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On the Differentiation of Heat Semigroups and
Poisson Integrals

ANTON THALMAIER

Abstract: We give a version of integration by parts on the level of local martingales;
combined with the optional sampling theorem, this method allows us to obtain differen-
tiation formulae for Poisson integrals in the same way as for heat semigroups involving
boundary conditions. In particular, our results yield Bismut type representations for the
logarithmic derivative of the Poisson kernel on regular domains in Riemannian mani-
folds corresponding to elliptic PDOs of Hérmander type. Such formulae provide a direct
approach to gradient estimates for harmonic functions on Riemannian manifolds.

1. Introduction

Let M be an n-dimensional smooth manifold and, for some m € N, let
A M xR™ - TM, (x,e)— Ax)e,

be a homomorphism of vector bundles over M. Thus, A € T'(R™ ® TM), i.e., the
map A(z): R™ — T, M is linear for z € M, and A(-)e € T'(TM) is a smooth
vector field on M for e € R™. Consider the Stratonovich stochastic differential
equation

dX = A(X) % dB + Ay(X) dt (1.1)

where Ay € T'(TM) is an additional vector field, and B an R™-valued Brownian
motion on a filtered probability space (Q,Q,P; (yt)teRJr) satisfying the usual
completeness conditions. There is a partial flow X;(-),((-) associated to (1.1)
(see [12] for details) such that for each 2z € M the process Xi(z), 0 < ¢ < ((z),
is the maximal strong solution to (1.1) with starting point X,(z) = z, defined up
to the explosion time ((z); moreover, using the notation X;(z,w) = X¢(z)(w) and
(2, w) = ¢(2)(w), if
Mi(w)={x e M :t < ((z,w)}

then there exists a set 2y C Q of full measure such that for all w € Qy:
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(i) Mi(w) is open in M for each t > 0, i.e. ((-,w) is lower semicontinuous on
M.
(il) X4(+,w): My(w) — M is a diffeomorphism onto an open subset of M.
(iii) The map s — X,(-,w) is continuous from [0, ¢] into C>° (My(w), M) with its
C*°-topology, for each ¢ > 0.
The solution processes X = X (z) to (1.1) are diffusions on M with generator

L=Ay+3 > A?
=1

that the system (1.1) is non-degenerate, i.e., A(x): R™ — T,M is surjective for
each x, or equivalently that L is elliptic. This non-degeneracy provides a Rieman-
nian metric on M such that A(z)A(x)*: T,M — T, M is the identity on T, M for
xz € M. In other words, A(z)*: T, M — R™ defines an isometric inclusion for each
r € M, ie.,

where A; = A(-)e; € T(TM), i = 1,...,m. Throughout this paper we assume

(u, v)p pr = (A(2)*u, A(z)*v)gm  for all u,v € T, M .

With respect to this Riemannian metric, L = %AM + Z where 7 is of first order,
i.e. a vector field on M. Standard examples are the gradient Brownian systems
when M is immersed into some Euclidean space R™, and A(z): R™ — T, M is the
orthogonal projection; for Ag = 0 this construction gives Brownian motion on M
with respect to the induced metric, see [5].

For z € M, let T; X;: T, M — Tx,;yM be the differential of X;(-) at z (well-
defined for all w € Q such that z € M;(w)) and V; = Vi(v) = (T, Xt)v the
derivative process to X;(-) at z in the direction v € T, M. Tt is well-known that
V on T'M solves the formally differentiated SDE (1.1), i.e.,

dV = (Tx A)V +dB + (TxAo) Vdt, Vo=, (1.2)
with the same lifetime as X (z), if v # 0. Using the metric and the correspond-

ing Levi-Civita connection on M, equation (1.2) is most concisely written as a
covariant equation along X

DV = (VA)V «dB+ (VAg) Vdt (1.3)
(see [5]); by definition, (1.3) means
AV = [ (VA) ffo 7+ dB + /5 (F Ao) [fo, V dt
for V; = //0_’,}‘/; where //o ;2 Tx,M — Tx, M is parallel transport along the paths
of X.

We first assume completeness in (1.1), i.e. {(x) = oo a.s. for each x € M. Note
that this does not necessarily imply the existence of a sample continuous version
of the flow Ry x M — M, (t,x) — X;(z). For f € bC'(M) (bounded C* functions
with bounded first derivative) let

(P)@) =E[(fo Xi(2))], ze M, (1.4)
be the semigroup associated to (1.1), and
Pdf)ov = E[(df) x,(a) (T X1) 0], v € TuM, (1.5)

its formal derivative whenever the right-hand side exists. More generally, for a
(bounded) differential form o € T'(T*M) let

PV () =E[X; ], (1.6)
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provided the right-hand side of (1.6) is well-defined; here X;« is the pullback of
« under the (random) map X;: M — M.

Further, for x € M and I =[0,t] or I = R, let

H(I,T, M) = {v: I — T, M absolutely continuous, ||¥|| € L*(I,ds)}
be the Cameron-Martin space and Hy (I, T, M) = {y € H(I, T, M) : v(0) = 0}.
The following version of an integration by parts formula is a slight variation of

a formula obtained by Elworthy-Li [6] (see also [3]); we use it to exemplify our
approach to derivative formulae.

THEOREM 1.1 (Integration by parts formula) Assume (1.1) to be complete and
non-degenerate. Let f € bC'(M). Then

t
E[(df)Xt(m) (T, X,) ht} - E[(f o X (z)) / (ToX4) ha, A(X4()) st>} (1.7)
0
for each bounded adapted process h with sample paths in Hq ([0, t], T, M) such that
E[supossgt‘d(Pt_sf)Xs (@) (TsXs) hs|] < 0o, and with the additional property that
fg((Tme) iLS,A(XS(a:)) dBy), 0 < r < t, is a martingale.
Proof Let h be an adapted bounded process with h,(w) € H([0,t], T, M), almost

all w. It will be shown in Lemma 2.1 below that
Nr — d(pt—rf)XT(g;) (Ter) hr

(P ) (X () /0 (TLX,) by A(Xo(2)) dB,)

provides a local martingale for 0 < r <t. The additional assumptions assure that
N is even a martingale; the claim follows upon taking expectation. O

(1.8)

Remark 1.2 A canonical choice for h in equation (1.7) is hs = (s/t)v, v € T, M,
or more generally, hy = (s Ae/e) v with some constant 0 < & < ¢. Then, under the
assumptions of Theorem 1.1,

E[(d) x, ) (T X0) ] :E[(foXt(x))g/(f((Tst)v,A(Xs(x))dBS>}. (1.9)

In general, if h in Theorem 1.1 has the property that h; = v, then we get Pt(l) (df )zv
for the left-hand side in (1.7) while the right-hand side represents d(P;f),v as will

be shown in Theorem 2.4 below. Thus, in this case, d(P,f), = Pt(l) (df ) is already
a consequence of (1.7).

Note that differentiating (1.4) by taking derivatives under the expectation requires
differentiability of f. However, due to the smoothing property of the semigroup,
P, f is already differentiable even if f is only measurable — a fact which is explained
by formula (1.7) where the right-hand side does not involve any derivatives of f.
In case system (1.1) is explosive, the minimal heat semigroup associated to (1.1)
is given by

(Pef)(z) =E[(f o X¢()) Lis<c(a)y] (1.10)
where differentiation under the integral is no longer possible even for smooth f.
An appropriate generalization of (1.5) is

P (df)ov = E[(df) x,(2) (T X2) 0 1 rccmy] . v € TaM. (1.11)
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From a stochastic point of view, there seems to be no obvious reason why (1.11)
should be the derivative of (1.10) in the direction v, i.e.,

dP,f = P11 (df). (1.12)

Of course, formula (1.12) cannot hold for f = 1 unless the system (1.1) is complete
(non-explosive).

Even more fundamental problems occur when dealing with boundaries where the
process needs to be stopped when exiting a given domain. The situation is best
illustrated in the case of the Dirichlet problem. Suppose that D is an open (rela-
tively compact) domain in M with D # M. Let

u(z) = B[ 0 Xyo)() (1.13)

where 7(z) denotes the first exit time of X (z) from D. Then w is differentiable (and
L-harmonic) on D whereas x +— X, (;)(x) is not even continuous with probability
one. The non-continuity follows from purely topological reasons, since there is no
continuous retraction of D to the boundary dD. Thus, there is definitely no way
of differentiating (1.13) by taking derivatives under the integral.

In this paper we shall extend integration by parts and derivative formulae in var-
ious directions to cover situations where finite lifetime or stopping times resulting
from boundary conditions are involved. Specifically, we develop formulae for the
differentiation of (1.10) and (1.13) not involving any derivatives of f. Analogously
to Bismut type formulae for the logarithmic derivative of the heat kernel, we get
similar formulae for the Poisson kernel.

Our methods are inspired by the notion of quasiderivatives in the sense of Krylov
[11]. The following fact is elementary but crucial for our approach: If a local mar-
tingale depends on a parameter and is differentiable with respect to this parameter
in probability uniformly on compact time intervals, then its derivative is also a
local martingale.

2. A basic formula for the derivative of a heat semigroup

We start by explaining our basic strategy for proving integration by parts and
derivative formulae; see also [7]. Let X be again the partial flow associated to the
non-degenerate system (1.1). Suppose that, for some x € M, a process of the form
Y (z): Y. (z) = a(r, X,(z)) provides a local martingale. We assume that Y (z) is
defined on a stochastic interval [o, 7[ such that

{(r,Xr(z,w)) 1o(w) <r <7(w)} CIx My, almostallw,

where a: I x My — R such that a(t, -) € C*(My) for t € I with jointly continuous
derivative (t,z) — da(t, - )5; here I C Ry is an interval and My C M open.

Such a situation is typically given when a is some C? time-space harmonic function
so that d,.a + La = 0. In this paper we have mainly two cases in mind, namely

(i) 7 =t, and a(r,y) = (Pi—rf)(y), for some bounded measurable f on M,
(ii) 7 = 7(x), where 7(z) is the first exit time of X (x) from a bounded domain D,

a(r,y) = u(y) with u € C?(D) and Lu = 0.
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LEMMA 2.1 (Integration by parts on the local martingale level) Let a(r, X,(z)),
o <r <1 (with o < T predictable stopping times) be a local martingale for some
function a having the above properties. Then

N, = (da(r, +)) x, () (TeXr) hr—a(r, X, ( /( (T Xs) hs, A(X,(z)) dBs) (2.1)

(0 < r < 7) is also a local martingale for any bounded adapted process h with
sample paths h,(w) € H(I, T, M) for almost all w.

Proof For r > 0, let H:: M — M be the pathwise defined solution to

2 H () = A(H: (z)) A(z)*hy

HY(z)==.
Set X:(z) = X, (HS(z)); then in particular X?(z) = X,(z). The perturbed
process X ¢ satisfies

dX® = A(X®)xdB + Ao(X®)dr + (TX,)dH,
with dH = (£ HE) dr = HZdr, see [12]. Hence
dX°(z) = A(X®(2)) * [dB + A(X®(2))*(Thz (o) Xr) dH; (x)] + Ao (X°(z)) dr .

We observe that this is an SDE of the same type as (1.1) but with the perturbed
driving process dB®(z) = dB + A(Xe(x))*(THﬁ(m)X,ﬂ) dHE(x). Roughly speak-
ing, the next step is to compensate this perturbation by changing the measure
according to Girsanov-Maruyama. More precisely, set

Mz = — [ (ACD)* (T X,) 1 aB) (23)

s

(2.2)

and G% = exp (Mf —1 5 [ M*], ) Then, for any stopping time p < 7 with the property

that the exponential (GE

rap(T ))T>0 is a martingale, B*(x)|[0, p|] is a Brownian mo-

tion on [0, p] with respect to the measure G4 (z)-P. Hence, by pathwise uniqueness
of solutions to (1.1), if ¥, (z) = a(r, X,(z)) is a (local) martingale on [0, 7] then
also Y, (z) := a(r, X5(x)) G5(x) is a local martingale on [0, 7[, both with respect
to the measure P. Consequently, also

0

& 8 €
| Ye@) = (dalr, ) x, ) (T X By +a(r, Xo(@) = Gilo)
for o < r < 7, is a local martingale. Using Hg =0 and %%‘e: H: = hs, we get

e = / (T X.) HE (@), A(XE () dB.)
— - [(mx) 2| Hi). A, (@) ap) (2.4)

=[x b A ) aB,).

Thus N, = 2 oY, (z) where N, is defined by (2.1). This shows that N is a

local martlnga]e on [o, T/. O

We shall exploit Lemma 2.1 for various choices of transformations a and proces-
ses h. An essential observation is that (before taking expectations in (2.1) with an
appropriate h) there is still the possibility of applying the optional sampling theo-
rem to the local martingale (2.1). This fact allows one to deal with stopping times
in the derivative formulae which take into account given boundary conditions.
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Remark 2.2 In the notation of Krylov [11] the local martingale property of (2.1)
means that &, := (T, X,) h, is a quasiderivative of X, (z) in the direction hy = v,
and &0 := — [ ((TyX;) hs, A(X4(z)) dBs) its adjoint process.

Now, let f € B(M) (bounded measurable functions on M), and suppose that the
local martingale N,., 0 < r < t, as given by (1.8), is already a martingale; moreover
suppose that hg =v € T, M and h; = 0. Then E Ny = E N;, in other words,

d(P;f)av = —E[(foXt(w)) /0 <(Tst)hs,A(Xs(w))st>}.

For instance, choosing h, = (1 — 7 A 6/8) (where 0 < e <), we get

d(P;f)zv =E [ foXi(x /<TX v, A(X ())stﬂ

provided (1.8) is actually a martingale for this choice of h. The latter question can
be reduced to integrability conditions on the derivative process T, X, (see [6]). Ob-
viously also an appropriate choice for h may be helpful to make (1.8) a martingale.
We follow this idea in the next theorem.

THEOREM 2.3 Assume that (1.1) is complete and non-degenerate. Let f € B(M),
t > 0. Then

d(Pyf)gv = —E[(foxt(a;))/o <(Tme)hs,A(Xs(a;))st>} (2.5)

holds for any bounded adapted process h with sample paths in H(R, , T,,M) such
that (fOT(m)M Ik ds)1/? € L'*¢ for some € > 0, and the property that hg = v,
hs = 0 for all s > 7(x) At; here T(x) is the first exit time of X (z) from an
(arbitrarily chosen) relatively compact neighbourhood D of x.

Proof 1) We first assume f € C'(M). In this case ||d(Psf):|| is bounded for
(s,z) € [0,t] x D. Now, let N™ be the local martingale (1.8) stopped at 79 =
T(x) At, i.e. NJ° := Nyap, r > 0. It suffices to show that N™ is already a
martingale. Namely, then

d(Ptf)m’U = ENTO = —E[(Pt_Tof) (XTO (ZE)) ATO<(TwXS) hs-, A(XS(.T)) st>:|7

and (2.5) follows from the Markov property (Pi—r, f) (X (7)) = EZ70 [f o X;()].
To check the martingale property of N, we first note that supg< <, [|T2Xs[| € L?
for any 1 < p < oo: for this we may assume that M is already compact, since
otherwise M can be modified outside of D without changing T, X, for s < 7p; on
compact manifolds the above integrability of the derivative process is well-known,
e.g. [14]. Using this integrability of the derivative process the stochastic integral
in (1.8) can be estimated by means of Burkholder-Davis-Gundy and Hélder’s in-

equality:
< cIE(/ 0“(Tme)hs‘|2ds>l/2
0

E\/ ) (1. X,) b,
70 . 1+e
T }fra . [E(/ ||hs||2ds>%}l}r_e < const < oo
0

<c [E( sup ||Tme||> .
for any stopping time o < 79. This verifies that N™ is indeed a martingale.

OSSSTO
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2) In case f € B(M) only, we use that ||d(Psf).|| is bounded for (s,z) € [e,t] x D
if &€ > 0. However, depending on &, the process h may be modified such that
he = hs for s < 7(z) A (t —¢) and hS = 0 for s > 7(x) A (t — ¢/2), and cutting
off appropriately between. Then the arguments used in 1) carry over to give (2.5)
with h replaced by h®. Finally, the claimed formula follows by ¢ — 0. 0

Note that in Theorem 2.3 the condition (f(f A2 ds)'/? € L'*¢ guarantees that

fOT(w)M«TmXS) hS,A(XS(x)) st>, 0 < r < t, is a martingale, i.e. it assures the

uniform integrability of
{f00<(Tme) hS,A(XS(x)) st> :0 <o <7(x)At, o stopping time} )
The same strategy as above can be applied to get derivative formulae for the heat

semigroup in cases when (1.1) is explosive. More precisely, we have the following
result.

THEOREM 2.4 Let (P, f)(z) = E[(f o X4(#)) 1{t<¢(x)}] be the minimal semigroup
associated to (1.1) acting on bounded measurable functions f: M — R. Then

T(z)AL .
d(Pif)zv = —E[(f o Xy(z)) 1{t<<(m)}/0 ((TyXs) hs, A(X;(z)) dBS>] (2.6)

for any bounded adapted process h with sample paths in H(Ry, T, M) such that
( OT(E)M Ik ds)'/? € L'*¢ for some e > 0, and the property that hg = v, hy = 0
for all s > 7(x) A t; here T(x) is again the first exit time of X (z) from some

relatively compact neighbourhood D of x.

Proof If 79 = 7(z) A t, then (Pt_TOf)(XTO (x)) = E%o [(f o Xt(a:)) 1{t<§(m)}] by
the Markov property. The rest of the proof of Theorem 2.3 carries over verbatim
to give (2.6). O

From (2.6) a Bismut type formula can be derived for the transition kernel associ-
ated to (1.1).

COROLLARY 2.5 Letp(t,«, -): M x M — Ry, t > 0, be the (smooth) heat kernel
(with respect to the Riemannian volume) associated to (1.1) such that

(Pf) () = E[(f o Xe(2)) Lir<cqan] = /Mpu, 2.) £ () vol(dy)

for any f € B(M). Then

T(z)AL .
d(logp(t, -,y))mv = —E{/O <(Tme) hS,A(XS(x)) dBS>

Xi@)=y| (@7)

with h and 7(x) as in Theorem 2.4.

Proof Let f € C(M) of compact support. By the smoothness of p(¢, -, -) for
t > 0, we can differentiate under the integral to obtain

A(Pof)sv = / dp(t, - y)ev £ (y) vol(dy)
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On the other hand, (2.6) may be rewritten as
d(Pyf)qv = —/p(t,x,y)f(y)]E[/o (T X,) by, A(X,(2))dB,) (#) =y] vol (dy)

with 79 = 7(x) A t. Comparing the last two equations proves formula (2.7). O

We conclude this section with some remarks on differentiation under the expecta-
tion, more precisely, for instance, on the question under which conditions

dP, f = P (df) (2.8)
holds for f € bC*(M). As above, let (Pf)(+) = E[(f o X¢(+)) Lyg<c(+yy] be the
minimal semigroup associated to our (possibly explosive) system (1.1), whereas
P(l)(df) is given by (1.11). To make P (df) well-defined we assume that

(df)Xt(w) (Tth) v 1{t<§(m)} € L (P) .
Fixing a bounded adapted process h such that h,(w) € H([0,t], T, M) for almost
all w, we know that

N, = NP = d(Pi_, f)x, 2y (T X:) Dy

<Pt D)) [ (X b ACX.)) dB2)

defines a local martingale on the stochastic interval [0, tA((x)[. Crucial for formula
(2.8) to hold are basically two things: firstly, N(*) is required to be a uniformly
integrable martingale for certain choices of h, and secondly, we need to know that
d(P;f) — 0 sufficiently fast, as  — oo in the one-point-compactification MU{oc}
of M.

(2.9)

THEOREM 2.6 Let h be a bounded adapted process with paths in Hy ([0, t], T, M)
such that hy = v. Given the above setting, suppose that a.s.

d(Pi—rf)x, (TX)’U—>0 on {((z) <t} asr /7 ((x). (2.10)
If N defines a martmgale, then

D (dfyv = E[(foxt(a;)) 1{t<c(w)}/0 (TyX4) ha, A(X4(2)) dBS>] .

If N() defines a martingale where h’, = v — hy, then

AP ) = E[(f 0 X, () 1{t<§(m)}/0 (T X.) he, A(X(@)) dB.)]

Proof The assertions follow from evaluating E[No] = E[lim, sa¢(q) Ny, first for
N =N®_ and then for N = N*), O

Remark 2.7 Keeping the notations of Theorem 2.6, we get the following criterion

for d(P,f) = Pt(l)(df). Suppose that assumption (2.10) holds (which is void for
conservative systems). Moreover, suppose that

Ny =N =d(Pier ) x, (n) (TeXp)v, 0<7<tA((2),
is already a martingale. Note that N®*) = N for h = v. Then
d(P.f)ev = PO (dfyo

which is seen again by taking expectations of N,
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We want to stress that for explosive systems the domain of Pt(l) on 1-forms, i.e.
(P a)pv = E[ax, ) (T X1) 01 {rcc@ny] » (2.11)

generally does not include bounded forms a € I'(T* M), since [|(T7 X¢)v|| 1 {1<¢(a)}
will not be integrable in this case [13]. More precisely, we have the following.

Remark 2.8 Suppose that on a complete Riemannian manifold M relation (2.8)
holds for all f € C*°(M) with compact support. If the derivative process has
first moments, e.g., B||(T; Xt) 1{4<¢(2)}|| < oo for all z in some open set U and all
t <ty where t; > 0, then the system (1.1) is already non-explosive [13]. Indeed,
on any (geodesically) complete Riemannian manifold M one can construct an
increasing sequence (f,,) of nonnegative smooth functions of compact support such

that f, 1 and ||df,]lcc < 1/n for each n. Then d(P;f,) — d(P;1) on M, by
standard Schauder type estimates. However, for x € U and ¢ < ¢,

la(Peta)e|l = [P )l < l|dfall o B (TaXe) Ls<conl] = 0
Thus, if u(t,z) = (P1)(z) = P{t < ((z)} then u = 1 on [0,t] x U, and finally
Ptl = 1.

3. The differentiation of Poisson integrals

We consider again a non-degenerate SDE of the type (1.1). Let D C M be a
nonvoid relatively compact open subset with D # M, and

7(z) =inf{t > 0: Xy(z) ¢ D}
the first exit time of X from D when started at x € D. For ¢ € C(9D) let
u(z) = E[p o X, (z)(z)]. Then Lu =0 on D.

THEOREM 3.1 Assume that (1.1) is non-degenerate. Let u(z) = E[¢ o X, (z)].
Then

(@) _
(du)pv = —E[(QDOXT(%)(Q;))/O (T X,) o, A(X,(2)) dBy)|  (3.1)

for any bounded adapted process h such that h, € H(R,,T,M), hg = v, and
hs = 0 for s > 7(x), almost surely, provided fOT(m)M<(TmXS) ES,A(XS (x)) dBS>,
r > 0, is a uniformly integrable martingale.

Proof Note that uo X (x) is a martingale on [0, 7(x)], in particular a local martin-
gale on [0, 7(z)[. By Lemma 2.1, also

Ny = (du)x, (o) (Te X;) hy — wo Xy (z) /0T<(TwXS) his, A(Xs(x)) dBS>

(0 < r < 7(x)) is a local martingale. Since D is compact, both u and du are
bounded; moreover supg<,<, () 7o Xsl| € LP for any 1 < p < oc. Using these
properties it is easily checked that N is already a martingale on [0,7(x)]. The
assertion follows then by taking expectations. O

Note that, in the situation of Theorem 3.1, the process

f07<x)At<(Tst) hsy A(Xs(x))dBs), t>0, (3.2)

is a uniformly martingale if for instance (fOT(m) Nk ds)1/? € L'** for some ¢ > 0.
Using supg<s<, () [ Te Xs|| € L for any 1 < p < oo, the stochastic integrals in (3.2)
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can be estimated by means of Burkholder-Davis-Gundy and Holder’s inequality,
as in the proof of Theorem 2.3.

COROLLARY 3.2 Assume that D C M is a nonvoid relatively compact open do-
main with D # M and with smooth boundary. Let p: D x 0D — R, be the
(smooth) Poisson kernel (with respect to the induced surface measure o on 0D)
so that

P{X ;) (z) € dz} = p(z,2) 0(dz) .
Then

(@) |
d(logp( -, 2)) 50 = _E[/O (ToX,) hos A(Xo(2)) dBS) Xy oy (0) = 2] (3.3)

where h with sample paths in the Cameron-Martin space is as in Theorem 3.1.

Proof For ¢ € C(OM), let u(z) = E[¢ o X, (;)(z)]. We differentiate u under the
integral to obtain

(du)zv = /aM dp(+,2).v p(2)o(dz).

On the other hand, by rewriting (3.1) we get
)

T(x

(du)zv = —/p(x, z) p(z) IE[ i ((TyX) hs, A(Xs(z)) dBs)

Xi(@)(z) = 2|0(dz) .

Comparing the last two equations gives formula (3.3). O

4. Remarks on the choice of the process h

Let D be an open (relatively compact) domain in M. Given x € D and v € T, M,
most of our formulae require the choice of a bounded adapted process h with
sample paths in H(R, , T, M) such that, e.g., hg = 0 and hs = v for s > 7(z), and
the property that ( OT(m) | hs]|? ds)'/? € L'*¢ for some ¢ > 0; here 7(z) is the first
exit time of X from D when starting at x. We describe a method of constructing

such processes; see [15] for more details.

Suppose that D has smooth boundary. We take f € C?(D) with f/0D = 0 and
f > 0in D. Further fix z € D and write 7 instead of 7(z). Consider the increasing
process

10 = [ X)) ds. 1<,
and
o(t)=inf{s >0:T(s) >t}, t<T(r).

Obviously T(o(t)) =t for t < T(r), and o(T(t)) =t for t < 7. Since X,(z) is an
L-diffusion with generator L = $ A+Z, the time-changed process X, (x) = Xty ()
is an L-diffusion where L = f2L. The following lemma shows that L-diffusions
on D have infinite lifetime. As a consequence, we get T'(7) = oo a.s.
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LEMMA 4.1 Let X be an L-diffusion on D with Xq = x € D. Then
F=inf{s>0: X, €0D} =00, as.

Proof Recall that X is a L-diffusion if, for any ¢ € C?(D),

t
soofft—sO(w)—/ Lo(Xs)ds, 0<t<T
0

is local martingale. For n > 1, let 7, = inf{s > 0 : f(X,) < 1/n}, and choose
ng > 1 such that f(z) > 1/ng. Note that Lf~' = —Lf + f~!{| grad f||> < ¢ f~1
for some constant ¢ = ¢(f). Thus

E*f Y (Xinr,) < fHz) e, >0, n>ng.
But E[f~*(Xtar,)] > nP{r, < t}, hence
P{r, <t} <n lfl(z)e®.
Therefore, P{7 < t} = 0 for any ¢ > 0. This proves the Lemma. O

Now, for fixed tg > 0, let

h = ’U—/ f l{r<0(t0)}dr (4.1)
Then, for s > o(tg),
1 [o(to)
hs = h(o(tg)) = vt—/ F2(X(2)dr =v.
0Jo0

It remains to verify that ( 7(to) s ds) /2 ¢ ['*¢ for some € > 0. For instance,
we may take ¢ = 1. Obv1ous1y7

a(to) | ) ) 1 o(to) 4 ) 1 to .
[ NP as = ol [ s K@) ds = ol [ 57 (Ko @) ds.
0 tO 0 t 0

0
Recall that X, s (z) = f(s(x) and d f~2(X,) = dN, + Lf~2(X,) ds where (N,) is
a local martingale. But Lf~2 = f2Lf~2 = f2 [3f 7% grad f||? = 2f3Lf] < cf~?
for some constant ¢ = ¢(f), hence
]E[f_z(f(s(x))] < f7%(x) e
and thus, as claimed,
U(tO) Cto _ 1
E[/ F (X (o / F2 ds]<f () < oo
0 to

Note that the process h, as defined in (4.1), depends on to and f. For any ty > 0
and any f € C?*(D) with f|0D =0 and f > 0 in D, formula (4.1) gives a process
with the required properties.

5. Extensions to closed differential forms

For the sake of simplicity we restrict ourselves to the case when the system (1.1)
defines Brownian motion on (M, g); generalizations to h-Brownian motion (see [6])
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for instance are straightforward. Let (M, g) be a complete Riemannian manifold
and
L e M) L Tartirrv) -%

its deRham complex. Denote by A the deRham-Hodge-Laplace operator defined
as the L?-closure of the operator —(d + &) on compactly supported elements
of T(A'T*M) = @,5,I'(APT*M). Let domA C L2-T(A'T*M) be the domain
of A, and A; = Aldom A N L2-T(T*M) the restriction of A to 1-forms; note
that L2-T'(A"T*M) are the L?-sections of A*T* M, in contrast to I'(A"T* M) which
denotes the smooth sections. By the spectral theorem, there is a smooth semigroup
P, = e(1/2tA1 on L2-T(T*M) solving the heat equation

0 1

&Pta: §Apt()z. (51)
Note that P € T(T*M) for a € L2-T(T*M) due to elliptic regularity. For a
differential form a € T'(T*M), let [, a be the Stratonovich integral, and f
the It6 integral of « along X = X (z) (see [1 0]) Recall that

[x o= )((I)a-l—%fVa(dX,dX): — 1 [ba(Xs(2))ds.
In our situation, we have (fy o) = [; aX(*dX = [, ax.@ (A(Xs(z)) * dBy),
and ( [y @) = [y ax, (2 (A(Xs(z)) dBs). Analogously, for the “time-dependent”
differential forms P,_.c, we set ([ Pi_.a) = [ (Pi—sa)x, (0) (A(Xs(2)) * dBy),
and ([y P_.a) = [5(P—sa)x, (z)(A(Xs(2)) dBy). The following theorem is
along the lines of Elworthy-Li [6].

THEOREM 5.1 Suppose that the system (1.1) defines Brownian motion on (M, g),
possibly with finite lifetime. Let o € L?>-T'(T*M) N dom A with do = 0. Then

N, = (Pi—r@)x, (5) To Xr hr_(/)((l) Pt_,a>T/() (T X, hs, A(Xs(2)) dBs), (5.2)

€ [0,t]N[0,{(z)], is a local martingale for any adapted bounded process h such
that h,(w) € H([0,t],T, M), almost all w.

Proof Again the situation is reduced to Lemma 2.1. By a standard localization ar-
gument, e.g., [10], Lemma (3.5), it is enough to check the local martingale property
of N on stochastic intervals contained in sets of the form {X € V;} where (V;);er
forms an open covering of M. First, since « is closed, we get dP.a = P.da = 0.
Hence, for each rq € [0,¢] and zg € M there is an open neighbourhood V of z
such that P.a = da, on V for all r in some open interval I about ¢ — r¢; moreover
a, can be chosen such that (% + %AM)ar =0on I x V. We may assume that
(r,x) — a,(z) is bounded on I x V. Now, let [0, 7] C I be a stochastic interval
such that X|[o, 7] takes values in V, then on [o, T

[
d(fy O p, ) = (day_,) x X, (x) * X7 + 3 1(Aap_,) (X, (z)) dr
= (dat—"“)Xr(a;) x dX, + (Oras_y) (XT(x)) dr = d(at_T o Xr(x)) .
Thus, N|[o, 7[ is a local martingale by Lemma 2.1. O

COROLLARY 5.2 For any harmonic 1-form o € T'(T*M) N L? the process

N, = ax, () (T:X; hy) / / (T, X, hs, A(X5(2)) dBy) (5.3)

defines a local martingale, 0 < r < ((z).
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(M

x @ for harmonic 1-forms «a. O

Proof Obviously [, a =

Remark 5.3 Let Q,o0 = —% [ Ps(6cr) ds. Then, if ((z) = oo a.s., we get

([ Pea) = (] o), - @)@, (5.4)

as can be seen by applying 1td’s formula to (Q;_sa)(Xs(z)), 0 < s < t. With the
help of identity (5.4) it is straightforward to recover the corresponding formulae
for 1-forms in [7] from Theorem 5.1.

6. Some variations of the differentiation formulae

In this section we rewrite our basic differentiation formulae (2.6) and (3.1) in
terms of the conditional derivative process, as defined by Elworthy-Yor [9]. The
resulting formulae will be intrinsic in the sense that, for fixed x, the right-hand
sides are given entirely in terms of the diffusion X (x), starting at z; they involve
no longer the derivative flow which depends on the SDE (1.1), used to obtain the
diffusion X (z).
The idea is to filter out extraneous noise of the local martingale (2.1) by condi-
tioning with respect to the smaller filtration generated by X (z). More precisely,
for x € M, let

F(z) = . FX®) = o{Xs(z):0<s<r}. (6.1)

For some given v € T, M consider again the derivative process V. (v) = (T, X,) v.
Fix an .Z, (z)-stopping time 7 such that V(v) is integrable on [0, 7], i.e.,

IV (v) Lyr<ryll € LH(P)
for each r > 0, and define a T'M-valued process W (v) along X (z) by
W, (v) := EZr(®) [(TwXT) v 1{r§7}] = /fo.r E”r (gﬁ)//o_,r1 [(Ter) v 1{r§¢}] (6.2)

where //y .2 ToM — Tx, ()M denotes parallel transport along X (x). Note that,
instead of conditioning with respect to %, (z) in (6.2), we may equivalently take
expectations with respect to Z,(z), or Zoo(z). Recall that L = Ap + Z where
Z € T(TM). Then, as in [9], it can be shown that W (v) satisfies the covariant

equation

%Wr(v) — —1Ric(W,(v), ) # + VZ(W,(v))

Wo(v) =wv

(6.3)

along X (z) for r < 7. (Without loss of generality we may assume that the Levi-
Civita on M coincides with the Le Jan-Watanabe connection associated to (1.1),
see [8]). Note that ZW, (v) = /o.r 4 //0_,41 W,.(v) by definition; moreover, if w €
T, M, then Ric(w, -)# € T, M is determined by (Ric(w, «)#, 2) = Ric(w, z) for all
z € TyM.

Let U be a horizontal lift of X (x) to the orthonormal frame bundle 7: O(M) — M,
and Z = Uy [, 9 the anti-development of X (z) in T, M with respect to the Levi-

Civita connection, see [10]; here ¥ € I'(T* O(M) ® R"), 9, = u™tdmy, u € O(M),

3
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is the canonical 1-form of the connection. Thus Z, = [; //0_51 x dXs(z). Let

B, = /0 ' /s A(Xs(x))dB, (6.4)

be the martingale part of Z; then A(X (x))dB, = //, , dB,. On the other hand,

it is easily seen that B is a Brownian motion on T, M, stopped at the lifetime ¢(x)
of X (x). The point is that by construction B is adapted to the filtration .Z, (z)
generated by X (z).

We return to the general situation of Lemma 2.1 and consider the local martingale

N, = (da(r, -)) (o) (T X ) by —a(r, X, () /O ((TuX,) by A(X,(2)) dB,) (6.5)

on a stochastic interval [o, 7[. Here a: I x My — R (with I C Ry an interval and
My C M open) is again a transformation such that the process (r, X, (z)) on [0, 7]
takes its values almost surely in I x M, and a( ., X(a:)) defines a local martingale;
for the required technical properties of a see the beginning of section 2.

LEMMA 6.1 Let a(r, Xr(a:)), o <r < 71 (with o < T predictable stopping times)
be a local martingale for some function a as above. Suppose that h is a bounded
process with sample paths h,(w) € H(I,T, M), almost all w, which is already
adapted to .#,(x). Then

N, = (da(r, +)) x, () Wr(hs) — a(r, Xr(a:))/or<Ws(hs), /fo.s ABs) (6.6)

is a local martingale on [0, T[; here W () is defined by (6.3) and the Brownian
motion B is given by (6.4).
Proof By Lemma 2.1, the process N, as defined in (6.5), is a local martingale.

3

Conditioning of N with respect to .%,(x) gives the claim. O

With the help of Lemma 6.1, i.e., by working with N instead of N, we can rewrite
our basic formulae in an obvious way. For instance, given the assumptions of
Theorem 2.4, formula (2.6) reads as

T(z)At . 5
A(Pf)ov = ~E[(f o Xi(x)) 1{t<g(w)}/0 (Walho). fosdB)] . (67

Analogous considerations apply to formula (3.1).

Brownian motions on manifolds are often constructed via stochastic development
of Euclidean Brownian motion, see [5], [10]. We conclude this section with some
comments how our results are easily adapted to this situation.
For a Riemannian manifold (M, g) denote by Ly, ..., L,, the canonical horizontal
vector fields on the orthonormal base bundle m: O(M) — M over M, given by
L;(u) = hy(ue;) where h: 7*TM — TO(M) is the horizontal lift induced by the
Levi-Civita connection on M. Let H C TO(M) be the horizontal subbundle of
TO(M). Note that h,(u-): R™ =% H, is an isomorphism for each u € O(M).
We give H a Riemannian metric g¥ via g = 7*g, i.e., g = G () (dmy + dmy - ).
Then .

dU = 3" L;(U) xdB*, Uy = uy, (6.8)

i=1

defines horizontal Brownian motion on O(M), and the projection X = 7o U of U
down to M is a BM(M, g), started at g = m o ug. We write X () if m oug = .
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If Uy = u € O(M), it has notational advantage to identify B and uB such that
the driving Brownian motion B takes its values in Ty (,)M = T, M instead of R";
the SDE (6.8) then reads as

dU = Y Li(Uu™'e;) xdB', U = u, (6.9)

i=1
or equivalently
dU:hU(//o}t*dB): Uo =Uu. (610)

Using these notations an equivalent to Lemma 2.1 can be formulated as follows.

LEMMA 6.2 Let X = mwo U be a BM(M, g) where U is constructed as (strong)
solution of (6.8). Let a(r, -) be a transformation as in Lemma 2.1, and suppose
that Y, = a(r, X, (x)) is a local martingale on some stochastic interval. Then

N, = (da(r, *)) x,(z) (To X;) hy — a(r, Xr(x))/0r<(Tme) hs. /fo.s ABs) -

is a local martingale on this stochastic interval; h denotes an arbitrary bounded
adapted process with sample paths h,(w) € H(Ry, T, M), a.a. w.

Proof Let u € O(M) with m(u) = x, and think of h taking its values in H, = T, M.
By assumption,
Y, =a(r,moU,(uv)) = a(r,Ur(u)) (6.11)

is a local martingale on some interval [0, 7[. The proof of Lemma 2.1 applies to
(6.11) and shows that

N, = (da(r, -))v, @) (TuU) hy — a(r, Ur(u))/0r<(TuUS)hs, hu, (/0.5 ABs))

= (da(r, ) x, (2) (To X;) by — a(r, Xr(x))/or<(Tme) hs, /fo.s @Bs) s s

is a local martingale on [0, 7[ which gives the claim. O

7. Gradient estimates for harmonic functions

Cranston [4] used coupling methods to give gradient estimates for harmonic func-
tions. Exploiting directly derivative formulae, like formula (3.1), provides an al-
ternative approach. Based on Lemma 6.1 we may start with the following repre-
sentation for the gradient of a harmonic function.

THEOREM 7.1 Let D C M be a nonvoid relatively compact open subset with
smooth boundary 0D # O, and 7(x) = inf{t > 0: Xy(z) € D} the first exit time
of X from D when started at x € D. Let u € C(D) be L-harmonic on D. Then

@) )
((grad w)s, v) = —E{(UOXT(@(;E))/O (Wolh). JfosdBs)|  (71)

for any bounded .7, (x)-adapted process h such that h, € H(R,,T,M), hy = v,
and hy = 0 for s > 7(x), a.s., with the property that (fOT(m) I 7s |2 ds)1/? € L1+e
for some € > 0.
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Using the covariant equation (6.3) it is easy to get norm estimates for W, = W,.(v).
For instance, let ¢ > 0 be such that the following estimate holds:

— Ric (w,w) +2VZ(w,w) < c|w|?, weT,M, yeD, (7.2)
where VZ(w,w) = (V,Z, w). Then
d 2 d , _ _
ot Wallz,ae = 2 (Mot W Ml W)
=2 (/f5;} [=3 Ric(Wy. ) # + VZ(Wo ()], /Jo} Wr )
— _Ric (W,, W,) + 2V Z(W,, W,).

In other words,
W, ||* = || Woll + /0 [ Ric (W, Wy) + 2 VZ(W,, W,)] ds.
Thus, if [|[Wy]| = ||v]| # 0, we get
W, ||? = [|[Wol|* exp </0 [ Ric (Ws, W) + 2 VZ(W,, W,)] ds) (7.3)

where W, = W, /||W,|. Together with (7.2), the last equation gives
W I* < Jlo]* e (7.4)

ExAMPLE 7.2 Let Z = 0, and suppose that Ric > —Cg on D for some C > 0,
where g is the Riemannian metric on M. Then, for r < 7(z)

W, ()] < ol e/2e".

3

Given the situation of Theorem 7.1, we get a straightforward estimate for any
nonnegative function u € C'(D) which is L-harmonic on D as follows:

(aradu)e, ) < Eu(,o @) [ ([ (Wath) 05 |
< u() (s;g ul ) E [/OT(m)HWs(ﬁs)szS}

T(z) |
< u(x) (saug) |u\> E [/0 || hg]| 2 ds] _

Summarizing this argument, we verified the following general estimate for the
gradient of harmonic functions on regular domains in a Riemannian manifolds.

COROLLARY 7.3 Let u € C(D) be a nonnegative function which is L-harmonic
on D. Let Kz be the smallest constant such that (7.2) holds. Then

((grad )y, v)| < u(z)"/ (sglg U|)1/2 (igf]E UO

where the infimum is taken over all bounded .7, (x)-adapted processes h such that
h, € H(Ry,T,M), hg = v, and hy =0 for s > 7(x), a.s.

()

_ 1/2
||hs||26Ksts} ) (7.5)

We are not going to exploit formula (7.5) here further. For explicit estimates,
using the described method, the reader is referred to [15].
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8. Concluding remarks

The assumptions of Theorem 2.4 can be slightly weakened when combined with the
estimates for the covariant equation (6.3) as given in the previous section. More
precisely, we have the following result for heat semigroups associated to (1.1).
Now, we assume that M with the induced Riemannian metric is complete.

THEOREM 8.1 Let f: M — R bounded measurable, z € M, and v € T, M. Then,
for any bounded %, (x)-adapted process h with sample paths in H(R, T, M) such
that ([,"° (@At |A(s )||2ds)/? € L', and the property that h(0) = v, h(s) = 0 for
all s > p N\ t, the following formula holds:
o (Z)AL .
(T, X,) h(s), A(X,(x)) st>} .
(8.1)
Here tp(x) is the first exit time of X (x) from some open neighbourhood D of x
such that Kz = sup{—Ric(w,w) +2VZ(w,w) : y € D, w € T,M, |w| =1} is
finite, and ||Tp X, || 1yp<rp(2)y € L' for each r.

(d(Pif)g,v) = —]E{f o Xy(x) 1{1t<<(a:)}/0

Proof We may assume f € bC*(M). Otherwise, we use P;f = P;_.(P.f) to get
(8.1) with f replaced by P- f for small e > 0 and with h replaced by h°, see part 2)
in the proof of Theorem 2.3. The desired formula then follows as ¢ — 0. Next, by
Lemma 6.1,

N = d(Pier )5, 0y Wo ) = (Prer ) (5o 0) [ (Wl 1 0B2)

is a local martingale for 0 < r < 7p(z) A t. Since |[W,(v)|| < ||v| eX77/? for
r < 1p(z), we conclude that (Nyar,(q)), 7 € [0,%], is already a martingale under
the given assumptions; on a complete Riemannian manifold d(P;f), is bounded
for s <t,z € M, e.g. [2] or [15]. This implies

D (m)/\t

AP )a) = E[£(K) Ty [ (Walilo). o dB)] - (52

Note that, since A(X,(z)) dB,s = //y., dB, and W, (v) = EZ» @) (T, X,) v Lir<ry]s
we are able to recover (8.1) from (8.2). O

We remark that if Kz is finite for D = M, and ((z) = oc, a.s., then (8.2) holds
with 7p(2) = oc. Note that, if the drift Z is grad ¢ for a smooth function ¢, then
K7 < oo implies infinite lifetime, see [1].
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