
LM 97 567 107 556 110 526
LR 177 709 139 610 121 548
FG 274 838 165 656 141 568

2.0 0.5 0.8692 0.9590 0.9595
WA 276 664 612 1026 310 706
WB 295 870 166 660 130 571
LM 96 557 104 561 107 531
LR 189 714 131 617 116 551
FG 276 850 168 668 131 575

1.0 1.0 r !2 0.8775 0.8642 0.8766
WA 280 848 289 658 147 550
WB 313 868 159 660 135 594
LM 105 576 100 550 100 548
LR 215 726 129 608 110 564
FG 288 854 168 645 127 589

0.5 2.0 R 2 0.9597 0.7836 0.8667
WA 330 893 146 637 135 565
WB 325 891 202 728 139 565
LM 111 613 113 565 109 526
LR 201 747 144 611 121 539
FG 330 893 180 680 131 562

0.1 10.0 r !2 0.9983 0.9819 0.9221
WA 326 889 185 706 138 542
WB 326 888 184 703 136 540
LM 118 606 104 604 109 493
LR 210 747 147 655 126 516
FG 326 889 185 706 138 542

Focussing on the larger sample sizes where the asym ptotic results may be expected 

to  apply, we note the following features. Under Ho,

(1) The Fisher Geodesic and Likelihood Ratio tests perform com parably throughout.

(2) The W {gA) test, WA, performs well for large fa , b u t increasingly badly as fa  de-
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creases. At 02 =  0.1, its behaviour is extremely poor. W hen >32=10 its performance 

is effectively the same as the W (gB) and Fisher Geodesic tests. The o ther test 

statistics seem relatively unaffected by variations in 0?.

(3) The W (gB) test performs relatively well and closely follows the Fisher Geodesic 

test.

(4) We note the systematic inequality between the Fisher Geodesic, the Likelihood 

Ratio and the Lagrange Multiplier statistic  derived in the previous section.

To pursue the geometric analysis of these monte carlo results, we introduce a 

convenient choice of k  in the param eterisation 0 —>> f  = (g1, k ')' as discussed in Section 4 

in which the form of the Fisher information m atrix  is diagonal. Such a param eterisation 

will be called Fisher orthogonal. The proofs of the following propositions are given in the 

appendix.

P r o p o s i t i o n  5.1 . For any smooth real valued restriction function g there exists a  func

tion k  : R 2 —> R  such that in (g, ^ -coordinates the Fisher information m atrix is o f  the 

form

n o  =

in some neighbourhood of the null hypothesis, 

and k* will have the same level sets.

0 \

f i i )

Furthermore any two such functions, fc

Taking the Fisher geodesic statistic as our benchmark for evaluating the perfor 

mance of the  Wald statistic we expect, following our analysis in Section 4, th a t the Wald 

test will differ from the Fisher Geodesic test, if F(£) varies substantially near 9 and we 

can develop measures of th is variation where g and k  are scalars as in the Gregory and 

Veall example. It would be natural to analyse the change in the form of the information 

m atrix  in term s of the functions f u  and f a .  However since there is some degree of choice 

in the function k  we need to ensure th a t the diagnostics used are invariant to  different 

choices of k.

P r o p o s i t i o n  5 .2 .  For any <7,<?i ,<72; fn (g , k) and are invariant to  different

choices of k.

Further the quantity
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Q

m(g,k) =  —  \n fa (g ,k )

is an appropriate measure of the variation in f a  and is invariant to  different choices of 

the Fisher orthogonal coordinates k.

Thus we have two diagnostics th a t can be used to  indicate when the Wald test 

may behave badly i.e. when:

(i) when there is large variation in f a  near 0 ,  

and /or

(ii) when large values of |m(<?, fc)| are found near 0 .

We next calculate these two quantities for gA and gB, and use them to  predict the 

performance of W {gA) and W (gB) as actually observed in th e  monte-carlo experiment. 

We need to calculate a  set of Fisher orthogonal coordinates for the Gregory and Veall 

example for both  the gA and gB forms of the restriction function and the form of the 

metric in these coordinate systems.

P ro p o s itio n  5.3. For the  gA restriction function we may take

kA(0 u 0 i)  = d20\ -  ^02

where d =  so th a t (gA ,k A) is a  Fisher orthogonal coordinate system. Similarly for 

the gB form of restriction function we may take

k B{0x,01) = \ { 0 \ - d - 2(%).

P ro p o s itio n  5.4. For gA :

f u  — a l +b~l0ï* ,

and

m A(g,k) =

and for gB we have :

f à = b ( d 2 + 0 * r i

4d20%

(d2 +  0 i)2
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and

/ f i  =  a ( #  +  d2/? ? ) - \  / £  =

m B(g,k) =  -
4d2/?i&

( #  +  d2/??)2

The above measures indicate the variation of the m etric tensor in a region of 0. 

In this two dimensional example the variation can also be seen graphically. In Figures

1 and 2 we plot the (g, fc)-coordinates, for gA and gB respectively, in a neighbourhood 

of the null hypothesis. In each figure g-constant lines are plotted on both  sides of the 

null in the (t/i , ^ )  Euclidean coordinates introduced above ( on page 19). In these new 

coordinates the orthogonality of the (g, A:)-coordinate system has the straightforward 

visual in terpretation th a t the ^-constant lines will cut the A:-constant lines orthogonally 

in each diagram.

Either the diagnostics of Proposition 5.4 or Figures 1 and 2 can be used to  explain 

the monte carlo results. F irstly  considering the gA restriction function; for large values of 

02, on the null, the metric in (g, A:)-coordinates will remain fairly constant since f Ax —> a -1 , 

a constant, and m A —> 0 as 02 —* oo. This would indicate a close agreement between the 

Geodesic and Wald statistics for these values of 02. Graphically the region where 02 is 

large on the null corresponds to  region (1) in Figure 1. Here the {g, Ac)-coordinates are 

visually indistinguishable from Euclidean. The results from the m onte carlo experiment 

exactly agree w ith these predictions.

For values on the null where 02 is small we see large variation in the metric. There 

is a singularity in f Ax as 02 —>> 0. Thus we would expect a large difference between the 

Wald and the Geodesic statistics in this case. In the figure th is singularity in the metric 

lies in region (2) where the singularity in the coordinate system is obvious. This again 

exactly corresponds to the behaviour observed in the m onte carlo experiment.

For the restriction function gB there is much less variation in the diagnostic 

functions as 0\ and 02 vary. F irst we see considerable symmetry in the diagnostics as

02 —■> 0 or oo. In both cases m B —> 0 and also f B does not have a singularity. Visual 

inspection of Figure 2 shows th a t the (g , fc)-coordinate system is always approximately 

Euclidean, especially in the tails of the hyperbola, 0i02  — 1 = 0  which is the null hy

pothesis. These observations imply th a t there should always be a reasonable agreement 

between the Geodesic and the Wald statistics in this case, particularly for large or small
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Figure 1: The gA and kA coordinate system 

values of (h- T his is again in exact agreement w ith the monte carlo results.

6  G e o d e s i c  d i s t a n c e s  i n  S t a t i s t i c s .

In the  case of the linear model considered above we used a definition of geodesic distance 

which was induced by the Fisher information m etric. This defined an invariant distance 

function on a  param etric family which can be used as a test statistic. In this section 

we briefly discuss the general properties of this type of test statistic and other related 

statistical d istance measures.

T he use of geodesics in statistical inference has recently been recognised, in par 

ticular in th e  work of Amari (1985) and Bamdorff-Nielsen (1989). This literature uses 

the idea of a geodesic which is defined by an affine connection rather than a metric ten 

sor. This more general, though less intuitive, definition of a geodesic is im portant in the
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Figure 2: T he gB and k B coordinate system

general theory of differential geometry and in particular in its applications to  Physics. 

For a  good reference to  these more general ideas see Dodson and Poston (1977). For 

the present we concentrate on m etric tensor based geodesics since they  have the added 

structure th a t there is always an associated geodesic distance. A geodesic defined by 

an affine connection does not in general have either the length minimising property or 

the corresponding distance measure and it is intuitively reasonable to expect th a t these 

distances might prove to be useful test statistics. It is as yet an open question if such 

a geometrically based test statistic  has good statistical properties in general but certain 

im portant relationships with well-known statistical objects do exist.

In Critchley, M arriott and Salmon (1993) it is shown how the geometry of Amari, 

which is defined using affine connections, can be viewed as a metric tensor based geometry. 

To do this though it is necessary to  define the concept of a preferred point metric, g*(0). 

T he preferred point, 4>, is some point in the manifold which is singled out as special 

in the  geometry. Statistically it m ay be thought of as the d a ta  generation process or 

some estim ate of it, and for each potential choice of <j>, g*(9) is a m etric tensor. There
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are a  num ber of statistically natural choices for a  preferred point metric structure on a 

manifold, each containing some particular statistical information. It is shown in Critchley, 

M arriott and Salmon (1994a) th a t under a condition called total flatness these different 

choices reduce to  one, which agrees with the Fisher information metric used above. The 

linear model discussed above is one of the few families which is totally flat. This gives an 

im portant theoretical justification for the use of the Fisher metric in our analysis.

For more general models a distinction has to  be drawn between the different 

possible preferred point metrics. In the case of full exponential families the different 

choices can be seen to  correspond to  the set of a-geometries defined by Amari and 6- 

param eterisations defined by Kass (1984) and Hougaard (1982). For a discussion of th is 

issue see Critchley, M arriott and Salmon (1994b).

There already exist distance measures in statistics. Chentsov (1972) and Amari 

(1985) consider a class of distance measures called divergences. Included in this class 

are the Kullback-Leibler and Hellinger distances. These measures do not possess the 

symmetry condition needed in the strict m athematical sense of distance, however they are 

natural for statistical applications. For example the Kullback-Leibler divergence between 

two densities, p and q, is

Ep[lnp -  In 7]

which in general does not equal (minus) the divergence between q and p

E«j[ln 17 -  In p]

as expectations are taken with respect to different densities. Amari demonstrates the 

strong links between these divergence functions and a-connections.

In Critchley, M arriott and Salmon (1993,1994a), these results are extended to 

preferred point geometry. A preferred point geodesic distance is not restricted to being 

symmetric unlike those of a standard metric. Further, it  is shown th a t any divergence 

function will agree (locally) with the (square root) of a preferred point geodesic distance. 

More specifically the  statistically natural preferred point metric which generates Am ari’s 

Q-connection structu re  is shown to have strong links w ith the Kullback-Leibler divergence.

Intuitively, under suitable regularity conditions, one can view the Kullback-Liebler 

divergence as a m easure of (squared) distance on the (infinite dimensional) space of all
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density functions. Consider a parametric family to  be a finite dimensional subset of th is 

larger space. T he distance between two points in th is family could be measured either 

in the infinite dimensional family or by the path length of a geodesic in the param etric 

family. If the param etric family is totally flat, discussed above, then a statistically natural 

preferred point geodesic distance will agree with the (square root) of the Kullback-Leibler 

divergence. In particular in the linear model, which is totally  flat, they both agree w ith 

the Fisher geodesic distance used in the previous section. Thus in th is case the general 

ambiguity in possible ways of measuring distance disappears. Again for more details see 

Critchley, M arriott and Salmon (1994a).

Overall, research into the applications of geodesic statistics is at an early stage 

but we note two further points. Our recent work shows th a t the Wald statistic emerges 

as the leading term  in a Taylor expansion of the geodesic squared distance statistic, in 

all our preferred point m etric cases. Some progress has also been made on the difficult 

practical problem of calculating geodesic distances in param etric models by Minarro and 

Oiler (1990).

7  C o n c l u s i o n s .

This paper has analysed the invariance properties of the Wald statistic using the tools 

of differential geometry and in particular the geometric concepts of metric tensor and 

geodesic distance. The Wald statistic has been shown to  be a geometrically hybrid quan 

tity  and it therefore lacks the desired invariance properties. We demonstrated th a t this 

fundamental lack of geometric invariance causes the observed finite sample behaviour of 

the Wald statistic and geometry has been used to analyse exactly why and where Wald 

tests based on particular algebraic formulations of the null will fail.

We have proposed a Fisher Geodesic Statistic as an invariant extension of the 

Wald statistic in the case of testing nonlinear restrictions in the linear model. This 

statistic satisfies, for the nonlinear case, a finite sample inequality with the Score and 

Likelihood Ratio statistics th a t corresponds to the well known inequality between the 

three classical statistics in the linear case. We have also provided sufficient conditions 

under which the Wald and FG statistics coincide.
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A p p e n d ix .

P r o o f  o f  P r o p o s i t i o n  5 .1

To choose a real valued function k  which completes the coordinate system in the 

two dimensional case we need to  solve the partial differential equation

Dk 1 Dg1 =  0.

It is convenient to use the m ethod of characteristic curves to  solve th is equation. 

This reduces the problem to  a set of ordinary differential equations. T he characteristic 

curves for this problem will simply be the level sets of the function k. Let (9i(t), 9i(t)) 

be  any such level sets it is found by solving

( * . * ) ' - w .

These curves will be well defined in a  (tubular) neighbourhood of Ho- By the  uniqueness 

theorem  for the solution of partial differential equations by the m ethod of characteristics 

the  function k  will be uniquely defined by its value on the null hypothesis, since each 

characteristic intersects the null.

Two different solutions k  and fc* will both have the same level sets which are the 

characteristics curves.

P r o o f  o f  P r o p o s i t i o n  5 .2

/„  = {{Deg)m -\ Deg)'\-1

T his expression is clearly invariant to  different choices of fc-coordinate in all cases.

If i  = {g,k'Y  and £* =  (g , k" ')1 are any two Fisher orthogonal param eterisations, 

by Proposition 5.1 k" is a  function of k  alone as they both have the sam e level sets. 

Hence, using the chain rule,

so th a t since

Kd 0 '  v dk Kdf)

flic* fììc*
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We see that

is invariant.The expression

f n jg i , k ‘) _  fa{g- i, k) 
/22(»i,fc*) h i(g \ ,k )

h i(g  + 6g, k) 
fn {g ,k )

1 + 6g.m (g,k) + 0 (6 g 2)

where

m (g,k) = f n { g , k ) ( ^ f 221 (a,*))

shows th a t m(g, k) is an appropriate measure of the variation in f a .  I t is, as required, 

invariant to different choices of the Fisher orthogonal coordinates k. I t  can be calculated 

as follows. Once we have solved the differential equation for k  we know f a  as a function 

of 6 and we also then  know the elements of

Inverting we find

Using the chain rule, we now have all we need to  calculate m (g,k) from the 

equation

m(g, k)
1 , d f a  89 1 d f a  cX?2,

f a ( g , k ) { dOi dg d02 d g i

P r o o f  o f  P r o p o s i t i o n  5 .3  Consider first gA = (3\ -  1 so that

Dt>g =  (1.& -2)'.

The equations we have to solve for the characteristic curves (0 i( t) ,(h (t)y  are 

therefore:
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dfa

dt
— o _1 and =  b l02 2.

For any constants C\ and C2, these have solutions:

0 i(t) = a~xt  + ci and \ l h ( t ) z — b~l t + c2.
«5

Imposing the condition th a t 0(0) €  Ho we find th a t 3c2c2 =  1. Elim inating f 

between these equations, we find th a t

( > i ( t ) - x & ( t )3 =  ( £ ) c i - c 2.

Thus we may take

kA(0u 02)=d‘20! -  i/9g

where d = v T f  )> since the value of th is function of 0 \ and 02 is constant along the curve 

(0 i( t) ,0 i( t))  which by definition are the fc-constant lines.

Consider next gB =  0\02 — 1 so th a t Dpg — (02,0i) yielding the equations

a“ ,/32 and ^ =&-1/3"  

Writing A =  ( \ /a 6)-1 , we find th a t

dt dt

Thus, for constants c i, and C2,

0 i- t-d  l02 =  2c ieAt and 0 \ -  d x0 2 = 2c2e At

T hat is:

/3i(t) =  (cieAt +  C2e A‘) and & (t) =  d(cieA£ -  c2e A()
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Requiring /3(0) 6 Ho, we find d (c ( - c 2) =  1. Eliminating t between the equations, 

we find that

/?i(f)2 -  <T2P2 (f) 2  =  4c ic 2. 

Here it is convenient to  take

k B(0 l ,lh )  = 1M - d~2^ -

P r o o f  o f  P r o p o s i t i o n  5 .4  W e h ave  h ere  th a t

and

k -1

Consider first gA = f) 1 — for which we can take k A = <Pj3\ — {\)02- Thus

/  1 /32 2 \

whence

B  =
1 / «  A

{ $  +  W

_ /  P2 P2 \
}Vd2 - 1 /

Using /22 =  b(cP +  /32) 11 the above expression for B, and the general formula for 

m (g ,k)  given in Section 5.4, we find:

, 4 d2# j
m (g ,k) =

( c p + f t y

We obtain the results for 5s  in a similar manner.
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