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ON THE DIMENSION OF INJECTIVE BANACH SPACES

S. ARGYROS

Abstract. The purpose of this note is to give an affirmative answer, assuming the

generalized continuum hypothesis, to a problem of H. Rosenthal on the cardinality

of the dimension on injective Banach spaces.

The problem in question is contained in [4, Problem 7.a]; in this connection we

prove the following result.

Theorem 1. Assume the G.C.H. If X is an infinite dimensional injective Banach

space with dim X = a, then a" = a.

We start with some preliminaries.

We denote cardinals by a, ß; w denotes the cardinality of natural numbers. We

denote by a" the cardinality of the family of countable subsets of a. For a cardinal

a, we denote by cf(a) the least cardinal ß such that a is the cardinal sum of ß

many cardinals, each smaller than a. A cardinal a is regular if a = cf(a), and

singular if cf(a) < a. The least cardinal strictly greater than ß is denoted by ß +.

The cardinality of a set A is denoted by \A\. The generalised continuum hypothesis

(G.C.H.) is the statement that a+ = 2" for all infinite cardinals a.

A real Banach space X is injective if for every Banach space Y and every

bounded linear isomorphism T: X -» Y, there is a bounded linear projection

P:Y^> T(X). If T is a set, we denote by lx(Y) the Banach space of real-valued

functions on Y which are absolutely summable. If X is a Banach space we denote

with dim X the least cardinal a such that there is a family F = {x{: £ < a} of

elements of X with the property that X is the closed linear span of F.

Lemma 2. Let X be an injective Banach space with dim X = a. Then I l(a) is

isomorphic to a subspace of X*.

Proof. Since A' is a complemented subspace of C(S) for some compact space 5,

X* is a complemented subspace of LX(X) for some measure X. So the conclusion is a

direct consequence of Theorem 2.5 of [3].

Proof of Theorem 1. Let us assume that the conclusion is false. Then there is

an injective Banach space X with dim X = a and a" > a. Under the G.C.H.,

a" > a means that cf(a) = w and since lx(N) is isomorphic to a subspace of X [5]

it follows that a > cf(a).

We choose a sequence (oc,: tj < w) of regular cardinals such that a, = w+,

«„+, > 2^ and 2„<u a, = a.

Received by the editors December 7, 1978 and, in revised form, March 16, 1979.

AMS (MOS) subject classifications (1970). Primary 46B05; Secondary 06A40.

© 1980 American Mathematical Society

0002-9939/80/0000-0076/S01.SO

267

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



268 S. ARGYROS

From Lemma 2 there is a family {e{: | < a} of elements of the unit ball of X*

equivalent to the canonical basis for / '(a).

Let, also, {xf: £ < a) be a norm dense subset of A". Using finite induction we

choose a family {Av: -q < u] of subsets of a such that:

fîM,C {£«,< $<<«,.,.,},
(ii) M„| > 2, and

(iii) for tj < w and £,, |2 G ^n

e£,(xf ) = ei/xf )   for a11 £ < <V

For every ti < « we choose ¿Í1 =^ £^ elements of Av, and we set e,, = e(J - e^.

Then the sequence {ev: t/ < «} converges weak* to 0 G A1*, and since A" is

injective, {e^: 17 < to} is in fact weakly convergent [2]. On the other hand, {ev:

n < w} is equivalent to the usual basis for /'(N), a contradiction.

Remark 1. As the referee has remarked, the proof shows immediately the

following more general statement:

If X is an t„ Grothendieck space, then under the G.C.H. we have (dim X)a =

dim X. (Recall that a Banach space A" is a Grothendieck space if every sequence in

X* which is weak* convergent necessarily converges weakly.)

Remark 2. We do not know what happens without any set-theoretical assump-

tion. In this direction we proved in [1] the following.

Theorem A. // X is an injective Banach space in which each weakly compact

subset is separable and dim X = a then aa = a.

Theorem B. Let a be a cardinal and X be an injective Banach space such that

I l(a) is isomorphic to a subspace of X. Then X contains isomorphically a copy of

/'(«")•
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