ON THE DIMENSION OF INJECTIVE BANACH SPACES

S. ARGYROS

ABSTRACT. The purpose of this note is to give an affirmative answer, assuming the generalized continuum hypothesis, to a problem of H. Rosenthal on the cardinality of the dimension on injective Banach spaces.

The problem in question is contained in [4, Problem 7.a]; in this connection we prove the following result.

THEOREM 1. Assume the G.C.H. If X is an infinite dimensional injective Banach space with dim $X = \alpha$, then $\alpha^{\omega} = \alpha$.

We start with some preliminaries.

We denote cardinals by α , β ; ω denotes the cardinality of natural numbers. We denote by α^{ω} the cardinality of the family of countable subsets of α . For a cardinal α , we denote by $cf(\alpha)$ the least cardinal β such that α is the cardinal sum of β many cardinals, each smaller than α . A cardinal α is *regular* if $\alpha = cf(\alpha)$, and *singular* if $cf(\alpha) < \alpha$. The least cardinal strictly greater than β is denoted by β^+ . The cardinality of a set A is denoted by |A|. The generalised continuum hypothesis (G.C.H.) is the statement that $\alpha^+ = 2^{\alpha}$ for all infinite cardinals α .

A real Banach space X is injective if for every Banach space Y and every bounded linear isomorphism $T: X \to Y$, there is a bounded linear projection $P: Y \to T(X)$. If Γ is a set, we denote by $l^{1}(\Gamma)$ the Banach space of real-valued functions on Γ which are absolutely summable. If X is a Banach space we denote with dim X the least cardinal α such that there is a family $F = \{x_{\xi}: \xi < \alpha\}$ of elements of X with the property that X is the closed linear span of F.

LEMMA 2. Let X be an injective Banach space with dim $X = \alpha$. Then $l^{1}(\alpha)$ is isomorphic to a subspace of X^{*} .

PROOF. Since X is a complemented subspace of C(S) for some compact space S, X^* is a complemented subspace of $L^1(\lambda)$ for some measure λ . So the conclusion is a direct consequence of Theorem 2.5 of [3].

PROOF OF THEOREM 1. Let us assume that the conclusion is false. Then there is an injective Banach space X with dim $X = \alpha$ and $\alpha^{\omega} > \alpha$. Under the G.C.H., $\alpha^{\omega} > \alpha$ means that $cf(\alpha) = \omega$ and since $l^{\infty}(\mathbb{N})$ is isomorphic to a subspace of X [5] it follows that $\alpha > cf(\alpha)$.

We choose a sequence $\{\alpha_{\eta}: \eta < \omega\}$ of regular cardinals such that $\alpha_1 = \omega^+$, $\alpha_{\eta+1} > 2^{\alpha_{\eta}}$ and $\sum_{\eta < \omega} \alpha_{\eta} = \alpha$.

AMS (MOS) subject classifications (1970). Primary 46B05; Secondary 06A40.

Received by the editors December 7, 1978 and, in revised form, March 16, 1979.

^{© 1980} American Mathematical Society 0002-9939/80/0000-0076/\$01.50

From Lemma 2 there is a family $\{e_{\xi}: \xi < \alpha\}$ of elements of the unit ball of X^* equivalent to the canonical basis for $l^1(\alpha)$.

Let, also, $\{x_{\xi}: \xi < \alpha\}$ be a norm dense subset of X. Using finite induction we choose a family $\{A_n: \eta < \omega\}$ of subsets of α such that:

(i) $A_{\eta} \subset \{\xi: \alpha_{\eta} < \xi < \alpha_{\eta+1}\},\$ (ii) $|A_{\eta}| > 2$, and (iii) for $\eta < \omega$ and $\xi_1, \xi_2 \in A_{\eta}$ $e_{\xi_1}(x_{\xi}) = e_{\xi_2}(x_{\xi})$ for all $\xi < \alpha_{\eta}$.

For every $\eta < \omega$ we choose $\xi_1^{\eta} \neq \xi_2^{\eta}$ elements of A_{η} , and we set $e_{\eta} = e_{\xi_1^{\eta}} - e_{\xi_2^{\eta}}$. Then the sequence $\{e_{\eta}: \eta < \omega\}$ converges weak* to $0 \in X^*$, and since X is injective, $\{e_{\eta}: \eta < \omega\}$ is in fact weakly convergent [2]. On the other hand, $\{e_{\eta}: \eta < \omega\}$ is equivalent to the usual basis for $l^1(\mathbb{N})$, a contradiction.

REMARK 1. As the referee has remarked, the proof shows immediately the following more general statement:

If X is an \mathcal{L}_{∞} Grothendieck space, then under the G.C.H. we have $(\dim X)^{\omega} = \dim X$. (Recall that a Banach space X is a Grothendieck space if every sequence in X^* which is weak* convergent necessarily converges weakly.)

REMARK 2. We do not know what happens without any set-theoretical assumption. In this direction we proved in [1] the following.

THEOREM A. If X is an injective Banach space in which each weakly compact subset is separable and dim $X = \alpha$ then $\alpha^{\omega} = \alpha$.

THEOREM B. Let α be a cardinal and X be an injective Banach space such that $l^{1}(\alpha)$ is isomorphic to a subspace of X. Then X contains isomorphically a copy of $l^{1}(\alpha^{\omega})$.

References

1. S. Argyros, Weak compactness in $L^{1}(\lambda)$ and injective Banach spaces (to appear).

2. A. Grothendieck, Sur les applications lineaires faiblement compactes d'espaces du type C(K), Canad. J. Math. 5 (1953), 129–173.

3. R. Haydon, On dual L¹-spaces and injective bidual Banach spaces, Israel J. Math. 31 (1979), 142-152.

4. H. P. Rosenthal, On injective Banach spaces $L^{\infty}(\mu)$ for finite measures μ , Acta Math. 124 (1970), 205-247.

5. _____, On relatively disjoint families of measures with some applications to Banach spaces theory, Studia Math. 37 (1970), 13-36.

CHAIR I OF MATHEMATICAL ANALYSIS, ATHENS UNIVERSITY, PANEPISTIMIOPOLIS, ATHENS 621, GREECE