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Abstract Code smells are symptoms of poor design and implementation choices that

may hinder code comprehensibility and maintainability. Despite the effort devoted by the

research community in studying code smells, the extent to which code smells in software

systems affect software maintainability remains still unclear. In this paper we present a large

scale empirical investigation on the diffuseness of code smells and their impact on code

change- and fault-proneness. The study was conducted across a total of 395 releases of 30

Communicated by: Ahmed Hassan

� Fabio Palomba

f.palomba@tudelft.nl

Gabriele Bavota

gabriele.bavota@usi.ch

Massimiliano Di Penta

dipenta@unisannio.it

Fausto Fasano

fausto.fasano@unimol.it

Rocco Oliveto

rocco.oliveto@unimol.it

Andrea De Lucia

adelucia@unisa.it

1 Delft University of Technology, Delft, The Netherlands
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open source projects and considering 17,350 manually validated instances of 13 different

code smell kinds. The results show that smells characterized by long and/or complex code

(e.g., Complex Class) are highly diffused, and that smelly classes have a higher change- and

fault-proneness than smell-free classes.

Keywords Code smells · Empirical studies · Mining software repositories

1 Introduction

Bad code smells (also known as “code smells” or “smells”) were defined as symptoms of

poor design and implementation choices applied by programmers during the development

of a software project (Fowler 1999). As a form of technical debt (Cunningham 1993), they

could hinder the comprehensibility and maintainability of software systems (Kruchten et al.

2012). An example of code smell is the God Class, a large and complex class that centralizes

the behavior of a portion of a system and only uses other classes as data holders. God Classes

can rapidly grow out of control, making it harder and harder for developers to understand

them, to fix bugs, and to add new features.

The research community has been studying code smells from different perspectives. On

the one side, researchers developed methods and tools to detect code smells. Such tools

exploit different types of approaches, including metrics-based detection (Lanza and Marinescu

2010; Moha et al. 2010; Marinescu 2004; Munro 2005), graph-based techniques (Tsantalis

and Chatzigeorgiou 2009), mining of code changes (Palomba et al. 2015a), textual analysis

of source code (Palomba et al. 2016b), or search-based optimization techniques (Kessentini

et al. 2010; Sahin et al. 2014). On the other side, researchers investigated how relevant code

smells are for developers (Yamashita and Moonen 2013; Palomba et al. 2014), when and

why they are introduced (Tufano et al. 2015), how they evolve over time (Arcoverde et al.

2011; Chatzigeorgiou and Manakos 2010; Lozano et al. 2007; Ratiu et al. 2004; Tufano

et al. 2017), and whether they impact on software quality properties, such as program com-

prehensibility (Abbes et al. 2011), fault- and change-proneness (Khomh et al. 2012; Khomh

et al. 2009a; D’Ambros et al. 2010), and code maintainability (Yamashita and Moonen 2012,

2013; Deligiannis et al. 2004; Li and Shatnawi 2007; Sjoberg et al. 2013).

Similarly to some previous work (Khomh et al. 2012; Li and Shatnawi 2007; Olbrich

et al. 2010; Gatrell and Counsell 2015) this paper investigates the relationship existing

between the occurrence of code smells in software projects and software change- and fault-

proneness. Specifically, while previous work shows a significant correlation between smells

and code change/fault-proneness, the empirical evidence provided so far is still limited

because of:

– Limited size of previous studies: the study by Khomh et al. (2012) was conducted on

four open source systems, while the study by D’Ambros et al. (2010) was performed

on seven systems. Furthermore, the studies by Li and Shatnawi (2007), Olbrich et al.

(2010), and Gatrell and Counsell (2015) were conducted considering the change history

of only one software project.

– Detected smells vs. manually validated smells: Previous work studying the impact of

code smells on change- and fault-proneness, including the one by Khomh et al. (2012),

relied on data obtained from automatic smell detectors. Although such smell detectors

are often able to achieve a good level of accuracy, it is still possible that their intrinsic

imprecision affects the results of the study.
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– Lack of analysis of the magnitude of the observed phenomenon: previous work

indicated that some smells can be more harmful than others, but the analysis did not

take into account the magnitude of the observed phenomenon. For example, even if a

specific smell type may be considered harmful when analyzing its impact on maintain-

ability, this may not be relevant in case the number of occurrences of such a smell type

in software projects is limited.

– Lack of analysis of the magnitude of the effect: Previous work indicated that classes

affected by code smells have more chances to exhibit defects (or to undergo changes)

than other classes. However, no study has observed the magnitude of such changes

and defects, i.e., no study addressed the question: How many defects would exhibit on

average a class affected by a code smell as compared to another class affected by a

different kind of smell, or not affected by any smell at all?

– Lack of within-artifact analysis: sometimes, a class has intrinsically a very high

change-proneness and/or fault-proneness, e.g., because it plays a core role in the system

or because it implements a very complex feature. Hence, the class may be intrinsi-

cally “smelly”. Instead, there may be classes that become smelly during their lifetime

because of maintenance activities (Tufano et al. 2017). Or else, classes where the smell

was removed, possibly because of refactoring activities (Bavota et al. 2015). For such

classes, it is of paramount importance to analyze the change- and fault-proneness of the

class during its evolution, in order to better relate the cause (presence of smell) with the

possible effect (change- or fault-proneness).

– Lack of a temporal relation analysis between smell presence and fault introduc-

tion: While previous work correlated the presence of code smells with high fault- and

change-proneness, one may wonder whether the artifact was smelly when the fault was

introduced, or whether the fault was introduced before the class became smelly.

To cope with the aforementioned issues, this paper aims at corroborating previous empir-

ical research on the impact of code smells by analyzing their diffuseness and effect on

change- and fault-proneness on a large set of software projects. In the context of this paper,

the “diffuseness” of a code smell type (e.g., God Class) refers to the percentage of code

components in a system affected by at least one instance of the code smell type.

The study was conducted on a total of 395 releases of 30 open source systems,

and considered 13 different kinds of code smells. More specifically, the study aims at

investigating:

1. the diffuseness of code smells in open source systems. If the magnitude of the phe-

nomenon is small—i.e., code smells, or some specific kinds of code smells, are

poorly diffused—then studying their impact on the code maintainability might not be

worthwhile.

2. the impact of code smells on maintenance properties and specifically on code change-

and fault-proneness. We intend to investigate to what extent the previous findings

reported by Khomh et al. (2012) and D’Ambros et al. (2010)—obtained on a smaller set

of software systems and based on smell instances automatically identified using code

smell detectors—are confirmed on a larger set of 395 software releases and considering

manually validated smell instances.

To the best of our knowledge, this is to date the largest study investigating the relation-

ship between the presence of code smells and source code change- and fault-proneness. In

addition, and to cope with the other limitations of previous studies mentioned above, this

paper (i) relies on a set of manually-validated code smells rather than just on the output
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of detection tools, (ii) analyzes the fault proneness magnitude in terms of number of code

smell instances, (iii) performs an analysis of the evolution of classes in order to investigate

how the change/fault-proneness changes when the smell was removed, and (iv) uses the

SZZ algorithm (Sliwerski et al. 2005) to determine whether an artifact was already smelly

when a fault was induced. The dataset used in this study is publicly available in our online

appendix (Palomba et al. 2017).

Structure of the paper Section 2 discusses the related literature about smell detection

and about studies on the effect of code smells. Section 3 describes the design and planning

of the empirical study. Section 4 presents and discusses the results of the study, while the

threats that could affect their validity are discussed in Section 5. Finally, Section 6 concludes

the paper, discussing the main findings of the work.

2 Related work

The research community has been highly active in the definition of code smell detection

methods and tools, as well as in the investigation of the impact of code smells on software

maintenance properties. In this section we report the literature related to (i) empirical studies

aimed at understanding to what extent code smells are diffused in software systems and

how they evolve over time, (ii) the impact of code smells on change- and fault-proneness,

and (iii) user studies conducted in order to comprehend the phenomenon from a developer’s

perspective. A complete overview of code smell detection techniques can be found in related

papers by Palomba et al. (2015b) and Fernandes et al. (2016).

2.1 Diffuseness and evolution of code smells

Chatzigeorgiou and Manakos (2010) analyzed the evolution of code smells. Their results

indicate that (i) the number of instances of code smells increases during time; and (ii) devel-

opers are reluctant to perform refactoring operations in order to remove them. Peters and

Zaidman (2012) obtained similar results, showing that developers are often aware of the

presence of code smells in the source code, but they do not invest time in performing refac-

toring activities aimed at removing them. A partial explanation for this behavior is provided

by Arcoverde et al. (2011), who studied the longevity of code smells showing that they often

survive for a long time in the source code. The authors point to the will of avoiding changes

to API as one of the main reason behind this result (Arcoverde et al. 2011).

The evolution of code smells has also been studied by Olbrich et al. (2009), who analyzed

the evolution of God Class and Shotgun Surgery, showing that there are periods in which the

number of smells increases and periods in which this number decreases. They also show that

the increase/decrease of the number of instances does not depend on the size of the system.

Vaucher et al. (2009) conducted a study on the evolution of the God Class smell, aimed at

understanding whether they affect software systems for long periods of time or, instead, are

refactored while the system evolves. Their goal was to define a method able to discriminate

between God Class instances that are introduced by design and God Class instances that

are introduced unintentionally. Recently, Tufano et al. (2015) investigated when code smells

are introduced by developers, and the circumstances and reasons behind their introduction.

They showed that most of the times code artifacts are affected by smells since their creation

and that developers introduce them not only when implementing new features or enhancing

existing ones, but sometimes also during refactoring. A similar study was also conducted
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on test smells (Tufano et al. 2016). Furthermore, Tufano et al. (2017) also found that almost

80% of the code smells are never removed from software systems, and the main cause for

their removal is the removal of the smelly artifact, rather than refactoring activities. In a

closely related field, Bavota et al. (2012) and Palomba et al. (2016a) provided evidence that

test smells are also widely diffused in test code and impact the maintainability of JUnit test

classes.

Historical information, in general, and the evolution of code smells, in particular, was

also used in the past to identify components affected by code smells. Ratiu et al. (2004) pro-

posed an approach to detect smells based on evolutionary information of code components

over their life-time. The aim is to analyze the persistence of the problem and the effort spent

to maintain these components. Historical information has also been used by Lozano et al.

(2007) to assess the impact of code smells on software maintenance. Gı̂rba et al. (2007)

exploited formal concept analysis (FCA) to detect co-change patterns. In other words, they

identified code components that change in the same way and at the same time. Palomba et al.

(2015a) use association rule discovery to detect some code smell types, showing that the

evolutionary-based approach outperforms approaches based on static and dynamic analysis

and could also successfully complement them.

Our investigation about the diffuseness of code smells (RQ1) is closely related to the

empirical studies discussed above. However, our goal is to analyze whether the results

achieved in previous work hold on the set of software systems used in this paper in order

to (i) corroborate previous findings on a much larger dataset (both in terms of number of

software systems and code smells), and (ii) understand the confidence level for the general-

izability of the results provided through the analysis of the impact of code smells on change-

and fault-proneness.

2.2 Change- and fault-proneness of code smells

The main goal of this paper is to analyze the change- and fault-proneness of classes

affected (and not) by code smells. Such a relationship has already been investigated

by previous research. In particular, Khomh et al. (2009a) showed that the presence of

code smells increases the code change proneness. Also, they showed that code compo-

nents affected by code smells are more fault-prone than non-smelly components (Khomh

et al. 2012). Our work confirms the results achieved by Khomh et al. (2012) on a larger

set of code smells and software systems, an provides some complementary hints about

the phenomenon. In particular, other than studying the change- and fault-proneness of

smelly and non-smelly classes, we analyzed how such indicators vary when the smells

identified are removed. Also, we use the SZZ algorithm (Sliwerski et al. 2005) to bet-

ter investigate the temporal relationship between the presence of code smells and fault

introduction.

Gatrell and Counsell (2015) conducted an empirical study aimed at quantifying the effect

of refactoring on class change- and fault-proneness. In particular, they monitored a com-

mercial C# system for twelve months identifying the refactorings applied during the first

four months. They examined the same classes for the second four months in order to deter-

mine whether the refactoring results in a decrease of change- and fault-proneness. They also

compared such classes with the classes of the system that were not refactored in the same

period. Results revealed that classes subject to refactoring have a lower change- and fault-

proneness. It is worth noting that Gatrell and Counsell did not focus their attention on well

known design problems (i.e., code smells) but they analyzed if refactored classes regard-

less of the presence of a design problem. Instead, our study investigates the actual impact
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of code smells on change- and fault-proneness. Moreover, their study was conducted on a

single software system, while we analyzed 395 software releases of 30 software systems.

Li and Shatnawi (2007) empirically evaluated the correlation between the presence of

code smells and the probability that the class contains errors. They studied the post-release

evolution process showing that many code smells are positively correlated with class errors.

Olbrich et al. (2010) conducted a study on the God Class and Brain Class code smells,

reporting that these code smells were changed less frequently and had a fewer number of

defects than non-smelly classes. D’Ambros et al. (2010) also studied the correlation between

the Feature Envy and Shotgun Surgery smells and the defects in a system, reporting no

consistent correlation between them. In our empirical study, we do not consider correlation

between the presence of smells and the number of defects, but we investigate the release

history of software systems in order to measure the actual change- and fault-proneness of

classes affected (and not) by design flaws.

Finally, Saboury et al. (2017) conducted an empirical investigation on the impact of code

smells on the fault-proneness of JavaScript modules, confirming the negative effect smells

have on the maintainability of source code. Similarly to our study, Saboury et al. (2017)

used of the SZZ algorithm to identify which bugs were introduced after the introduction of

the smells.

2.3 Code smells and user studies

Abbes et al. (2011) studied the impact of two code smell types, i.e., Blob and Spaghetti

Code, on program comprehension. Their results show that the presence of a code smell in

a class does not have an important impact on developers’ ability to comprehend the code.

Instead, a combination of more code smells affecting the same code components strongly

decreases developers’ ability to deal with comprehension tasks.

The interaction between different smell instances affecting the same code components

was also been studied by Yamashita and Moonen (2013), who confirmed that develop-

ers experience more difficulties when working on classes affected by more than one code

smell. The same authors also analyzed the impact of code smells on maintainability char-

acteristics (Yamashita and Moonen 2012). They identified which maintainability factors

are reflected by code smells and which ones are not, basing their results on (i) expert-

based maintainability assessments, and (ii) observations and interviews with professional

developers.

Sjoberg et al. (2013) investigated the impact of twelve code smells on the maintainability

of software systems. In particular, the authors conducted a study with six industrial devel-

opers involved in three maintenance tasks on four Java systems. The amount of time spent

by each developer in performing the required tasks whas been measured through an Eclipse

plug-in, while a regression analysis whas been used to measure the maintenance effort on

source code files having specific properties, including the number of smells affecting them.

The achieved results show that smells do not always constitute a problem, and that often

class size impacts maintainability more than the presence of smells.

Deligiannis et al. (2004) also performed a controlled experiment showing that the pres-

ence of God Class smell negatively affects the maintainability of source code. Also, the

authors highlight an influence played by these smells in the way developers apply the

inheritance mechanism.

Recently, Palomba et al. (2014) investigated how the developers perceive code smells,

showing that smells characterized by long and complex code are those perceived more by

developers as design problems. In this paper we provide a complementary contribution to
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the previous work by Palomba et al. (2014). Rather than looking at developers’ perception,

this paper observes the possible effect of smells in terms of change- and fault-proneness.

3 Study definition and planning

The goal of this study is to analyze the diffuseness of 13 code smell types in real software

applications and to assess their impact on code change- and fault-proneness. It is worth

remarking that the term “diffuseness”, when associated to a code smell type, refers to the

percentage of code components in a system affected by at least one instance of the smell

type. Analyzing the diffuseness of code smells is a preliminary analysis needed to better

interpret their effect on change- and fault-proneness. Indeed, some smells might be highly

correlated with fault-proneness but rarely diffused in software projects or vice versa. The

13 code smell types considered in this study are listed in Table 1 together with a short

description.

3.1 Research questions and planning

We formulated the following three research questions:

– RQ1: What is the diffuseness of code smells in software systems? This is a preliminary

research question aiming at assessing to what extent software systems are affected by

code smells.

– RQ2: To what extent do classes affected by code smells exhibit a different level

of change- and fault-proneness with respect to non-smelly classes? Previous work

(Khomh et al. 2012) found that classes affected by at least one smell have a higher

chance of being change- and fault-prone than non-smelly classes. In this work we are

Table 1 Code smells considered in the context of the study

Name Description

Class Data Should Be

Private (CDSBP)

A class exposing its fields, violating the principle of data hiding.

Complex Class A class having at least one method having a high cyclomatic complexity.

Feature Envy A method more interested in a class other than the one it actually is in.

God Class A large class implementing different responsibilities and centralizing most of

the system processing.

Inappropriate Intimacy Two classes exhibiting a very high coupling between them.

Lazy Class A class having very small dimension, few methods and low complexity.

Long Method A method that is unduly long in terms of lines of code.

Long Parameter List (LPL) A method having a long list of parameters, some of which avoidable.

Message Chain A long chain of method invocations performed to implement a class functionality.

Middle Man A class delegating to other classes most of the methods it implements.

Refused Bequest A class redefining most of the inherited methods, thus signaling a wrong hierarchy.

Spaghetti Code A class implementing complex methods interacting between them, with

no parameters, using global variables.

Speculative Generality A class declared as abstract having very few children classes using its methods.
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interested in measuring the change- and fault-proneness magnitude of such classes, in

terms of number of changes and of bug fixes.

– RQ3: To what extent do change- and fault-proneness of classes vary as a consequence

of code smell introduction and removal? This research question investigates whether

the change- and fault-proneness of a class increases when a smell is introduced, and

whether it decreases when the smell is removed. Such an analysis is of paramount

importance because a class may be intrinsically change-prone (and also fault-prone)

regardless of whether it is affected by code smells.

To answer our research questions we mined 395 releases of 30 open source systems

searching for instances of the 13 code smells object of our study. Table 2 reports the ana-

lyzed systems, the number of releases considered for each of them, and their size ranges

in terms of number of classes, number of methods, and KLOCs. The choice of the subject

systems was driven by the will to consider systems having different size (ranging from 0.4

to 868 KLOCs), belonging to different application domains (modeling tools, parsers, IDEs,

IR-engines, etc.), developed by different open source communities (Apache, Eclipse, etc.),

and having different lifetime (from 1 to 19 years).

The need for analyzing smells in 395 project releases makes the manual detection of the

code smells prohibitively expensive. For this reason, we developed a simple tool to perform

smell detection. The tool outputs a list of candidate code components (i.e., classes or meth-

ods) potentially exhibiting a smell. Then, we manually validated the candidate code smells

suggested by the tool. The validation was performed by two of the authors who individu-

ally analyzed and classified as true or false positives all candidate code smells. Finally, they

performed an open discussion to resolve possible conflicts and reach a consensus on the

detected code smells. To ensure high recall, our detection tool uses very simple rules that

overestimate the presence of code smells.

The rules for the 13 smell types considered in the study are reported in Table 3 and

are inspired to the rule cards proposed by Moha et al. (2010) in DECOR. The metrics’

thresholds used to discriminate whether a class/method is affected or not by a smell are

lower than the thresholds used by Moha et al. (2010). Again, this was done in order

to detect as many code smell instances as possible. For example, in the case of the

Complex Class smell we considered as candidates all the classes having a cyclomatic com-

plexity higher than 10. Such a choice was driven by recent findings reported by Lopez

and Habra (2015), which found that “a threshold lower than 10 is not significant in

Object-Oriented programming when interpreting the complexity of a method”. As for the

other smells we relied on (i) simple filters, e.g., in the cases of CDSBP (where we dis-

carded from the manual validation all the classes having no public attributes) and Feature

Envy (we only considered the methods having more relationships toward another class

than with the class they are contained in), (ii) the analysis of the metrics’ distribution

(like in the cases of Lazy Class, Inappropriate Intimacy, Long Method, and Long Para-

meter List), or (iii) very conservative thresholds (e.g., a God Class should not have less than

500 LOCs).

We chose not to use existing detection tools (Marinescu 2004; Khomh et al. 2009b;

Sahin et al. 2014; Tsantalis and Chatzigeorgiou 2009; Moha et al. 2010; Oliveto et al. 2010;

Palomba et al. 2015a) because (i) none of them has ever been applied to detect all the

studied code smells and (ii) their detection rules are generally more restrictive to ensure a

good compromise between recall and precision and thus may miss some smell instances.

To verify this claim, we evaluated the behavior of three existing tools, i.e., DECOR (Moha

et al. 2010), JDeodorant (Tsantalis and Chatzigeorgiou 2009), and HIST (Palomba et al.
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Table 2 Systems involved in the study

System Description #Releases Classes Methods KLOCs

ArgoUML UML Modeling Tool 16 777-1,415 6,618-10,450 147-249

Ant Build System 22 83-813 769-8,540 20-204

aTunes Player and Audio Manager 31 141-655 1,175-5,109 20-106

Cassandra Database Management System 13 305-586 1,857-5,730 70-111

Derby Relational Database Management System 9 1,440-1,929 20,517-28,119 558-734

Eclipse Core Integrated Development Environment 29 744-1,181 9,006-18,234 167-441

Elastic Search RESTful Search and Analytics Engine 8 1,651-2,265 10,944-17,095 192-316

FreeMind Mind-mapping Tool 16 25-509 341-4,499 4-103

Hadoop Tool for Distributed Computing 9 129-278 1,089-2,595 23-57

HSQLDB HyperSQL Database Engine 17 54-444 876-8,808 26-260

Hbase Distributed Database System 8 160-699 1,523-8148 49-271

Hibernate Java Persistence Framework 11 5-5 15-18 0.4-0.5

Hive Data Warehouse Software Facilitates 8 407-1,115 3,725-9,572 64-204

Incubating Codebase 6 249-317 2,529-3,312 117-136

Ivy Dependency Manager 11 278-349 2,816-3,775 43-58

Lucene Search Manager 6 1,762-2,246 13,487-17,021 333-466

JEdit Text Editor 23 228-520 1,073-5,411 39-166

JHotDraw Java GUI Framework 16 159-679 1,473-6,687 18-135

JFreeChart Java Chart Library 23 86-775 703-8,746 15-231

JBoss Java Webserver 18 2,313-4,809 19,901-37,835 434-868

JVlt Vocabulary Learning Tool 15 164-221 1,358-1,714 18-29

jSL Java Service Launcher 15 5-10 26-43 0.5-1

Karaf Standalone Container 5 247-470 1,371-2,678 30-56

Nutch Web-search Software 7 183-259 1,131-1,937 33-51

Pig Large Dataset Analyzer 8 258-922 1,755-7,619 34-184

Qpid Messaging Tool 5 966-922 9,048-9,777 89-193

Sax XML Parser 6 19-38 119-374 3-11

Struts MVC Framework 7 619-1,002 4,059-7,506 69-152

Wicket Java Application Framework 9 794-825 6,693-6,900 174-179

Xerces XML Parser 16 162-736 1,790-7,342 62-201

Total – 395 5-4,809 15-37,835 0.4-868

2015a) on one of the systems used in the empirical study, i.e., Apache Cassandra 1.1. When

considering the God Class smell none of the available tools is able to identify all the eight

actual smell instances we found by manually analyzing the classes of this system. Indeed,

DECOR identifies only one of the actual instances, while JDeodorant and HIST detect three

of them. Therefore, the use of existing tools would have resulted in a less comprehensive

analysis. Of course, using rules that overestimate the presence of code smells pays the higher

recall with a lower precision with respect to other tools. However, this is not a threat for our

study, because the manual validation of the instances detected by the tool aims at discarding

the false positives, while keeping the true positive smell instances. A detailed overview of

the results obtained by the tools on Apache Cassandra is available in our online appendix

(Palomba et al. 2017).
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Table 3 The rules used by our tool to detect candidate code smells

Name Description

CDSBP A class having at least one public field.

Complex Class A class having at least one method for which McCabe cyclomatic complexity is higher than 10.

Feature Envy All methods having more calls with another class than the one they are implemented in.

God Class All classes having (i) cohesion lower than the average of the system AND (ii) LOCs > 500.

Inappropriate Intimacy All pairs of classes having a number of method’s calls between them higher than

the average number of calls between all pairs of classes.

Lazy Class All classes having LOCs lower than the first quartile of the distribution

of LOCs for all system’s classes.

Long Method All methods having LOCs higher than the average of the system.

LPL All methods having a number of parameters higher than the average of the system.

Message Chain All chains of methods’ calls longer than three.

Middle Man All classes delegating more than half of the implemented methods.

Refused Bequest All classes overriding more than half of the methods inherited by a superclass.

Spaghetti Code A class implementing at least two long methods interacting between

them through method calls or shared fields.

Speculative Generality A class declared as abstract having less than three children classes using its methods.

We used the collected data to answer our research questions. Concerning RQ1 we veri-

fied what is the diffuseness of the considered code smells in the analyzed systems. We also

verified whether there is a correlation between systems’ characteristics (#Classes, #Meth-

ods, and KLOCs) and the presence of code smells. To compute the correlation on each

analyzed system release we apply the Spearman rank correlation analysis (Student 1921)

between the different characteristics of the system release and the presence of code smells.

Such an analysis measures the strength and direction of association between two ranked

variables, and ranges between −1 and 1, where 1 represents a perfect positive linear rela-

tionship, −1 represents a perfect negative linear relationship, and values in between indicate

the degree of linear dependence between the considered distributions. Cohen (1988) pro-

vided a set of guidelines for the interpretation of the correlation coefficient. It is assumed

that there is no correlation when 0 ≤ ρ < 0.1, small correlation when 0.1 ≤ ρ < 0.3,

medium correlation when 0.3 ≤ ρ < 0.5, and strong correlation when 0.5 ≤ ρ ≤ 1. Similar

intervals also apply for negative correlations.

To answer RQ2 we mined the change history of the 30 systems subject of our study. In

particular, to compute the class change-proneness, we extracted the change logs from their

versioning systems in order to identify the set of classes modified in each commit. Then,

we computed the change-proneness of a class Ci in a release rj as:

change proneness(Ci, rj ) = #Changes(Ci)rj−1→rj

where #Changes(Ci)rj−1→rj
is the number of changes performed on Ci by developers

during the evolution of the system between the rj−1’s and the rj ’s release dates.

As for the fault-proneness, we developed a mining tool to extract the bugs fixed over the

change history of the subject systems. All considered systems exploit Bugzilla1 or Jira2 as

1http://www.bugzilla.org.

2https://www.atlassian.com/software/jira.
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issue tracker. Firstly, we identified bug fixing commits by mining regular expressions con-

taining issue IDs in the change log of the versioning system, e.g., “fixed issue #ID” or

“issue ID”. Secondly, for each issue ID related to a commit, we downloaded the correspond-

ing issue reports from their issue tracking system and extracted the following information

from them: (i) product name; (ii) issue type, i.e., whether an issue is a bug, enhancement

request, etc. ; (iii) issue status, i.e., whether an issue was closed or not; (iv) issue resolution,

i.e., whether an issue was resolved by fixing it, or whether it was a duplicate bug report, or

a “works for me” case; (v) issue opening date; (vi) issue closing date, if available.

Then, we checked each issue report to be correctly downloaded (e.g., the issue ID iden-

tified from the versioning system commit note could be a false positive). After that, we used

the issue type field to classify the issue and distinguish bug fixes from other issue types

(e.g., enhancements). Finally, we only considered bugs having Closed status and Fixed res-

olution. In this way, we restricted our attention to (i) issues that were related to bugs, and (ii)

issues that were neither duplicate reports nor false alarms. Having bugs linked to the com-

mits fixing them allowed us to identify which classes were modified to fix each bug. Thus,

we computed the fault-proneness of a class Ci in a release rj as the number of bug fixing

activities involving the class in the period of time between the rj−1 and the rj release dates.

Once extracted all the required information, we compare the distribution of change- and

fault-proneness of classes affected and not by code smells. In particular, we present box-

plots of change- and fault- proneness distributions of the two sets of classes and we also

compare them through the Mann-Whitney statistical test (Conover 1998). The latter is a

non-parametric test used to evaluate the null hypothesis stating that it is equally likely that

a randomly selected value from one sample will be less than or greater than a randomly

selected value from a second sample. The results are intended as statistically significant at

α = 0.05. We estimated the magnitude of the measured differences by using the Cliff’s

Delta (or d), a non-parametric effect size measure (Grissom and Kim 2005) for ordinal data.

We followed well-established guidelines to interpret the effect size values: negligible for

|d| < 0.10, small for 0.10 ≤ |d| < 0.33, medium for 0.33 ≤ |d| < 0.474, and large for

|d| ≥ 0.474 (Grissom and Kim 2005).

It is important to note that the analysis of the fault-proneness might be biased by the fact

that a bug might have been introduced before the introduction of the code smell. This would

lead to an overestimation of the actual number of bug fixing activities performed on smelly

classes in the time period between the releases rj−1 and rj . For this reason, we also analyzed

the fault-proneness of smelly classes only considering bug fixing activities related to bugs

introduced after the smell introduction. More formally, we computed the fault-proneness

of a smelly class Ci in a release rj as the number of changes to Ci aimed at fixing a bug

introduced after the code smell introduction in the period between rj−1 and rj .

To estimate the date in which a bug was likely introduced,3 we exploited the SZZ algo-

rithm4 (Sliwerski et al. 2005), which is based on the annotation/blame feature of versioning

systems. In summary, given a bug-fix identified by the bug ID, k, the approach works as

follows:

1. For each file fi , i = 1 . . . mk involved in the bug-fix k (mk is the number of files

changed in the bug-fix k), and fixed in its revision rel-fixi,k , we extract the file revision

just before the bug fixing (rel-fixi,k − 1).

3The right terminology is “when the bug induced the fix” because of the intrinsic limitations of the SZZ

algorithm, which cannot precisely identify whether a change actually introduced the bug.

4SZZ stays for the last name initials of the three algorithm’s authors.
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2. Starting from the revision rel-fixi,k −1, for each source line in fi changed to fix the bug

k the blame feature of Git is used to identify the file revision where the last change to

that line occurred. In doing that, blank lines and lines that only contain comments are

identified using an island grammar parser (Moonen 2001). This produces, for each file

fi , a set of ni,k fix-inducing revisions rel-bugi,j,k , j = 1 . . . ni,k . Thus, more than one

commit can be indicated by the SZZ algorithm as responsible for inducing a bug.

By adopting the process described above we were able to approximate the time periods

in which each class was affected by one or more bugs. We excluded from our analysis all

the bugs occurring in a class Ci before it became smelly. Note that we also excluded bug-

introducing changes that were recorded after the bug was reported, since they represent false

positives.

It is worth noting that in the context of RQ2 we considered all the classes of the analyzed

systems: if a class was smelly in some releases and non-smelly in other releases, it con-

tributes to both sets of smelly and non-smelly classes. Also, in this research question we did

not discriminate the specific kind of smell affecting a class (i.e., a class is considered smelly

if it contains any kind of code smell). A fine-grained analysis of the impact of the different

smell types on class change- and fault-proneness is presented in the next research question.

In RQ3 we exploited the code smells’ oracle we built (i.e., the one reporting the code

smells affecting each class in each of the 395 considered releases) to identify in which

releases of each system a class was smelly or not smelly. Then, we focused only on classes

affected by at least one smell instance in at least one of the analyzed software releases but

not in all of them. In this way, we could compare their change- and fault-proneness when

they were affected and not affected by smells. To effectively investigate the effect of smell

removal on maintainability, we considered each smell type in isolation, i.e., we took into

account only the classes affected by a single smell rather than considering classes affected

by more smells. For example, suppose that a class C was firstly affected by the God Class

smell between releases ri and ri+1. Then, the smell was not detected between releases ri+1

and ri+2. Finally, the smell re-appeared between releases ri+2 and ri+3. We compute the

change-proneness of C when it was smelly by summing up the change-proneness of C

in the periods between ri and ri+1 and between ri+2 and ri+3. Similarly, we computed

the change-proneness of C when it was non-smelly by computing the change-proneness

of C in the period between ri+1 and ri+2. Following the same procedure, we compare the

fault-proneness of classes when they were affected and not by a code smell. As done for

RQ2, the comparison is performed by using boxplots and statistical tests for significance

(Mann-Whitney test) and effect size (Cliff’s Delta).

4 Analysis of the results

In this section we answer our three research questions.

4.1 Diffuseness of code smells (RQ1)

Figure 1 shows the boxplot reporting (i) the absolute number of code smell instances, (ii) the

percentage of affected code components (i.e., percentage of affected classes/methods5), and

(iii) the code smell density (i.e., number of code smells per KLOC) affecting the software

5Depending on the code smell granularity, we report the percentage of affected classes or methods.
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Fig. 1 Absolute number, percentage, and density of code smell instances in the analyzed systems

systems considered in our study. For sake of clarity, we aggregated the results considering

all the systems as a single dataset. Detailed results are reported in the Appendix at the end

of the paper.

The boxplots highlight significant differences in the diffuseness of code smells. The

first thing that leaps to the eyes is that code smells like Feature Envy, Message Chain, and

Middle Man are poorly diffused in the analyzed systems. For instance, across the 395 system

releases the highest number of Feature Envy instances in a single release (a Xerces release)

is 17, leading to a percentage of affected methods of only 2.3%. We found instances of

Feature Envy in 50% of the analyzed 395 releases.

The Message Chain smell is also poorly diffused. It affects 13% of the analyzed releases

and in the most affected release (a release of HSQLDB) only four out of the 427 classes

(0.9%) are instances of this smell. It is worth noting that in previous work Message Chain

resulted to be the smell having the highest correlation with fault-proneness (Khomh et al.

2012). Therefore, the observed results indicate that although the Message Chain smell is

potentially harmful its diffusion is fairly limited.

Finally, the last poorly diffused code smell is the Middle Man. Only 30% of the 395

analyzed releases are affected by this smell type and the highest number of instances
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of this smell type in a single release (a release of Cassandra) is eight. In partic-

ular, the classes affected by the Middle Man in Cassandra 0.6 were 8 out of 261

(3%). In this case, all identified Middle Man instances affect classes belonging to the

org.apache.cassandra.utils package, grouping together classes delegating most

of their work to classes in other packages. For example, the HintedHandOffManager

class delegates eleven out of the twelve methods it contains to the StorageService

class from the org.apache.cassandra.service package.

Other code smells are instead quite diffused. For example, we found at least one instance

of Long Method in 84% of the analyzed releases (331 out of 395). In particular, on aver-

age each of these 331 releases is affected by 44 Long Method instances with the peak of

212 in an Apache Derby release. We manually analyzed that release (i.e., 10.1) to

understand the reasons behind the presence of so many Long Method instances. Most of

the instances are in the org.apache.derby.impl.sql.compile package, group-

ing together classes implementing methods responsible for parsing code statements written

by using the SQL language. Such parsing methods are in general very complex and long

(on average, 259 LOC). For a similar reason, we found several instances of Long Method

in Eclipse Core. Indeed, it contains a high number of classes implementing methods

dealing with code parsing in the IDE. While we cannot draw any clear conclusion based on

the manual analysis of these two systems, our feeling is that the inherent complexity of such

parsing methods makes it difficult for developers to (i) write the code in a more concise

way to avoid Long Method code smells, or (ii) remove the smell, for instance by applying

extract method refactoring.

Another quite diffused code smell is the Spaghetti Code, that affects 83% of the analyzed

releases (327 out of 395) with the highest number of instances (54) found in a JBoss’s

release. Other diffused code smells are Speculative Generality (80% of affected releases),

Class Data Should Be Private (77%), Inappropriate Intimacy (71%), and God Class

(65%).

Interestingly, the three smallest systems considered in our study (i.e., Hibernate,

jSL, and Sax) do not present any instance of code smell in any of the 31 analyzed releases.

This result might indicate that in small systems software developers are generally able to

better keep under control the code quality, thus avoiding the introduction of code smells.

To further investigate this point we computed the correlation between system size (in terms

of # Classes, #Methods, and LOCs) and the number of instances of each code smell (see

Table 4). As expected, some code smells have a positive correlation with the size attributes,

meaning that the larger the system the higher the number of code smell instances in it.

There are also several code smells for which this correlation does not hold (i.e., Feature

Envy, Inappropriate Intimacy, Long Parameter List, Message Chain, and Middle Man).

With the exception of Long Parameter List, all these smells are related to “suspicious”

interactions between the classes of the system (e.g., the high coupling represented by

the Inappropriate Intimacy smell). It is reasonable to assume that the interactions of such

classes is independent from the system size and mainly related to correct/wrong design

decisions.

We also compute the code smell density as the number of smell instances per KLOC

in each of the 395 analyzed releases (see bottom part of Fig. 1). The results confirm that

the Long Method is the most diffused smell, having the highest average density (i.e., 28

instances per KLOC). Also Refused Bequest and Complex Class smells, i.e., the code smells

having the highest percentage of affected code components, are confirmed to be quite dif-

fused in the studied systems. All the other smells seem to have diffuseness trends similar to

the ones previously discussed.
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Table 4 Correlation between code smell instances and system size

Code smell ρ with ρ with ρ with

#Classes #Methods LOCs

Class Data Should Be Private 0.72 0.82 0.82

Complex Class 0.49 0.71 0.73

Feature Envy −0.07 −0.02 0.01

God Class 0.50 0.76 0.82

Inappropriate Intimacy −0.02 0.02 0.08

Lazy Class 0.20 0.32 0.32

Long Method 0.47 0.72 0.79

Long Parameter List −0.12 −0.09 −0.05

Message Chain −0.10 −0.03 0.03

Middle Man 0.07 0.19 0.18

Refused Bequest 0.74 0.82 0.81

Spaghetti Code 0.69 0.74 0.75

Speculative Generality 0.85 0.78 0.77

In Italic the medium correlations, in bold the strong correlations

Table 5 classifies the studied code smells on the basis of their diffuseness in the releases

subject of our study. The “% of affected releases” column reports the percentage of analyzed

releases in which we found at least one instance of a specific smell type. For example, a

smell like Long Method affects 84% of releases, i.e., 395*0.84=332 releases.

Table 5 RQ1: Diffuseness of the studied code smells

Code smell % affected avg. number max number Diffuseness

releases of instances of instances

Long Method 84% 44 212 High

Spaghetti Code 83% 12 54 High

Speculative Generality 80% 11 65 High

Class Data Should Be Private 76% 12 65 High

Inappropriate Intimacy 71% 4 34 High

God Class 65% 5 26 Medium

Refused Bequest 58% 11 55 Medium

Complex Class 56% 9 35 Medium

Long Parameter List 47% 16 77 Medium

Feature Envy 50% 3 17 Low

Lazy Class 47% 5 21 Low

Middle Man 30% 2 8 Low

Message Chain 13% 2 4 Low
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4.2 Change- and fault-proneness of classes affected/not affected by code smells

(RQ2)

Figure 2 shows the boxplots of change-proneness for classes affected/not affected by code

smells. Our results confirm the findings reported by Khomh et al. (2012), showing that

classes affected by code smells have a higher change-proneness than other classes. Indeed,

the median change-proneness for classes affected by code smells (32) is almost three times

higher with respect to the median change-proneness of the other classes (12). As an exam-

ple, the Eclipse class IndexAllProject affected by the Long Method smell (in its

method execute) was modified 77 times during the time period between the release 8

(2.1.3) and 9 (3.0), while the median value of changes for classes not affected by any code

smell is 12. Moreover, during the change history of the system the number of lines of code

of the method execute of this class varied between 671 and 968 due to the addition of

several features. The results of the Mann-Whitney and Cliff tests highlight a statistically

significant difference in the change-proneness of classes affected and not affected by code

smell (p-value<0.001) with a large effect size (d = 0.68).

Concerning the fault-proneness, the results also show important differences between

classes affected and not affected by code smells, even if such differences are less marked

than those observed for the change-proneness (see Fig. 3). The median value of the number

of bugs fixed on classes not affected by smells is 3 (third quartile = 5), while the median

for classes affected by code smells is 9 (third quartile = 12). The results confirm what

already observed by Khomh et al. (2012). The observed difference is statistically significant

(p-value<0.001) with a medium effect size (d = 0.41).

When considering only the bugs induced after the smell introduction, the results still con-

firm previous findings. Indeed, as shown in Fig. 4, smelly classes still have a much higher

fault-proneness with respect to non-smelly classes. In particular, the median value of the

number of bugs fixed in non-smelly classes is 2 (third quartile = 5), while it is 9 for smelly
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Fig. 2 Change-proneness of classes affected and not by code smells
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Fig. 3 Fault-proneness of classes affected and not affected by code smells

classes (third quartile = 12). The difference is statistically significant (p-value<0.001) with

a large effect size (d = 0.82).

This result can be explained by the findings reported in the work by Tufano et al. (2017),

where the authors showed that most of the smells are introduced during the very first commit

involving the affected class (i.e., when the class is added for the first time to the repository).

As a consequence, most of the bugs are introduced after the code smell appearance. This

conclusion is also supported by the fact that in our dataset only 21% of the bugs related to

smelly classes are introduced before the smell introduction.

While the analysis carried out until now clearly highlighted a trend in terms of change-

and fault- proneness of smelly and non-smelly classes, it is important to note that a smelly

class could be affected by one or more smells. For this reason, we performed an additional

analysis to verify how change- and fault-proneness of classes very when considering classes

affected by zero, one, two, and three code smells. In our dataset there are no classes affected

by more than three smells in the same system release. Moreover, if a class was affected by

two code smells in release rj−1 and by three code smells in release rj , its change- (fault-)

proneness between releases rj−1 and rj contributed to the distribution representing the
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Fig. 4 Fault-proneness of classes affected and not affected by code smells when considering the bugs

introduced after the smell introduction only
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Fig. 5 Change-proneness of classes affected by different number of code smells

change- (fault-) proneness of classes affected by two smells while its change- (fault-) prone-

ness between releases rj and rj+1 contributed to the distribution representing the change-

(fault-) proneness of classes affected by three smells. Figure 5 reports the change-proneness

of the four considered sets of classes, while Figs. 6 and 7 depict the results achieved for

fault-proneness.

In terms of change-proneness, the trend depicted in Fig. 5 shows that the higher the

number of smells affecting a class the higher its change-proneness. In particular, the median

number of changes goes from 12 for non-smelly classes, to 22 for classes affected by one

smell (+ 83%), 32 for classes affected by two smells (+ 167%), and up to 54 for classes

affected by three smells (+ 350%). Table 6 reports the results of the Mann-Whitney test and

of the Cliff’s delta obtained when comparing the change-proneness of these four categories

of classes. Since we performed multiple tests, we adjusted our p-values using the Holm’s

correction procedure (Holm 1979). This procedure sorts the p-values resulting from n tests

in ascending order, multiplying the smallest by n, the next by n − 1, and so on.

The achieved results show that (i) classes affected by a lower number of code smells

always exhibit a statistically significant lower change-proneness than classes affected by a

higher number of code smells and (ii) the effect size is always large with the only exception

of the comparison between classes affected by one smell and classes affected by two smells,

for which the effect size is medium.

Fig. 6 Fault-proneness of classes affected by different number of code smells
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Fig. 7 Fault-proneness of classes affected by different number of code smells when considering only the

bugs induced after the smell introduction

Similar observations can be made for what concerns the fault-proneness. Figure 6 depicts

the boxplots reporting the fault-proneness of classes affected by zero, one, two, and three

code smells. When increasing the number of code smells, the median fault-proneness of the

classes grows from 3 for the non-smelly classes up to 12 (+ 300%) for the classes affected

by three code smells.

The results of the statistical analysis reported in Table 7 confirm the significant difference

in the fault-proneness of classes affected by a different number of code smells, with a large

effect size in most of the comparisons.

Previous findings are also confirmed when looking at the boxplots of Fig. 7, which refers

to the analysis of the fault-proneness performed considering only the bugs introduced after

the smell introduction. Indeed, the higher the number of code smells affecting a class the

higher its fault-proneness. The significant differences are also confirmed by the statistical

tests reported in Table 8.

Table 6 Change-proneness of classes affected by a different number of code smells: Mann-Whitney test

(adj. p-value) and Cliff’s Delta (d)

Test adj. p-value d

zero smells vs one smell <0.001 0.53 (Large)

zero smells vs two smells <0.001 0.80 (Large)

zero smells vs three smells <0.001 0.89 (Large)

one smell vs two smells <0.001 0.42 (Medium)

one smell vs three smells <0.001 0.84 (Large)

two smells vs three smells <0.001 0.72 (Large)
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Table 7 Fault-proneness of classes affected by a different number of code smells: Mann-Whitney test (adj.

p-value) and Cliff’s Delta (d)

Test adj. p-value d

zero smells vs one smell <0.001 0.74 (Large)

zero smells vs two smells <0.001 0.74 (Large)

zero smells vs three smells <0.001 0.89 (Large)

one smell vs two smells <0.001 0.14 (Small)

one smell vs three smells <0.001 0.53 (Large)

two smells vs three smells <0.001 0.40 (Medium)

4.3 Change- and fault-proneness of classes when code smells are introduced and

removed (RQ3)

For each considered code smell type, Fig. 8 shows a pair of boxplots reporting the change-

proneness of the same set of classes during the time period in which they were affected (S

in Fig. 8) and not affected (NS in Fig. 8) by that specific code smell.

In all pairs of boxplots a recurring pattern can be observed: when the classes are affected

by the code smell they generally have a higher change-proneness than when they are not

affected. This result holds for all code smells but Middle Man (MM), Lazy Class (LC),

Feature Envy (FE), and Class Data Should Be Private (CDSBP).

For classes affected by a God Class (GC) smell we can observe an increase of +283%

of the change-proneness median value (46 vs 12). The case of the Base64 class belonging

to the Elastic Search system is particularly representative: when affected by the God Class

smell, the developers modified it 87 times on average (the average is computed across the

5 releases in which this class was smelly); instead, when the class was not affected by the

code smell, the developers modified it only 10 times on average (the class was not smelly

in 3 releases).

Similar results can be observed for the Complex Class (CC) smell: the median change-

proneness of classes is 55 in the time period in which they are affected by this smell, while

it is 34 when they are non-smelly. For example, when the Scanner class of the Eclipse

Core project was affected by this smell, it was modified 95 times on average (across the 18

releases in which the class was smelly), as opposed to the 27 changes observed on average

across the 11 releases in which it was not smelly.

Table 8 Fault-proneness of classes affected by a different number of code smells when considering only

bugs induced after the smell introduction: Mann-Whitney test (adj. p-value) and Cliff’s Delta (d)

Test adj. p-value d

zero smells vs one smell <0.001 0.75 (Large)

zero smells vs two smells <0.001 0.71 (Large)

zero smells vs three smells <0.001 0.95 (Large)

one smell vs two smells <0.001 0.19 (Small)

one smell vs three smells <0.001 0.61 (Large)

two smells vs three smells <0.001 0.43 (Medium)
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Fig. 8 Change-proneness of classes affected by a code smell (S) compared to the change-proneness of the

same classes during the time period in which they were not affected by a code smell (NS)

The discussion is quite similar for code smells related to errors in the applications of

Object Oriented principles. For example, for classes affected by Refused Bequest (RB) the

median change-proneness goes from 43 (in the presence of the smell) down to 26 (in the

absence of the smell). The case of the class ScriptWriterBase of the HSQLDB project

is particularly interesting. On average this class was involved in 52 changes during the time

period in which it was affected by RB (13 releases), while the average number of changes

decreased to 9 during the time period in which it was not smelly (4 releases).
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It is also interesting to understand why some code smells reduce the change-proneness.

For the Lazy Class smell this result is quite expected. Indeed, by definition this smell arises

when a class has small size, few methods, low complexity, and it is used rarely from the

other classes; in other words, as stated by Fowler “the class isn’t doing enough to pay

for itself” (Fowler 1999). Removing this smell could mean increasing the usefulness of

the class, for example by implementing new features in it. This likely increases the class

Fig. 9 Fault-proneness of classes affected by a code smell compared to the fault-proneness of the same

classes during the time period in which they were not affected by a code smell
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change-proneness. Also, the removal of a Middle Man (a class delegating most of its respon-

sibilities) is expected to increase the change-proneness of classes, since the non-smelly class

will implement (without delegation) a set of responsibilities that are likely to be maintained

by developers, thus triggering new changes.

Results of the fault-proneness are shown in Fig. 9. Here, the differences between the time

periods the classes are affected and not by code smells are less evident, but still present,

especially for Refused Bequest (RB), Inappropriate Intimacy (II), God Class (GC), and

Feature Envy (FE). The most interesting case is the FE, for which we observed that the

fault-proneness increases by a factor of 8 when this code smell affects the classes. A rep-

resentative example is represented by the method internalGetRowKeyAtOrBefore

of the class Memcache of the project Apache HBase. This method did not present faults

when it was not affected by any smell (i.e., the method was not affected by smells in 4

releases of the system). However, when the method started to be too coupled with the class

HStoreKey, it was affected by up to 7 faults. The reason for this growth is due to the

increasing coupling of the method with the class HStoreKey. Indeed, a HBase developer

commented on the evolution of this method in the issue tracker:6 “Here’s a go at it. The

logic is much more complicated, though it shouldn’t be too impossible to follow”.

For all other smells we did not observe any strong difference in the fault-proneness of the

classes when comparing the time periods during which they were affected and not affected

by code smells. While this result might seem a contradiction with respect to what observed

in RQ2 and in the previous study by Khomh et al. (2012), our interpretation is that classes

that were fault-prone in the past will still continue to be fault-prone, even if a smell was

removed. Moreover, since a smell removal requires a change to the code, it can have side

effects like any other change, thus possibly affecting the fault-proneness independently of

the smell. This is also in agreement with previous studies that used the past fault-proneness

history of classes to predict their future faults (Ostrand et al. 2005). In essence, there seems

to be no direct cause-effect relationships between the presence of code smells and the class

fault-proneness. Rather, those are two different negative phenomena that tend to occur in

some classes of a software project.

When analyzing only the bugs introduced after the smell appearance (Fig. 10), we can

observe that also in this case the results are in line with those reported above. Indeed, there

are no relevant changes between the findings achieved using or not such a filtering (based

on the SZZ algorithm). As explained before, this is simply due to the fact that most of the

code smells are introduced during the first commit of a class in the repository (Tufano et al.

2017).

Finally, it is important to point out that our analyses might be influenced by several con-

founding factors. For instance, it is likely that larger classes are more likely to change over

time and to be subject to bug-fix activities. To verify the influence of the size attribute on the

results achieved in the context of RQ2 and RQ3 we built logistic regression models (Hosmer

and Lemeshow 2004) relating the two phenomena, i.e., change- and fault-proneness, with

independent variables represented by the presence of a smell, the size of the component,

and their interaction. Table 9 reports the ORs achieved from such an analysis. Statisti-

cally significant values, i.e., those for which the p-value is lower than 0.05, are reported

in bold face. From this analysis, we can notice that the presence of code smells is sig-

nificantly related to the increase of change-proneness. The size of code components also

6https://issues.apache.org/jira/browse/HBASE-514.
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Fig. 10 SZZ Analysis: Fault-proneness of classes affected by a code smell compared to the fault-proneness

of the same classes during the time period in which they were not affected by a code smell

affects change-proneness, although at a lower extent, while the interaction of smell pres-

ence and size has a strong impact on the change-proneness. In terms of fault-proneness,

only the interaction between the independent variables is statistically significant. This con-

firms what we observed in RQ3: code smells are not necessarily the direct cause of the class

fault-proneness.
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Table 9 ORs of independent factors when building logistic model

Dependent Variable Smell Presence Size Their Interaction

Change-proneness 4.46 1.7 8.41

Defect-proneness 1.74 0.93 2.11

Statistically significant ORs are reported in bold face

Moreover, to be sure that the results achieved in the context of RQ2 and RQ3 were not

simply due to a reflection of code size, we re-ran our analysis by considering the change-

and the fault-proneness of smelly and non-smelly classes having different size. In particular:

1. we grouped together smelly classes with similar size by considering their distribution

in terms of size. Specifically, we compute the distribution of the lines of code of classes

affected by code smells. This first step results in the construction of (i) the group com-

posed by all the classes having a size lower than the first quartile of the distribution of

the size of the classes, i.e., small size; (ii) the group composed by all the smelly classes

having a size between the first and the third quartile of the distribution, i.e., medium

size; and (iii) the group composed by the smelly classes having a size larger than the

third quartile of the distribution of the size of the classes, i.e., large size;

2. we applied the same strategy for grouping small, medium, and large non-smelly classes; and

3. we computed the change- and the fault-proneness for each class belonging to the six

groups, in order to investigate whether smelly-classes are more change- and fault-prone

regardless of their size.

The obtained results are consistent with those discussed above. The interested reader can

find them in our online appendix (Palomba et al. 2017).

5 Threats to validity

This section discusses the threats that might affect the validity of our study.

The main threats related to the relationship between theory and observation (construct
validity) are due to imprecisions/errors in the measurements we performed. Above all, we

relied on a tool we built and made publicly available in our online appendix (Palomba et al.

2017) to detect candidate code smell instances. Our tool exploits conservative detection

rules aimed at ensuring high recall at the expense of low precision. Then, two of the authors

manually validated the identified code smells to discard false positives. Still, we cannot

exclude the presence of false positives/negatives in our dataset.

We assessed the change- and fault-proneness of a class Ci in a release rj as the number

of changes and the number of bug fixes Ci was subject to in the time period t between

the rj and the rj+1 release dates. This implies that the length of t could play a role in the

change- and fault-proneness of classes (i.e., the longer t the higher the class change- and

fault-proneness). However, it is worth noting that:
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1. This holds for both smelly and non-smelly classes, thus reducing the bias of t as a

confounding factor.

2. To mitigate such a threat we completely re-run our analyses by considering a nor-

malized version of class change- and fault-proneness. In particular, we computed the

change-proneness of a class Ci in a release rj as:

change proneness(Ci, rj ) =
#Changes(Ci)rj−1→rj

#Changes(rj−1 → rj )

where #Changes(Ci)rj−1→rj
is the number of changes performed to Ci by developers

during the evolution of the system between the rj−1’s and the rj ’s release dates and

#Changes(rj−1 → rj ) is the total number of changes performed on the whole system

during the same time period. In a similar way, we computed the fault-proneness of a

class Ci in a release rj as:

f ault proneness(Ci, rj ) =
NOBF(Ci)rj−1→rj

NOBF(rj−1 → rj )

where NOBF(Ci)rj−1→rj is the number of bug fixing activities performed on Ci by

developers between the rj−1’s and the rj ’s release dates and NOBF(rj−1 → rj ) is the

total number of bugs fixed in the whole system during the same time period.

The achieved results are reported in our online appendix (Palomba et al. 2017) and are

consistent with those reported in Section 4.

In addition, we cannot exclude imprecisions in the measurement of the fault-proneness

of classes due to misclassification of issues (e.g., an enhancement classified as a bug) in

the issue-tracking systems (Antoniol et al. 2008). At least, the systems we consider use an

explicit classification of bugs, distinguishing them from other issues.

We relied on the SZZ algorithm (Sliwerski et al. 2005) to investigate whether there is

a temporal relationship between the occurrence of a code smell and a bug induction. We

are aware that such an algorithm only gives a rough approximation of the set of commits

inducing a fix, because (i) the line-based differencing of git has intrinsic limitations, and (ii)

in some cases a bug can be fixed without modifying the lines inducing it, e.g., by adding a

workaround or in general changing the control-flow elsewhere.

The main threats related to the relationship between the treatment and the outcome (con-

clusion validity) might be represented by the analysis method exploited in our study. We

discussed our results by presenting descriptive statistics and using proper non-parametric

correlation tests (p-values were properly adjusted when multiple comparisons were per-

formed by applying the Holm’s correction procedure previously described). In addition, the

practical relevance of the differences observed in terms of change- and fault-proneness is

highlighted by effect size measures.

Threats to internal validity concern factors that could influence our observations. The

fact that code smells disappear, may or may not be related to refactoring activities occurred

between the observed releases. In other words, other changes might have produced such

effects. We are aware that we cannot claim a direct cause-effect relation between the pres-

ence of code smells and fault- and change-proneness of classes, which can be influenced

by several other factors. In particular, our observations may be influenced by the different

development phases encountered over the change history as well as by developer-related

factors (e.g., experience and workload). Also, we acknowledge that such measures could

simply reflect the “importance” of classes in the analyzed systems and in particular their

central role in the software evolution process. For example, we expect classes controlling

the business logic of a system to also be the ones more frequently modified by developers
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(high change-proneness) and then possibly subject to the introduction of bugs (high fault-

proneness). It is possible that such classes are also the ones more frequently affected by

code smells, thus implying high change- and fault-proneness of smelly classes. An in-depth

analysis of how such factors influence change- and fault-proneness of classes is part of our

future agenda.

Finally, regarding the generalization of our findings (external validity) to the best of our

knowledge this is the largest study—in terms of number of software releases (395), and

considered code smell types (13)—on the diffuseness of code smells and their impact on

maintainability properties. However, we are aware that we limited our attention only to Java

systems, due to limitations of the infrastructure we used (e.g., the code smell detection tool

only works on Java code). Further studies aiming at replicating our work on systems writ-

ten in other programming languages are desirable. Moreover, we focused on open-source

systems only, and we cannot speculate about how the results would be different when ana-

lyzing industrial systems. Replications of the study in the context of industrial systems may

be worthwhile in order to corroborate our findings.

6 Discussion and conclusion

This paper reported a large study conducted on 395 releases of 30 Java open source projects,

aimed at understanding the diffuseness of code smells in Java open source projects and

their relation with source code change- and fault-proneness. The study considered 17,350

instances of 13 different code smell types, firstly detected using a metric-based approach

and then manually validated.

The results highlighted the following findings:

– Diffuseness of smells. The most diffused smells are the one related to size and com-

plexity such as Long Method, Spaghetti Code, and to some extent Complex Class or

God Class. This seems to suggests that a simple metric-based monitoring of code qual-

ity could already give enough indications about the presence of poor design decisions

or in general of poor code quality. Smells not related to size like Message Chains and

Lazy Class are less diffused, although there are also cases of such smells with high

diffuseness, see for example Class Data Should Be Private and Speculative Generality.

– Relation with change- and fault-proneness. Generally speaking, our results confirm

the results of the previous study by Khomh et al. (2012), i.e., classes affected by code

smells tend to be more change- and fault-prone than others, and that this is even more

evident when classes are affected by multiple smells. At the same time, if we analyze

the fault-proneness results for specific types of smells, we can also notice that high

fault-proneness is particularly evident for smells such as Message Chain that are not

highly diffused.

– Effect of smell removal on change- and fault-proneness. Removing code smells is

beneficial most of the times for the code change-proneness. On the other side, we found

no substantial differences between the fault-proneness of classes in the periods when

they were affected by smells and when they were not (e.g., before the smell introduc-

tion, or after the smell removal). This partially contrast the results of previous studies

(Khomh et al. 2012) and seems to indicate that the smell is not the direct cause of

fault-proneness but rather a co-occurring phenomenon in some parts of the system that

are intrinsically fault-prone for various reasons. This also confirms the principle that a

class exhibiting faults in the past is still likely to exhibit faults in the future (Ostrand

et al. 2005).
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Table 10 Summary of the results achieved

Code Smell Diffuseness Removal Effect Removal Effect

on Change-Proneness on Fault-Proneness

Inappropriate Intimacy High High Medium

Long Method High High Limited

Spaghetti Code High High Limited

Speculative Generality High High Limited

God Class Medium High Limited

Complex Class Medium High Limited

Refused Bequest Medium High Limited

Message Chain Low Medium Limited

Feature Envy Low Limited Medium

CDSBP High Limited Limited

LPL Medium Limited Limited

Lazy Class Low Limited Limited

Middle Man Low Limited Limited

Our findings clearly show that code smells should be carefully monitored by pro-

grammers, since all of them are related to maintainability aspects such as change- and

fault-proneness. Table 10 shows a summary of our findings, where we ranked the code

smells based on the effect of their removal on change- and fault-proneness. Looking at the

table we can see that the removal of seven highly diffused smells, i.e., Inappropriate Inti-

macy, Long Method, Spaghetti Code, Speculative Generality, God Class, Complex Class,

and Refused Bequest provide a high benefit in terms of change-proneness: thus, on the one

hand practitioners should carefully monitor these smells and plan refactoring actions to

improve the overall maintainability of the code; on the other hand, researchers should focus

on the construction of automatic tools able to identify and remove these smells.

The removal of other smells seems to be less relevant from a practical perspective, since

it does not substantially help in improving the maintainability of the source code. Our results

also suggest that developers might use code smell detectors as a way to locate portions of

source code that need more testing activities.

As for our future research agenda, we will focus on the definition of recommenders

able to alert developers about the presence of potential problematic classes based on their

(evolution of) change- and fault-proneness and rank them based on the potential benefits

provided by their removal. Moreover, we plan to further analyze other factors influencing

the change- and fault-proneness of classes.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-

national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,

and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,

provide a link to the Creative Commons license, and indicate if changes were made.

Appendix

Table 11 shows the diffuseness of the analyzed code smells in the subject systems.
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