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Abstract. This paper studies the security of blockciphers with gener-
alized Feistel structures (GFS) consisting of SP-type F-functions. While
GFS leads to compact implementations, the security is not well under-
stood, in particular for larger values of the partitioning number which
indicates the number of subblocks. For both differential and linear crypt-
analysis, we first prove tighter lower bounds on the minimum number of
active S-boxes for four and six rounds of the GFS utilizing word-based
rotation as a round permutation. These bounds are almost twice as large
as the previous results in literature. Then we present a new approach to
derive the first tight lower bounds for the minimum number of active S-
boxes in several types of GFS with large parameters. The proposed algo-
rithm exploits word-based truncated differential search and three-round
relations of Feistel connections. By applying our results, the number of
rounds required to be secure against differential and linear attacks can
be reduced significantly. Thus the results enable us to design a more ef-
ficient symmetric key primitive. Moreover, we show that the improved
GFS proposed by Suzaki and Minematsu at FSE 2010 have more active
S-boxes than the standard GFS.

Keywords: blockcipher, generalized Feistel structure, diffusion,
lightweight cryptography.

1 Introduction

It is well known that Type-II generalized Feistel structures (GFS) [18] have
several desirable implementation properties, notably compactness. For instance,
the GFS has smaller F-functions compared to the Feistel structure for the same
block size. Also GFS do not need inverse F-functions for decryption, in contrast
to Substitution Permutation Networks (SPNs). Recently, lightweight cryptog-
raphy has become a hot topic. Thus the GFS is an attractive structure for a
lightweight symmetric key primitive such as a blockcipher or a hash function.
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This might be one of the reasons why recent blockciphers such as CLEFIA [16]
and HIGHT [6] utilize the GFS.

The GFS divides a plaintext into d subblocks, where d > 2, instead of d = 2 as
used in Feistel structures. The size of the F-functions used in the GFS depends
on the partitioning number d and the block size. If the partitioning number d of
the GFS is larger, then smaller F-functions will be used. However, a large value
of d generally requires a large number of rounds due to its slow diffusion. Hence
there is a trade-off between the partitioning number and the required number of
rounds. However, this relation has not been clear so far.

Recently, Suzaki and Minematsu introduced a GFS with the optimal round
permutation with respect to full diffusion property, which is a property that all
outputs are affected by all inputs [17]. Their paper showed that the improved
GFS can be more secure against impossible differential and saturation attacks
than the standard GFS. However, they expect that the minimum number of
active S-boxes remains about the same. Thus their structures still require at least
same number of rounds as the standard GFS to be secure against differential
and linear attacks [3,10].

It is well understood how to practically evaluate the security against differen-
tial and linear attacks by determining the maximum differential and linear char-
acteristic probabilities [4,7]. For instance, counting the number of active S-boxes
is a well used technique to evaluate the immunity against those attacks [16]. This
approach was used to design many blockciphers and hash functions, including
AES [5] and Whirlpool [1]. In SPN structures, it is relatively easy to evaluate
the minimum number of active S-boxes by evaluating the permutation layers
as discussed in [4]. However, in Feistel structures, this is more complicated due
to differential cancellations caused by the XOR operation after the F-function.
Kanda showed that the minimum number of active S-boxes of certain consecu-
tive rounds of Feistel structures with SP-type F-function can be represented as
the branch number of the matrices used in the structure [7]. Shirai and Araki
extended his result to three types of generalized Feistel structures [14], which
are known as Type-I, Type-II and Nyberg’s constructions [13,18]. They showed
that any six consecutive rounds of Type-II GFS with any partitioning number
have at least the same number of active S-boxes as the Feistel structure. They
also introduced an efficient weight-based active S-box search algorithm. How-
ever, their algorithm only works for small parameter sets of the GFS and the
bound shown in the paper is not tight. Therefore, to design a secure symmetric
key primitive, a large number of rounds is still required.

In this paper, we show the first tight bounds on the minimum number of differ-
ential and linear active S-boxes of GFS with large parameter sets. We first prove
tight lower bounds for four and six rounds of the standard GFS manually. The
obtained bound of six rounds of the standard GFS is almost twice as large as the
previous bound. This enables the required number of rounds to be almost halved.
Then we show a novel approach to efficiently derive tight lower bounds on the
minimum number of active S-boxes of several types of GFS with large parame-
ters including recently proposed GFS utilizing optimal round permutations [17].
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Table 1. Summary of our results, where B is the differential or the linear branch
number of the matrices used in GFS

rounds Feistel GFSstd
d GFSstd

4 GFSstd
8 GFSimp

6 GFSimp
8

[7,15] [14] (this paper) (this paper) (this paper) (this paper)

4 B - B + 1 B + 1 B + 1 B + 1

5 B + 1 - B + 3 B + 3 B + 3 B + 3

6 B + 2 B + 2 2B + 2 2B + 2 2B + 2 2B + 2

7 - - 2B + 2 2B + 4 2B + 4 2B + 4

8 2B + 1 - 2B + 3 3B + 3 4B + 2 4B + 3

9 2B + 2 - 2B + 4 3B + 6 4B + 4 4B + 6

10 - - 3B + 3 4B + 5 4B + 6 5B + 4

11 - - 3B + 5 4B + 8 4B + 8 5B + 7

12 3B + 1 2B + 4 4B + 4 6B + 6 6B + 2 7B + 4
...

...
...

...
...

...
...

18 4B + 4 3B + 6 6B + 6 8B + 8 8B + 10 10B + 6

The proposed algorithm exploits word-based truncated differential search and
three-round relations of Feistel connections. By using our results, the required
number of rounds to be secure against differential and linear attacks can be re-
duced significantly. Therefore, our results are useful not only for a deeper under-
standing the security of GFS, but also for designing an efficient symmetric prim-
itive. Our results are summarized in Table 1. More detailed results are listed in
Appendix A.

This paper is organized as follows. In Sect. 2, definitions and some properties
are introduced. In Sect. 3, related work on GFS is explained. Section 4 and
5 describe the lower bounds on the number of differential and linear active S-
boxes in GFS, respectively. In Sect. 6, we discuss the result obtained in this
paper. Finally, we conclude in Sect. 7.

2 Preliminaries

2.1 Target Structures

In this paper, we focus on GFS with SP-type F-functions [7] and an even-odd
shuffle [17] as shown in Fig. 1. Let d be an even integer. A dmn-bit plaintext P

is divided into d subblocks as P = (x(1)
0 , x

(1)
1 , ..., x

(1)
d−1), where x

(i)
j ∈ {0, 1}mn.

Then the i-th round output is calculated as follows:

(x(i+1)
0 , x

(i+1)
1 , ..., x

(i+1)
d−1 )← π(x(i)

0 , F
(i)
0 (x(i)

1 )⊕ x
(i)
0 , ..., F

(i)
d/2−1(x

(i)
d−2)⊕ x

(i)
d−1),

where F
(i)
j : {0, 1}mn → {0, 1}mn is a j-th round function in the i-th round, and

π : ({0, 1}mn)d → ({0, 1}mn)d is a deterministic permutation. We assume that
each round function is the SP-type F-function which consists of an mn-bit round
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Fig. 1. GFSd with SP-type F-function and even-odd shuffle, where dotted lines show
possible connections, each set of outputs and inputs is connected by exactly one line.
The sub-diagram on the right is a zoom in on an F-function.
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Fig. 3. GFSimp
8 [17]

key addition, m n-bit bijective S-boxes and an mn-bit linear Boolean function [7].
S(·) denotes an n-bit bijective S-box and M

(i)
j denotes a non-singular m × m

matrix over a chosen field GF(2n). z
(i)
2j and y

(i)
2j denote an output of the S-

boxes and the linear function M
(i)
j in F

(i)
j , respectively. We also restrict π to

be a word-based permutation. For instance, π of GFS with the partitioning
number eight and the word-based rotation shown in Fig. 2 is represented as
π(x0, x1, ..., x7) = (x1, x2, ..., x7, x0). We treat several types of π in this paper.
Hereafter mn denotes the bit length of subblock, GFSd denotes the GFS with the
partitioning number d, GFSstd

d denotes the GFSd with the word-based rotation,
i.e., standard Type-II GFS, and GFSimp

d denotes the GFSd with the optimal
round permutation proposed by Suzaki and Minematsu [17]1.

2.2 Definitions

In this section, we give some definitions used in the following sections. We first
give the definitions of bundle weight and branch number [5].

1 We treat GFSd with the round permutations No.1 given in Appendix A of [17] as
GFSimp

d .
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Definition 1 (Bundle Weight). Let x ∈ {0, 1}pn be represented as x=(x0, x1,
..., xp−1), where xi ∈ {0, 1}n, then the bundle weight wn(x) is defined as

wn(x) = �{i|0 ≤ i ≤ p− 1, xi �= 0}. (1)

Definition 2 (Branch Number). Let P : {0, 1}pn → {0, 1}qn. The branch
number of P is defined as

Bn(P ) = min
a�=0
{wn(a) + wn(P (a))}. (2)

We give the definitions of BD and BL in r-round GFS to show the minimum
number of differential and linear active S-boxes, respectively.

Definition 3 (Differential Branch Number)

BD = min
1≤i≤r,0≤j≤d/2−1

Bn(M (i)
j ). (3)

Definition 4 (Linear Branch Number)

BL = min
1≤i≤r,0≤j≤d/2−1

Bn(tM
(i)
j ), (4)

where tM is the transpose matrix of M .

Since each active S-box reduces the differential and linear characteristic prob-
abilities, the maximum differential and linear characteristic probabilities are
bounded by the minimum number of differential and linear active S-boxes, re-
spectively. On the other hand, the minimum number of active S-boxes is relevant
to the branch number of the linear function. Thus the motivation of this paper
is to clarify the minimum number of differential and linear active S-boxes for
GFS by using BD and BL, respectively.

It is well known that the upper bounds on the security against linear attacks
are derived from the upper bounds on the security against differential attacks
because of its duality [2,11,7]. Thus, in this paper, we mainly discuss the security
against differential attacks. We discuss the security against linear attacks in
Sect. 5.

2.3 Properties of Generalized Feistel Structures

In this section, we present several properties of GFS. Hereafter we refer to an
F-function which has non-zero input difference or non-zero output mask value
as a differential or a linear active F-function, respectively. From the bijectivity
of F-functions, the following property holds:

Property 1. Any two consecutive rounds of GFS have at least one differential
active F-function if a non-zero input difference is given.
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Fig. 4. Five Rounds of GFSstd
d (Untwisted Form)

We consider the five-round structure of GFSstd
d shown in Fig. 4, and focus on the

value x
(i)
2j in the center of the structure, where x

(i)
2j and z

(i)
2j denote an input of

F
(i)
j and an output of S-boxes in F

(i)
j , respectively. Let D

(i)
j denote the number

of differential active S-boxes in F
(i)
j . Since all S-boxes are bijective, we have the

following relations.

Property 2
D

(i)
j = wn(Δx

(i)
2j ) = wn(Δz

(i)
2j ). (5)

Then the following property is derived [14].

Property 3 (Three-round relation of Feistel connection). If D
(i)
j �= 0, then D

(i)
j +

D
(i−1)
j+1 + D

(i+1)
j+1 ≥ BD.

Proof
M

(i)
j (Δz

(i)
2j ) = Δx

(i−1)
2(j+1) ⊕Δx

(i+1)
2(j+1). (6)

From the definition of BD, wn(Δz
(i)
2j ) + wn(M (i)

j (Δz
(i)
2j )) ≥ BD if Δz

(i)
2j �= 0.

Also, wn(a) + wn(b) ≥ wn(a⊕ b) holds, then we have

wn(Δz
(i)
2j ) �= 0⇒ wn(Δz

(i)
2j ) + wn(Δx

(i−1)
2(j+1)) + wn(Δx

(i+1)
2(j+1)) ≥ BD. (7)


�
In this paper, we refer to this relation of three values Δx

(i)
2j , Δx

(i−1)
2(j+1) and

Δx
(i+1)
2(j+1) as the three-round relation of the Feistel connection. The following

properties are also obtained.

Property 4. If D
(i)
j �= 0, then D

(i−1)
j−1 + D

(i−2)
j ≥ 1, D

(i+1)
j−1 + D

(i+2)
j ≥ 1, and

D
(i−1)
j+1 + D

(i+1)
j+1 ≥ 1.

Proof

M
(i−1)
j−1 (Δz

(i−1)
2(j−1))⊕Δx

(i−2)
2j = Δx

(i)
2j �= 0, (8)

M
(i−1)
j−1 (Δz

(i−1)
2(j−1)) �= Δx

(i−2)
2j . (9)
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Then M
(i−1)
j−1 (Δz

(i−1)
2(j−1)) and Δx

(i−2)
2j cannot be 0 simultaneously. Thus, D

(i−1)
j−1 +

D
(i−2)
j ≥ 1. The other properties can be proved in a similar way. 
�

We give some definitions of round permutations to use three-round relation of
the Feistel connections in GFS. Let πE , πO be index mappings. πE is the index
mapping of π from even numbered blocks to odd-number blocks and all indexes
are divided by two. For example, πE of GFSstd

8 shown in Fig. 2 is represented
as πE [0] = 3, πE [1] = 0, πE [2] = 1 and πE [3] = 2. Similarly, πO is the index
mapping of π from odd numbered blocks to even-number blocks and all indexes
are divided by two. For example, πO of GFSstd

8 is the identity mapping, and πO

of GFSimp
8 is represented as πO[0] = 0, πO[1] = 2, πO[2] = 1 and πO[3] = 3.

By using these mappings πE and πO, the three-round relations of the Feistel
connections in GFS can easily be represented. For instance, the three F-functions
input differences Δx

(i)

2π−1
E [j/2]

, Δx
(i+1)
j and Δx

(i+2)
2πO [j/2] in Figs. 2 and 3 satisfy the

three-round relation shown in Property 3 independently, where j = {0, 2, 4, 6}
and π−1

E is an inverse mapping of πE .
Let Δx(i) = (Δx

(i)
0 , Δx

(i)
2 , ..., Δx

(i)
d−2). Then the following property is derived.

Property 5. Any three consecutive rounds of (i − 1) to (i + 1)-round of GFSd

have at least wmn(Δx(i)) · BD differential active S-boxes, specifically,

d/2−1∑

s=0

i+1∑

t=i−1

D(t)
s ≥ wmn(Δx(i)) · BD. (10)

Proof. From the definition of the even-odd shuffle, each i-th round output after
the XOR operation is mapped to the corresponding F-function of (i−1)-th round
and (i+1)-th round respectively. In other words, there exist d independent three-
round relations shown in Property 3. Thus the number of active S-boxes in three
consecutive rounds is bounded by the bundle weight of the differentials in the
center. 
�

The mappings πE , πO, and the Property 5 are useful to evaluate the minimum
number of active S-boxes of GFS.

3 Related Work

In this section, we discuss previous results related to GFS. The formal definition
of GFS was given by Zheng et al. [18]. Several cryptographic properties of these
structures were analyzed in [8,12]. Provable security of GFSstd

4 against differential
and linear attacks was discussed by Lee et al. [9]. In their results, more than five
rounds of GFSstd

4 have the maximum differential probability p4 + 2p5 and the
maximum linear probability q4 + 2q5, where p and q are the maximum average
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differential probability and the maximum average linear probability of the F-
functions used in the structure, respectively.

The practical security of GFSstd
d against differential and linear attacks was

discussed by Shirai and Araki [14]. They showed the lower bounds on the num-
ber of active S-boxes in three types of generalized Feistel structures, Type-I,
Type-II and Nyberg’s constructions [13,18]. In their results, any six consecutive
rounds of GFSstd

d have at least BD + 2 active S-boxes2. Moreover, they intro-
duced efficient weight-based active S-box search algorithms that can derive the
minimum number of active S-boxes of GFS. Though their algorithm is efficient,
still a large computation is required to evaluate large parameter sets of GFS,
namely, it requires to search at most (m + 1)d(r+1)/2 values to evaluate r-round
GFSstd

d . Thus the algorithm does not work for GFSstd
d with large parameters.

We use this algorithm to verify the tightness of our results in Sect. 4.4.
Suzaki and Minematsu discussed round permutations of GFS [17]. They mainly

focused on full diffusion property, which is a property that all outputs are affected
by all inputs. They showed that the diffusion property of the GFSd (d > 4) could
be better than GFSstd

d by replacing its round permutation from the word-based
rotation used in GFSstd

d . In their paper, although the improved GFS has better
properties with respect to full diffusion, they have about the same number of
active S-boxes3 as GFSstd

d .

4 Differential Active S-Boxes in GFS

In this section, we present the minimum number of differential active S-boxes in
several types of GFS. First, we show better lower bounds for four and six rounds
of GFSstd

d . Then, we introduce an exhaustive search algorithm that determines
the minimum number of differential active S-boxes for all types of GFS efficiently.
By using this algorithm, we present several lower bounds on GFS. Finally, we
compare the results obtained from the new algorithm with the results obtained
from weight-based exhaustive active S-box search to verify the tightness of the
new bounds.

4.1 The Lower Bounds for Four and Six Rounds of GFSstd
d

Theorem 1. Let d ≥ 4. Any four consecutive rounds of GFSstd
d have at least

BD + 1 differential active S-boxes.

Proof. We consider four consecutive rounds that start from the i-th round as
described in Fig. 5. From Property 1, there is at least one active F-function in any
two consecutive rounds, i.e., there is at least one active F-function in the (i+1)-
th round or the (i+2)-th round. As shown on the left side of Fig. 5, suppose that
2 Their results were given by BD, and BD

2 which is a branch number of two consecutive
matrices. If matrices used in each F-function are different, BD

2 can be more than two.
However, in our model, BD

2 = 2.
3 Note that, they evaluated the number of active S-boxes by counting the number of

active F-functions as active S-boxes.
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Fig. 5. Four Rounds of GFSstd
d (Untwisted Form)

the j-th F-function in the (i + 1)-th round is active, namely, D
(i+1)
j �= 0. In that

case, D
(i+1)
j+1 + D

(i)
j+2 + D

(i+3)
j+2 ≥ BD from Property 3, and D

(i+2)
j + D

(i+3)
j+1 ≥ 1

from Property 4. Thus these four rounds have at least BD + 1 differential active
S-boxes. Similarly, in the case of an active F-function in the (i+2)-th round, we
have the same bound as shown in the right side of Fig. 5. Therefore, we obtain
Σ

d/2−1
s=0 Σi+3

t=i D
(t)
s ≥ BD + 1. 
�

Theorem 2. Let d ≥ 4. Any six consecutive rounds of GFSstd
d have at least

2BD + 2 differential active S-boxes.

See Appendix B for a proof. The bound given by this theorem is almost twice as
large as the previous result. Thus, the required number of rounds of GFSstd

d to
be secure against differential attacks can be almost halved by using this bound.

While it might be possible to prove the minimum number of active S-boxes of
a large number of rounds of GFSstd

d in a similar way, such proofs would be quite
complex when the number of rounds is large. In other words, the number of cases
to be considered would be increased drastically. Also, using the approaches so
far, the relation between the partitioning number d and the minimum number
of active S-boxes is still unclear. If all possible cases are checked efficiently, the
minimum number of active S-boxes of the structures can be derived easily. There-
fore, we propose another approach to efficiently derive the minimum number of
active S-boxes of GFS with large parameter sets in the following section.

4.2 The Search for the Minimum Number of Differential Active
S-Boxes

In this section, we introduce the search algorithm of the minimum number of
differential active S-boxes for GFS. This algorithm consists of the following two
steps: (a) searching active F-function paths of GFS exhaustively by word-based
truncated differential search, (b) determining the minimum number of differen-
tial active S-boxes from a given path.

Let X(i) ∈ {0, 1}d/2 be the input differences of the mn-bit truncated dif-
ferentials of the i-th F-function, i.e., X(i) = (wmn(Δx

(i)
0 ), wmn(Δx

(i)
2 ), ...,

wmn(Δx
(i)
d−2)), where X(0) is the first input differences to XOR operation side,

namely, X(0) = (wmn(Δx
(1)
1 ), wmn(Δx

(1)
3 ), ..., wmn(Δx

(1)
d−1)). Let BD(R) be the

minimum number of differential active S-boxes in R-round GFS, then BD(R) is
calculated as follows:
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Step 1. Initialize BD(R) to a sufficiently large value, such as the total number
of S-boxes.

Step 2. Choose a possible active F-function path by searching mn-bit truncated
differential paths of GFS. First, X(0) and X(1) are chosen exhaustively. Then,
i-th round truncated differential path X(i) (i ≥ 3) can be determined by
X(i−2) and X(i−1) as follows:

X
(i)
j =

{
X

(i−1)

π−1
O [j]

⊕X
(i−2)

π−1
E [π−1

O [j]]
, if X

(i−1)

π−1
O [j]

∧X
(i−2)

π−1
E [π−1

O [j]]
= 0,

0, 1 , otherwise,

where X
(i)
j is a j-th bit of X(i) and X

(i)
0 is the most significant bit of X(i).

In the case of i = 2, X
(i−2)

π−1
E [π−1

O [j]]
is replaced by X

(i−2)

π−1
O [j]

. Thus R-round path

of X(i)(0 ≤ i ≤ R) is calculated by using the previous algorithm repeatedly.
Step 3. Determine the minimum number of active S-boxes from a given trun-

cated differential path. This step is described in Fig. 6. If the bound obtained
from the algorithm Fig. 6 is less than BD(R), then BD(R) is updated. The
detailed explanation of this step is presented in the following section.

Step 4. If all possible truncated differential paths have been checked, terminate
the program. Otherwise, go to Step 2.

We give an improvement of Step 2. From Property 5, it is easy to derive a
rough bound on the number of BD in the structure by checking some Hamming
weights of X(i). Then if the obtained rough bound is more than the current bound
BD(R), we can simply skip this path. For example, in the case of R = 6, we
check max(Hw(X(2))+ Hw(X(5)), Hw(X(3)), Hw(X(4))), where Hw(X) denotes
a Hamming weight of X . This improvement results in a speed-up in practice.

4.3 Detailed Explanation of the Algorithm

We explain the algorithm presented in the previous section in detail. The most
important part of this algorithm is Step 3. In this step, we focus on three-round
relations in GFS. As discussed in Sect. 2.3, we find three-round relations in any
three consecutive rounds by using π−1

E and πO. Then we count the number of BD

in GFS greedily from top to bottom. Finally, we count the remaining constants
in the structure. We exploit fact that there exist d/2 independent three-round
relations in any three consecutive rounds of GFSd and these relations can be
obtained by using the mappings π−1

E and πO. Once d/2 independent three-round
relations are obtained, the number of BD in three consecutive rounds is easily
derived from Property 3 and 5. However, in this algorithm, there should be some
overlapping values. To avoid this problem, we use a flag for each bit of truncated
differentials. Once a value is used for counting the number of BD in the certain
three consecutive rounds, then the flag is set. Then this value cannot be used
twice, and the algorithm works correctly.

Note that the comparison phase in Step 3 depends on the value of BD. Suppose
that the current BD(R) = 2BD, and a new value of BD + 3 is obtained. In that
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Algorithm CountBD(r, X(1), ..., X(r)) :

Clear flags of X
(i)
j , (1 ≤ i ≤ r, 0 ≤ j ≤ d/2− 1)

S = 0
for i← 2 to (r − 1) do

for j ← 0 to (d/2− 1) do

if (X
(i)
j = 1) ∧ (flags of X

(i−1)

π−1
E

[j]
and X

(i)
j are not set) then

S ← S + 1

Set flags of X
(i)
j , X

(i−1)

π−1
E

[j]
(if X

(i−1)

π−1
E

[j]
= 1), and X

(i+1)
πO [j] (if X

(i+1)
πO [j] = 1)

T = 0
for i← 1 to r do

for j ← 0 to (d/2− 1) do

if X
(i)
j = 1 ∧ (flag of X

(i)
j is not set) then

T ← T + 1
return S · BD + T

Fig. 6. Algorithm CountBD(r, X(0), ..., X(r))

case, the BD(R) is updated when BD > 2, because 2BD ≤ BD + 3. However,
when BD = 2, it should not be updated. This paper contains results for BD > 2.

We now show that this algorithm does not always give the best bound in
the structure from a given path. The path in the left of Fig. 7 is the case,
where an F-function indicated by bold line is determined to be active and an
F-function indicated by dotted line is determined to be non-active. In this case,
the algorithm (Fig. 6) outputs BD + 4 instead of 2BD + 2 as the path in the
center of Fig. 7, where there is at least BD active S-boxes in the area encircled
by chain line. However, because the purpose of this algorithm is to find a lower
bound on the number of differential active S-boxes, the best bound in this step
is not necessary. We can avoid this problem by adding search patterns to the
algorithm. For example, if we compute the bound both way, i.e., from top to
bottom and from bottom to top, the algorithm outputs the best bound from
the path at the right of Fig. 7. However, from our calculations, it seems that
this change does not provide an improvement in practice. In other words, the
obtained lower bound is the same even if we add some search patterns to the
algorithm, e.g., the path in Fig. 7 is not the minimum path for GFSstd

4 .

4.4 Comparison of Results

We verified the tightness of the obtained lower bounds by comparing with the
results obtained by the weight-based exhaustive active S-box search [14] for
as many parameters as possible. Consequently, the actual number of active S-
boxes from the obtained bounds completely corresponded to the results from the
exhaustive search with the following parameters: GFSstd

4 with m = 2, 3, ..., 8,4

4 The case of GFSstd
4 with m = 4 is in Table 4 of [14].
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F (i+1)
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F (i+2)
0

F (i)
1

F (i+1)
1

F (i+2)
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F (i+3)
0 F (i+3)

1

F (i)
0

F (i+1)
0

F (i+2)
0

F (i)
1

F (i+1)
1

F (i+2)
1

F (i+3)
0 F (i+3)

1

F (i)
0

F (i+1)
0

F (i+2)
0

F (i)
1

F (i+1)
1

F (i+2)
1

F (i+3)
0 F (i+3)

1

Fig. 7. An Example Path of GFSstd
4

GFSstd
6 with m = 2, 3, 4, GFSstd

8 with m = 2, GFSimp
6 with m = 2, 3, 4, and

GFSimp
8 with m = 2 and r = 1 up to 20, where BD = m + 1. While we have not

confirmed the tightness of the other bounds due to computational restrictions of
the weight-based exhaustive search, it seems that the obtained bounds are tight
as well.

5 Linear Active S-Boxes in GFS

It was shown by Kanda [7] that the lower bounds on the minimum number of lin-
ear active S-boxes of Feistel structure with SP-type F-functions can be obtained
by simply replacing differential branch number BD by linear branch number BL.
In his work, Feistel structures with SP-type F-functions can be represented as
Feistel structures with PS-type F-functions by using an equivalent transforma-
tion. Then the minimum number of active S-boxes is derived by evaluating the
transformed cipher using the concatenation rules [2,11].

GFS with SP-type F-functions can be represented as GFS with PS-type F-
functions in a similar way. Note that, in contrast to Feistel structures, depending
on the original round permutation used in GFS, the transformed round permu-
tation can be different. However, we can use the same algorithm to determine
the lower bounds on the minimum number of linear active S-boxes by replac-
ing the original round permutation by the transformed round permutation. This
is not the case for the structures in the tables shown in this paper: the trans-
formed round permutation is the same as the original round permutation. Thus,
the minimum number of linear active S-boxes is obtained by simply replacing
differential branch numbers BD by linear branch numbers BL.

6 Discussion

In this section, we discuss the obtained results. We first give an example of
the parameter m = 4 and n = 8 of GFSstd

8 , i.e., 256-bit blockcipher, to show
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applicability of our results. We assume that this example cipher consists of the
MDS matrices and the inversion S-boxes over GF(28) , specifically, BD = BL = 5
and the maximum differential and linear probability of the S-box is 2−6. In this
case, at least 22 active S-boxes are required to be secure against differential and
linear attacks, as (2−6)22 = 2−132 < 2−128 when the key size is 128-bit. Though
the previous result shows that 24 rounds are required to have more than 22
active S-boxes, our results show that only 10 rounds are required to be secure
against differential and linear attacks. Thus, our results are useful to design an
efficient symmetric primitive, since the required number of rounds with respect
to differential and linear cryptanalysis is reduced. While many types of attacks
must be considered when constructing a secure symmetric primitive, actually,
differential, linear, impossible differential and saturation attacks tend to be the
bottleneck in GFS. Therefore, it can be said that at least two of them can be
improved by using the new bounds. If the parameters (the dimension of the
matrices m and the partitioning number d) are larger, the effects of our results
become even more noticeable.

Moreover, according to our results, most of the bounds on a sufficiently large
number of rounds can be derived from bounds on a smaller number of rounds.
For example, most of rounds of the minimum number of active S-boxes for more
than seven rounds of GFSstd

4 can be derived from the bounds on one to the
bounds on six consecutive rounds, e.g. the minimum number of active S-boxes
in ten rounds of GFSstd

4 can be represented as active S-boxes in four rounds and
six rounds of GFSstd

4 . Thus it seems that determining tight bounds for a small of
rounds is important. Therefore, our algorithm works well even if the number of
rounds is large, whereas it needs a lot of computation to derive bounds of GFS
with large number of rounds, e.g., more than 30 rounds.

Furthermore, the results show that the number of active S-boxes increases
about 1.5 times when the partitioning number is doubled, assuming the number
of S-boxes used in each F-function remains the same and the number of rounds
is sufficiently large.

7 Conclusion

In this paper, we have shown the first tight bounds on the minimum number
of active S-boxes of GFS with large parameter sets. We first proved tight lower
bounds for four and six rounds of the standard GFS manually. Then, we intro-
duced a novel approach to evaluate the minimum number of active S-boxes of
GFS by using the branch number of the matrices used in the structure. The
proposed algorithm uses three-round relations of the Feistel connection and well
known truncated differential search. By using our algorithm, all types of the GFS
can be evaluated precisely, including recently proposed GFS that utilize optimal
round permutations instead of the word-based rotation used in the standard
GFS. Moreover, we confirmed the tightness of the obtained bounds by compar-
ing with the results obtained by the weight-based exhaustive active S-box search
algorithm.
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By applying our results, the required number of rounds to be secure against
differential and linear attacks can be reduced significantly. Moreover, all bounds
obtained in this paper depend only on the branch number of the matrices used in
GFS. The results can therefore be widely used to design an efficient symmetric
primitive. In other words, our results are useful not only for more thoroughly un-
derstanding the security of the GFS, but also for designing an efficient symmetric
key primitive, because the GFS can be implemented compactly and evaluating
its security against differential attacks is essential to both blockcipher and hash
function design.
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A Lower Bounds on the Number of Active S-Boxes

Several lower bounds obtained in this paper are shown in Table 2 and 3. In
these tables, B denotes either the differential or the linear branch number of the
matrices used in the GFS.

B A Proof of Theorem 2

Proof. We consider six consecutive rounds that start from the i-th round. From
Property 1, there is at least one active F-function in any two consecutive rounds,
i.e., there is at least one active F-function in the (i+2)-th round or the (i+3)-th
round. Suppose that the j-th F-function in the (i + 2)-th round is active, i.e.,
D

(i+2)
j �= 0 as shown in Fig. 8. Then we consider the following cases.

Case 1. If D
(i+3)
j+1 = 0, then D

(i+1)
j+1 �= 0 from Property 4 , also D

(i)
j +D

(i+1)
j−1 ≥ 1

and D
(i+3)
j−1 + D

(i+4)
j ≥ 1. Then D

(i+1)
j+1 + D

(i)
j+2 + D

(i+2)
j+2 ≥ BD from the fact

D
(i+1)
j+1 �= 0 and Property 3. We then consider the following two cases.

Case 1-1. If D
(i+4)
j �= 0, then D

(i+4)
j + D

(i+5)
j+1 ≥ BD from Property 3. Thus we

have Σ
d/2−1
s=0 Σi+5

t=i D
(t)
s ≥ 2BD + 2.

Case 1-2. If D
(i+3)
j−1 �= 0, then D

(i+3)
j−1 + D

(i+2)
j + D

(i+4)
j ≥ BD from Property 3

and D
(i+4)
j−2 +D

(i+5)
j−1 ≥ 1 from Property 4. Thus we obtain Σ

d/2−1
s=0 Σi+5

t=i D
(t)
s ≥

2BD + 2.
Case 2. D

(i+3)
j+1 �= 0, then D

(i+2)
j+2 + D

(i+4)
j+2 ≥ 1. Then we consider the following

cases.
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Table 2. The Minimum Number of Active S-boxes in GFSstd
d , assuming B > 2

rounds Feistel GFSstd
4 GFSstd

6 GFSstd
8 GFSstd

10 GFSstd
12 GFSstd

14 GFSstd
16

1 0 0 0 0 0 0 0 0

2 1 1 1 1 1 1 1 1

3 2 2 2 2 2 2 2 2

4 B B + 1 B + 1 B + 1 B + 1 B + 1 B + 1 B + 1

5 B + 1 B + 3 B + 3 B + 3 B + 3 B + 3 B + 3 B + 3

6 B + 2 2B + 2 2B + 2 2B + 2 2B + 2 2B + 2 2B + 2 2B + 2

7 B + 3 2B + 2 2B + 4 2B + 4 2B + 4 2B + 4 2B + 4 2B + 4

8 2B + 1 2B + 3 3B + 3 3B + 3 3B + 3 3B + 3 3B + 3 3B + 3

9 2B + 2 2B + 4 3B + 6 3B + 6 3B + 6 3B + 6 3B + 6 3B + 6

10 2B + 3 3B + 3 4B + 5 4B + 5 4B + 5 4B + 5 4B + 5 4B + 5

11 2B + 4 3B + 5 4B + 7 4B + 8 4B + 8 4B + 8 4B + 8 4B + 8

12 3B + 2 4B + 4 5B + 5 6B + 6 6B + 6 6B + 6 6B + 6 6B + 6

13 3B + 3 4B + 4 5B + 6 6B + 6 6B + 9 6B + 9 6B + 9 6B + 9

14 3B + 4 4B + 5 6B + 5 6B + 7 7B + 8 7B + 8 7B + 8 7B + 8

15 3B + 5 4B + 6 6B + 7 6B + 8 7B + 12 7B + 12 7B + 12 7B + 12

16 4B + 3 5B + 5 7B + 6 7B + 7 9B + 9 9B + 9 9B + 9 9B + 9

17 4B + 4 5B + 7 7B + 8 7B + 9 9B + 13 9B + 13 9B + 13 9B + 13

18 4B + 5 6B + 6 8B + 7 8B + 8 10B + 8 10B + 12 10B + 12 10B + 12

Table 3. The Minimum Number of Active S-boxes in GFSimp
d , assuming B > 2

rounds GFSimp
6 GFSimp

8 GFSimp
10 GFSimp

12 GFSimp
14 GFSimp

16

1 0 0 0 0 0 0

2 1 1 1 1 1 1

3 2 2 2 2 2 2

4 B + 1 B + 1 B + 1 B + 1 B + 1 B + 1

5 B + 3 B + 3 B + 3 B + 3 B + 3 B + 3

6 2B + 2 2B + 2 2B + 2 2B + 2 2B + 2 2B + 2

7 2B + 4 2B + 4 2B + 4 2B + 4 2B + 4 2B + 4

8 4B + 2 4B + 3 4B + 3 3B + 3 4B + 3 4B + 3

9 4B + 4 4B + 6 5B + 4 3B + 6 5B + 4 5B + 6

10 4B + 6 5B + 4 6B + 4 5B + 4 7B + 2 7B + 5

11 4B + 8 5B + 7 6B + 6 5B + 7 7B + 5 8B + 8

12 6B + 2 7B + 4 7B + 10 7B + 4 9B + 4 10B + 4

13 6B + 3 7B + 5 8B + 4 8B + 5 10B + 4 11B + 5

14 6B + 8 8B + 4 9B + 3 9B + 8 11B + 5 12B + 3

15 6B + 10 8B + 6 9B + 5 9B + 12 11B + 8 12B + 10

16 8B + 6 9B + 5 10B + 4 10B + 10 13B + 6 15B + 1

17 8B + 8 9B + 7 10B + 6 10B + 14 14B + 6 15B + 3

18 8B + 10 10B + 6 12B + 5 12B + 8 16B + 3 17B + 2
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Case 2-1. If D
(i+2)
j+2 �= 0, then D

(i+1)
j+3 + D

(i+3)
j+3 ≥ 1. We consider the following

two cases.
Case 2-1-1. If D

(i+1)
j+3 �= 0, then D

(i+1)
j+3 + D

(i)
j+4 + D

(i+2)
j+4 ≥ BD. Also, D

(i+3)
j+1 +

D
(i+2)
j+2 +D

(i+4)
j+2 ≥ BD, D

(i+1)
j+1 +D

(i)
j+2 ≥ 1, and D

(i+4)
j +D

(i+5)
j+1 ≥ 1. Therefore,

we have Σ
d/2−1
s=0 Σi+5

t=i D
(t)
s ≥ 2BD + 2.

Case 2-1-2. If D
(i+3)
j+3 �= 0, then D

(i+4)
j+2 + D

(i+5)
j+3 ≥ 1. Also, D

(i+2)
j + D

(i+1)
j+1 +

D
(i+3)
j+1 ≥ BD, D

(i+2)
j+2 + D

(i+1)
j+3 + D

(i+3)
j+3 ≥ BD, and D

(i+4)
j + D

(i+5)
j+1 ≥ 1.

Thus, we obtain Σ
d/2−1
s=0 Σi+5

t=i D
(t)
s ≥ 2BD + 2.

Case 2-2. If D
(i+4)
j+2 �= 0, then D

(i+4)
j+2 + D

(i+3)
j+3 + D

(i+5)
j+3 ≥ BD. Also, D

(i+2)
j +

D
(i+1)
j+1 +D

(i+3)
j+1 ≥ BD, D

(i+1)
j−1 +D

(i)
j ≥ 1, and D

(i+4)
j +D

(i+5)
j+1 ≥ 1. Therefore,

we have Σ
d/2−1
s=0 Σi+5

t=i D
(t)
s ≥ 2BD + 2.

Considering all cases, we conclude that any six consecutive rounds in GFSstd
d

have at least 2BD +2 differential active S-boxes when there is at least one active
F-function in the (i+2)-th round. Similarly, in the case that there exists at least
one active F-function in the (i + 3)-th round, we have the same bound. Finally,
we conclude that any six consecutive rounds in GFSstd

d have at least 2BD + 2
differential active S-boxes. 
�
All cases used for this proof of the minimum number of active S-boxes in six
rounds of GFSstd

4 are shown in Figs. 9-13. In these figures, the F-function indi-
cated by the bold line is determined to be active and the F-function indicated
by the dotted line is determined to be non-active. Also, there is at least one ac-
tive S-box in the area encircled by dotted line, and there are at least BD active
S-boxes in the area encircled by chain line.
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Fig. 8. Six Rounds of GFSstd
d (Untwisted Form)
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