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ON THE DIMENSION OF SPLINE SPACES
ON PLANAR T-MESHES

BERNARD MOURRAIN

ABSTRACT. We analyze the space qu,m/(T) of bivariate functions that are
piecewise polynomial of bi-degree < (m, m’) and of smoothness r along the in-
terior edges of a planar T-mesh 7. We give new combinatorial lower and upper
bounds for the dimension of this space by exploiting homological techniques.
We relate this dimension to the weight of the maximal interior segments of
the T-mesh, defined for an ordering of these maximal interior segments. We
show that the lower and upper bounds coincide, for high enough degrees or for
hierarchical T-meshes which are regular enough. We give a rule of subdivision
to construct hierarchical T-meshes for which these lower and upper bounds co-
incide. Finally, we illustrate these results by analyzing spline spaces of small
degrees and smoothness.

INTRODUCTION

Standard parametrisations of surfaces in Computer Aided Geometric Design are
based on tensor product B-spline functions, defined from a grid of nodes over a
rectangular domain [I1I]. These representations are easy to control but their re-
finement has some drawback. Inserting a node in one direction of the parameter
domain implies the insertion of several control points in the other directions. If,
for instance, regions along the diagonal of the parameter domain should be refined,
this would create a fine grid in some regions where it is not needed. To avoid this
problem, while extending the standard tensor product representation of CAGD,
spline functions associated to a subdivision with T-junctions instead of a grid, have
been studied. Such a T-mesh is a partition of a domain (2 into axis-aligned boxes,
called the cells of the T-mesh.

The first type of T-splines introduced in [20,21], are defined by blending functions
which are products of univariate B-spline basis functions associated to some nodes
of the subdivision. They are piecewise polynomial functions, but the pieces where
these functions are polynomial do not match with the cells of the T-subdivision.
Moreover, there is no proof that these piecewise polynomial functions are linearly
independent. Indeed, [3] shows that in some cases, these blending T-spline func-
tions are not linearly independent. Another issue related to this construction is
that there is no characterization of the vector space spanned by these functions.
For this reason, the partition of unity property which is useful in CAGD is not avail-
able directly in this space. The spline functions have to be replaced by piecewise
rational functions, so that these piecewise rational functions sum to 1. However,
this construction complexifies the practical use of such T-splines.
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Being able to describe a basis of the vector space of piecewise polynomials of a
given smoothness on a T-mesh is an important but non-trivial issue. It yields a
construction of piecewise polynomial functions on the T-subdivision which form a
partition of unity so that the use of piecewise rational functions is not required. It
has also a direct impact in approximation problems such as surface reconstruction
[5] or isogeometric analysis [14], where controlling the space of functions used to ap-
proximate a solution is critical. In CAGD, it also provides more degrees of freedom
to control a shape. This explains why further works have been developed to under-
stand better the space of piecewise polynomial functions with given smoothness on
a T-subdivision.

To tackle these issues special families of splines on T-meshes have been studied.
In [6] and [§], these splines are piecewise polynomial functions on a hierarchical
T-subdivision. They are called PHT-splines (Polynomial Hierarchical T-splines).
Dimension formulae of the spline space on such a subdivision have been proposed
when the degree is high enough compared to the smoothness [0], [13], [I6] and in
some cases for biquadratic C! piecewise polynomial functions [7]. The construction
of a basis is described for bicubic C'! spline spaces in terms of the coefficients of the
polynomials in the Bernstein basis attached to a cell. When a cell is subdivided
into 4 subcells, the Bernstein coefficients of the basis functions of the old level are
modified and new linearly independent functions are introduced, using Bernstein
bases on the cells at the new level.

In this paper, we analyse the dimension of the space Sy, .., (T) of bivariate func-
tions that are piecewise polynomial of bi-degree < (m, m’) of smoothness r along the
interior edges of a general planar T-mesh 7T, where r is a smoothness distribution
on 7.

As we will see, computing this dimension reduces to compute the dimension of
the kernel of a certain linear map (namely the map dy introduced in Section 2).

Thus for a given T-mesh, a given smoothness distribution r and a given bi-degree
(m,m'), it is possible to compute the dimension of Sy, .,(T) by linear algebra tools
(see e.g. a software implementation developed by P. Alfed] for such computations).
We would like to avoid a case-by-case treatment and to describe this dimension in
terms of combinatorial quantities attached to 7 and easy to evaluate. As shown in
[17] or [1], the dimension may also depend on the geometry of the T-mesh and not
just on its topology. This explains why it is not always possible to provide a purely
combinatorial formula for the dimension of Sy, . (T).

The main results in this paper are:

e a description of the dimension in terms of a combinatorial part that depends
only on the topology of the T-mesh and an homological part that takes into
account the fact that the dimension may depend on the geometry of the
T-mesh (Theorem B.Tl);

e combinatorial lower and upper bounds on the dimension that are easy to
evaluate (Theorem [3.7));

e sufficient conditions under which the lower and upper bounds coincide so
that the dimension depends only on the topology of the T-mesh (Theorem

B9).

Ihttp://www.math.utah.edu/~pa/MDS/index.html
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We proceed as follows. By extending homological techniques developed in [2]
and [I9], we obtain combinatorial lower and upper bounds on the dimension of
these spline spaces for general T-subdivisions. We relate the upper bound to the
maximal interior segments and their weights and show that the lower and upper
bounds coincide for T-meshes which are regular enough. Namely, if a T-mesh is
(m + 1,m’ + 1)-weighted, the dimension depends directly on the number of faces,
interior edges and interior points. In particular, we obtain the dimension formula
for a constant smoothness distribution r = (r,7') with m > 2r + 1 and m' >
2r" + 1, providing a new proof of a result also available in [6], [I3], [16] for a
hierarchical T-mesh. The algebraic approach gives an homological interpretation
of the method called the Smoothing Cofactor-Conformality method in [23]. It
allows us to generalize the dimension formulae obtained by this technique; see [16]
and [I3]. We also give a rule of subdivision to construct hierarchical T-meshes for
which the lower and upper bounds coincide. As a consequence, we can recover
the dimension of the space of Locally Refined splines described in [9]. We do not
consider the problem of constructing explicit bases for these spline spaces, which
will be analyzed separately.

In the first section, we recall the notation and the polynomial properties which
are needed in the following. Section [ describes the chain complex associated to
the spline space and analyzes its homology. In Section Bl we give lower and upper
bounds on the dimension of the spline space and analyze cases where these bounds
coincide. Section [] deals with the properties of hierarchical T-meshes, obtained by
recursive subdivisions of cells. In the last section, we analyse some examples for
small degree and smoothness.

1. PLANAR T-SPLINES

In the following, we will deal with notions which are of topological and algebraic
nature. We start by the topological definitions.

1.1. T-meshes. For any set S C R2, S is its closure for the usual topology, S° its
relative interior, 9SS its boundary.
We define a T-mesh 7 of R? as:

e a finite set 73 of closed axis-aligned rectangles of R2,
e a finite set 77 of closed axis-aligned segments included in UaeTg Jdo,
e a finite set of points 7o = or,

such that:

e For o € 75, Oo is the finite union of elements of 77.
e For 0,0’ € T3 with 0 # ¢/, 0 No’ = o N O’ is the finite union of elements
of 71 U 7.
e For .7/ e Ty witht# 7, 7N7' =9drNdr’ C Tp.
We denote by Q = J,c7, 0 C R? and call it the domain of the T-mesh 7.
The elements of Ty are called 2-faces or cells and their number is denoted fs.
The elements of 7; are called 1-faces or edges. An element of 77 is called an
interior edge if it intersects Q°. It is called a boundary edge otherwise. The set of
interior edges is denoted by 7,°. The number of edges in 77 is fi and the number
of interior edges is f7.
An edge parallel to the first (resp. second) axis of R? is called horizontal (resp.
vertical). Let 7" (resp. 7:"") be the set of horizontal (resp. vertical) interior

T€TL
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edges and fJ (resp. fV) the number of interior horizontal (resp. vertical) edges.
Then, the number of interior edges is f? = fI + f7.

The elements of Ty are called 0-faces or vertices. A vertex is interior if it is in
Q°. It is a boundary vertex otherwise. The set of interior vertices is denoted 7.
We denote by fy the number of vertices of 7y and by f§ the number of interior
vertices.

A vertex is a crossing vertex if it is an interior vertex and belongs to 4 distinct
elements of 7;. A vertex is a T-vertex if it is an interior vertex and belongs to
exactly 3 distinct elements of 7;. Let f;" (vesp. f&) be the number of crossing
(resp. T) vertices. A boundary vertex is a vertex in 7o N 0. The number of
boundary vertices is f. A vertex is a corner vertex if it belongs to 9Q and to a
vertical and a horizontal boundary edge.

To simplify the definitions and remove redundant edges, we will assume that any
vertex v € Ty belongs at least to one horizontal edge T,(y) € T1 and one vertical
edge 7,(y) € T1.

We denote by vp(T) = {s1,...,5} C R (resp. v,(T) = {t1,...,tm} C R) the
set of first (resp. second) coordinates of the points in vertical (horizontal) segments
€ T (vesp. € T{"). The elements of v (T) (vesp. v,(T)) are called the horizontal
(resp. vertical) nodes of the T-mesh T.

Example 1.1. Let us illustrate the previous definitions on the following T-mesh:

kg

In this example, there are fo = 7 rectangles, f{ = 9 interior edges such that fJ' = 4
are horizontal and f{ = 5 are vertical. There are f§ = 3 interior points 1, y2,vs;
71,73 are T-vertices and ~, is a crossing vertex. There are f& = 15 boundary
vertices and 12 corner vertices.

The horizontal nodes are vy, (7) = {0, ...,5} and the vertical nodes are v, (T) =

{0,...,4}.

For our analysis of spline spaces on T-meshes, we assume the following:
Assumption: The domain ) is simply connected and 2° is connected.

This implies that {2 has one connected component with no “hole” and that the
number of boundary edges through a boundary vertex is 2.

1.2. T-splines. We are now going to define the spaces of piecewise polynomial
functions on a T-mesh, with bounded degrees and given smoothness. An element
in such a space is called a spline function.

Definition 1.2. A smoothness distribution on a T-mesh T is a pair of maps (rp, r,)
from (vp(T) X v,(T)) to N x N.
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For convenience, we will define the smoothness map r on 77 as follows: for any
7 € TP (vesp. 7 € T), v(7) = r(s) (resp. r(7) = r,(t)) where s € vp,(T) (resp.
t € v, (T)) is the first (resp. second) coordinate of any point of 7. We will also define
the horizontal and vertical smoothness on 7y as follows: for any v = (s,t) € To,
ra(7) = 1(s) and 1, () = 1, (t)

For r,r" € N, we say that r is a constant smoothness distribution equal to (r, ')
if Vs € up(T),x(s) =r, Vt € v, (T),xr(t) =7’

Let R = R[s,t] be the polynomial ring with coefficients in R. For m,m’ € N,
we denote by Ry, m/ = R m) the vector of polynomials in R of degree < m in s
and < m/ in ¢t. An element of R,, ,, is of bi-degree < (m,m’).

The goal of this paper is to analyse the dimension of the space of splines of
bi-degree < (m,m') and of smoothness r on a T-mesh 7, that we define next.

Definition 1.3. Let 7 be a T-mesh and r a node smoothness distribution. We
denote by Sy, ../ (T) the vector space of functions which are polynomials in Ry,
on each cell 0 € T3 and of class r(7) in s (resp. in t) at any point of 7N Q° if 7 is
a vertical (resp. horizontal) interior edge.

We will say that f € Sy, ,,/(T) is of (continuity) class C* on 7. We notice that
the boundary edges and their smoothness are not involved in the characterization
of a spline function.

Example 1.4. We consider again the T-mesh of Example [Tl If we take the node
smoothness distribution ry(1) = 1, rp(2) = 0, rp(3) = rp(4) = rp(5) =1, and r,,
constant equal to 1, then 83 3(7) is the vector space of bicubic piecewise polynomial
functions on 7 which are C! in s for s < 2 and s > 2, continuous for s = 2 and C!
in t in Q°.

1.3. Polynomial properties. We recall here basic results on the dimension of the
vector spaces involved in the analysis of Sy, .. (T):

For any 7 € Ty, let I € R be a non-zero polynomial (of degree 1) defining the
line supporting the edge 7. Let A*(7) = EMF We denote by J*(7) = (A*(7))
the ideal generated by the polynomial A™(7) € R and by 37, .., (7) = 3°(7) N Ry
its part of bi-degree < (m,m’). Notice that J3*(7) defines the line supporting the
egde 7 with multiplicity (r(7) + 1). By definition, two horizontal (resp. vertical)
edges 71, T2 which share a point define the same ideal 3"(m) = J3"(72). We define
the bi-degree § for any edge 7 € 77 as follows:

e §(1) = (r(r) + 1,0) if 7 is vertical,
e §(7) = (0,r(7) + 1) if 7 is horizontal.

Let 3°(y) = 3"(1y) + 3(1) = (A"(7), A" (7)) where 7,7, € T1 are vertical
and horizontal edges such that 7, N 75, = {7}. The ideal J3"(y) defines the point
with multiplicity (rn(y) +1) x (ro(y) +1). We denote by T}, ... (v) =7, .. (7o) +
35 (). Notice that these definitions are independent of the choice of the vertical
edge 7, and horizontal edge 7, which contain . The bi-degree of a vertex v € Ty
is 0(y) = (xn(7) + 1, ro(7) +1).

Here are the basic dimension relations that we will use to analyse the spline
functions on a T-mesh.

Lemma 1.5.
o dimRy, mr = (m+1) x (M +1).
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. - [ (m+1) x (min(r(r),m’) +1) ifr €T,
e dim (Rm,m’/mem/ (T)) { (m n(r(TX’ L ) e 1
e dim (Rm,m’/jfn,m' (7)) = (min(ry(7y), m) + 1) x (min(r,(y), m’) + 1) for all
v €T

Proof. To obtain these formulae, we directly check that
e a basis of R,/ is the set of monomials s with0<i<m,0<j<m;
e a basis of Ry, /T, ./ (7) is the set of monomials s¢7 with 0 <4 < m and
0 < j < min(r(r), ’) if 7 € T (resp. 0 <i < min(r(7),m), 0<j<m'if
TeTY);
e a basis of Ry, m/3J}, ./ (7) is the set of monomials st/ with 0 < i <
min(ry(y),m), 0 < j < min(r, (), m’).
since the ideal of an edge 7 € 7; is up to a translation (s*(7)F1) or (#F(1)+1), 0

An algebraic way to characterize the C*-smoothness is given by the next lemma:

Lemma 1.6 ([2]). Let 7 € T1 and let p1,pa be two polynomials. Their derivatives
coincide on T up to order r(7) iff p1 — p2 € I°(7).

In the following, we will need algebraic properties on univariate polynomials.
We denote by U = R[u] the space of univariate polynomials in the variable v with
coefficients in R. Let U,, denote the space of polynomials of U of degree < n. For
a polynomial g € U of degree d and an integer n > d, g U, _4 is the vector space of
multiples of g which are of degree < n. For polynomials gl, ..., gx € U respectively
of degree di,...,d; and an integer n > max;—; . 1 d;, Zz 1 9i Un—_q, is the vector
space of sums of multiples of g; of degree < n.

We will use the apolar product defined on U,, by

" /n
where f = 3" fiu', g = > i, giu’ € Rlu],. One of the properties that we will
need is the following [I8], [I5], [10]:

Lemma 1.7. Let g € U,, d <n and a € R. Then g is orthogonal to (u— a)?U,_q4
for the apolar product iff

Fgla)=0,k=0,...,n—d.
Proposition 1.8. Letay,...,a; € R bel distinct points and dy,...,d; € N . Then

! !
dim <Z(u - ai)diUn_di> = min(n + 1, Zn —d; +1).

i=1 i=1

Proof. In order to compute the dimension of V := Zézl(u —a;)U,_4 C Uy, we

compute the dimension of the orthogonal V= in U, of V for the apolar product.
Let g € U, be an element of the orthogonal V+ of V. By Lemma [[L7, 0%g(a;) =
0,k=0,...,n—d;,i=1,...,1. In other words, g is divisible by (u — a;)"~%*! for
1=1,...,1. As the points a; are distinct, g is divisible by
l
I .= H(u _ ai)n—dﬁ-l.
i=1
Conversely, any multiple of IT of degree < n is in V. Thus V+ = (II) N U,,.
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This vector space V* of multiples of II in degree n is of dimension max(0,n +
1 — deg(II)), so V is of dimension
n+ 1 —max(0,n + 1 — deg(II)) = min(n + 1, deg(II))
!
:min(n—i—l,Zn—di—i—l). O
i=1

We are going to use an equivalent formulation of this result:

! !
(1.1) dim (Un/Z(u—ai)?Undi> = (n—l—l—z:n—di—i—l)Jr7
i=1 =1

where for any a € Z, a; = max(0,a). A similar result is proved in [I6, Lemma
2] when all d; are equal to d, by analyzing the coefficient matrix of generators of
S (u—ai) Uy

1.4. Maximal interior segments. In order to simplify the analysis of S¥, . (T),
we introduce the following definitions: '

For any interior edge 7 € T,°, we define p(7) as the mazimal segment made of
edges € T,° of the same direction as 7, which contains 7 and such that their union is
connected. We say that the maximal segment p(7) is interior if it does not intersect
the boundary of Q.

As all the edges belonging to a maximal segment p have the same supporting
line, we can define A*(p) = A*(r) for any edge 7 belonging to p = p(7).

The set of all maximal interior segments is denoted by MIS(7). The set of
horizontal (resp. vertical) maximal interior segments of 7 is denoted by Mis,(T)
(resp. MIS,(T)).

The degree of p € M1S(7) is by definition 6(p) = d(7) for any 7 C p.

For each interior vertex v € 75, which is the intersection of a horizontal edge
Tn € T° with a vertical edge 7, € 7%, let pn () (resp. py(7)) is the corresponding
horizontal (resp. vertical) maximal segment. We denote by A} () (resp. A%L(Y))
the equations of the corresponding supporting lines to the power rp(y) + 1 (resp.
r,(vy)+1).

Notice that the intersection of two distinct maximal interior segments is either
a T-vertex or a crossing vertex.

We say that p € Mmi1s(T) is blocking p’ € MIS(T) if one of the end points of p’ is
in the interior of p.

Example 1.9. In the figure below, the maximal interior edges are indicated by
plain segments.
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In this example, p; is blocking p4 and ps is blocking ps.

2. TOPOLOGICAL CHAIN COMPLEXES

In this section, we describe the tools from algebraic topology, that we will use.
For more details, see e.g. [22] and [12].

2.1. Definitions. We consider the following complexes:

| | |
o (T) 0—— P 73 (1) ———= D DT (1) —=0
j T€’7"10 ,Y€’7"00
R (T) 1 P 0] R — 2> @ R —— 2 P 1 R ——0
o€T2 TeTY YETE

l i |

& (T°) @ [0) R = @ [T1Rmm [ Ty (T) = @ VR /T () =0
c€T2 TETY 767‘0"

v v v

0 0 0

The different vector spaces of these complexes are obtained as the components
in bi-degree < (m, m’) of R-modules generated by (formal) independent elements
[0], [7], [7] indexed respectively by the faces, the interior edges and interior points
of T. An oriented edge 7 € Ty is represented as: [r] = [ab] where a,b € Ty are the
end points. The opposite edge is represented by [ba]. By convention, [ba] = —[ab].

The maps of the complex R,/ (T°) are defined as follows:

e for each face o € T3 with its counterclockwise boundary formed by edges

T =a1a9,..., 71 =qay, 02(0) =[m]| B ®[n] = [a1a2] B - - - B [qra1];
e for each interior edge 7 € T{° from 1 to 2 € To, 01([7]) = [y2] — [y1] where
] =0if v & Tg’;

o for each interior point v € 7, 30([’)’}) =0.

By construction, we have 9; 0 ;41 = 0 for ¢ = 0,1. The maps of the complex
Jr.m (T°) are obtained from those of Ry, (T°) by restriction, those of the com-

plex &7, ./ (T°) are obtained by taking the quotient by the corresponding vector
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spaces of jfn’m,('T"). The corresponding differentials of the complex are denoted
;.

For each column of the diagram, the vertical maps are respectively the inclusion
map and the quotient map.

The complex R,y (T°) is also known as the chain complex of T relative to its
boundary 97.

Example 2.1. We consider the following subdivision 7 of a rectangle :

‘We have
. %([U]ID = 1B + [Bsm], 02([o2]) = [n1B2] + [Bim), O2([os]) = [v1Bs] +
2711,
o A ([B1m]) = 1), 01([Bam]) = [m], 0u([Bs 1] = [m],
° 30([71]) =0.

This defines the following complex:
SRm,m’(’]—): @?zl[ai]Rm,m’ - @?:1[51’71]Rm,m’ — [’Yl]Rm,m’ — 0.

The matrices of these maps in the canonical (monomial) bases are

-1 I 0
@=( 0o -1 1 )Jl=(1 1 1),
I 0 -I
where T is the identity matrix of size (m + 1) x (m’ + 1) (i.e., the dimension of

Ry ).
Let us consider the case where v; = (0,0), (m,m’) = (2,2) and r is the constant
distribution (1,1) on 7. The matrices of the complex G%%(T) are

=[] [I] 0

[02] = 0 —[] [L] |,[&]=([~] [P] [P]),
Ms] 0 —[I]
where [II;] (resp. [P;]) are the matrices of the projections
Hl = H3 : R272 — Rng/(SQ) HQ : RQ)Q — RQ)Q/(t2)
p +— p mod s> p +— p mod t?

P1:P3:R2’2/(82) — R2,2/(82,t2> P2:R2)2/(t2> — R272/(82,t2)
p mods? — p mod (s2,t?) p modt? ~— p mod (s2,t2).

The matrices II; are of size 12 x 16 and the matrices P; are of size 9 x 12.
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2.2. Their homology. In this section, we analyse the homology of the different
complexes. The homology of a chain complex of a triangulation of a (planar)
domain is well known [22, Chap. 4], [I2, Chap. 2]. Since, it is not explicit in the
literature, we give in the appendix a simple proof of the exactness of R,y (T°).

2.2.1. The 0-homology. We start by analysing the homology on the vertices.
Lemma 2.2. Ho(Rn,m (T°)) = Ho(67, ,,.,(T°)) =0

Proof. By Proposition [D.1lin the appendix, we have Ho(Ry e (T°)) = 0. Taking
the quotient by J7, . (7;), we still get that 0, is surjective so that Ho(&7, ,,..(T°)) =

0. ]

We describe the following in more detail:

Ho(3, 0 (T%)) = @ MT*()/0:( P [7137(7)).

YETY TETY

We consider the free R-module generated by the half-edge elements [y|7], for all
interior edges 7 € T? and all vertices v € 7. By convention [y|7] =0 if v € 99.

For v € 79, let En(7y) (resp. E,(7)) be the set of horizontal (resp. vertical)
interior edges that contain vy and let E(v) = Ex(y) U E,(y). We consider first the
map

v @ VT Rm,my—sry = [V T (0),
TEE(7y)
DIl = A

By definition of 37, (), this map is surjective. Its kernel is denoted &7, .. (7).
Let Py(vy) (resp. P,(y)) be the set of pairs (7,7') of distinct horizontal (resp.
vertical) interior edges which contain « (with (7, 7’) identify to (7/,7)). We denote
by P(y) = Pn(y) U Py(y). If v is a T-junction, one of the two sets is empty and
the other is a singleton containing one pair. If v is a crossing vertex, each set is a
singleton.

The following proposition gives an explicit description of the kernel &7, . (),
that we will exploit hereafter.

Proposition 2.3.

man (V)= > (I = D By —é(r)
(r,7")EP(v)
+ Z ([vI7] Ar(T/) - [7‘7/] AF(T))R(M—T—l,m’—r’—l)~

TEER(Y),T'€EEL(7)

Proof. Let us suppose first that v is a crossing vertex. We denote by 7,75 the
horizontal edges, 73,74 the vertical edges at . The matrix of the map ¢, in the
basis [vy|7;] is
= (A A & &)

where A = A*(1ry) = A*(r1,), A’ = A¥(r3) = A"(14). Since A and A’ have
no common factor, the kernel of the matrix [p,] is generated by the elements
[YIm1] = [vIm2l, [yl AT — [yl7s] A, [y]7s] — [y|7a], which give the description of
R, (7) in bi-degree < (m,m’). A similar proof applies when there is no horizontal
or vertical pair of distinct edges at y. This proves the result. (Il
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We use the maps (¢ ),e7e to define
o B DI R = D 01T
YETY TEE, vETy

so that we have the following exact sequence:

0= P &) = B P W Ronmny—sr) = ED 35 (7) — 0.

VETY V€T TEE(Y) VEeTY
Using this exact sequence, we can now identify @767—10 (7] 35, o (7) with the quotient
@ @ [’7'7—] R(m,m’)fd(‘r)/ Z ﬁ:n,m’ (’7)
YETY TEE, YET?

The next proposition uses this identification and Proposition to describe
more explicitly Ho(J7, ./ (T°)):

Proposition 2.4. We have

Ho( m,m/ (TO)) = @ @ [’Y|T} R(m,m’)—é(T)

€Ty T€E(Y)

/ > (I = DD Rimmny o)
(

7,7 )EP(v)

+ Y (DI = I Renmn-ain)

T=(v,7)ETY

+ Z (IIT]AT (") = [T AT (7)) R ,mr)—5(+)

TEEL(Y), T €EL (V)

Proof. The application

o P Tt = B O ()

TETYL veTY
lifts to the application
1 @ [TIR(m,m)—s(r) — @ @ VITIR(m,mry—5(7)
TETYP YETY TEE(7)
L T el

so that the image of 0y lifts in @, c 7o D e p(y) VT B(m,m)-s(r) t0

imdy = > (] = W17 Ry —s(r)-

TETY

Consequently,

HO(Grm,m’(TO)) = @ @ [7‘7—] R(m,m’)S(T)/ IIn51 + Z A

v€Ty TEE(Y) vETY

which yields the desired description of Hy(&7, ,..(T)). O

In the next proposition, we simplify further the description of Ho(3J7, ,,..(7°)):
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Proposition 2.5.

H( m, m’(To)) = @pEMIS(T)[ ]R(m m')=5(p)
/ (Sners (oo 250 = [n (0] A5 (D) Bim) ) ) -

Proof. Let B = @,Ye%o ®TGE('Y) ['Y‘T] R(m,m/)—5(7—)a K = iInél + Z—ye%" ﬁmm/ (’V)
and
K = (Zemmere 01T = BIFD Ron s
+ Y rrrer (017 = 0 TD Bimmty -5 -

As K’ C K C B, we have B/K = (B/K')/(K/K'). Taking the quotient by K’
means, that we identify the horizontal (resp. vertical) edges which share a vertex.
Thus all horizontal (resp. vertical) edges which are contained in a maximal segment
p of T are identify to a single element, that we denote [p]. As [y|7] =0 if v € 99,
we also have [p] = 0 if the maximal segment p intersects the boundary 9. This
yields the desired description of Ho(3J}, ,..(T))- O

Definition 2.6. Let by, . (T) = dim Ho(J mm/(T"))

2.2.2. The 1-homology. We consider now the homology on the edges. We use the
property that Hi (R, (T°)) = 0 (see Proposition in the appendix).

Proposition 2.7. H,(&}, ..(T°)) = Ho(J}, ,..(T°)).

Proof. As Ho(Rm,m (T°)) = 0 and Hi (R, (T°)) = 0, we deduce from the long
exact sequence (see Appendix [B])

= Hy (R (T7) = H1(65, 1 (T7) = Ho (35,10 (T7) = Ho (R e (T°)) = -+
that Hl(Gm m’(T )) HO( mm’(To)) U
2.2.3. The 2-homology. Finally, the homology on the 2-faces will give us informa-

tion on the spline space S}, ../ (T).
We have the following result (proved in Proposition [D.3]in the appendix):

Proposition 2.8. Hy(Rym (T°) = R -

The following proposition relates the spline space S}, m (T) to an homology
module.

Proposition 2.9. Hy(&}, . (T°)) =kerdy =Sy, ,./(T).

Proof. An element of Ha(&}, ., (T°)) = ker 05 is a collection of polynomials (p, ) e,
with pe € Ry and p, = por modJ3%(7) if o and o' share the (internal) edge 7

By Lemma [[.G] this implies that the piecewise polynomial function which is p, on
o and p,s on ¢’ is of class C* across the edge 7. As this is true for all interior edges,
(Po)oeT, € ker 0, is a piecewise polynomial function of R,, s which is of class C*,
that is an element of Sy, (7). O
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3. LOWER AND UPPER BOUNDS ON THE DIMENSION
In this section, are the main results on the dimension of the spline space SY, ... (7).

Theorem 3.1. Let T be a T-mesh and let v be a smoothness distribution on T.

Then
(3.1) dimSy, . (T) = > (m+1)(m +1)
o€T2
- Z (m+1)(c(r)+1) — Z (m' +1)(r(r) + 1)
7_67—10,}1 .,.67—1071)
+ ) () F () + 1)
veTy
+ h‘;@,m’ (T)v
where hy, ., (T) = dim Ho(J}, ., (T°))-

Proof. The complex
6rm,m’ (TO) : 690'67’2 [U]Rm,m' — @TET{’ [T]Rm,m'/j:n,m’ (T)
— ®'y€7;{’ [W]Rm,m’/jzﬁt,m’ (’7) —0
induces the following relations:

dim( @D [0 Ron.mr) — dim( @D [7] Rt /3101 (7)) + i @D 1Y) R [ Ti (7))
oceT2 TETY YETY
= dim(H2(&5, . (T7))) — dim(H1 (6], (T7))) + dim(Ho(&5, 1 (T7)))-
As Hy(67, . (T°) = S5 (T), Ho(&5,,,,(T°) = 0 and Hi (&}, . (T°)) =
Ho(3%, ... (T°)), we deduce that

dim Sy, . (T) = dim(GageT2 (0] Rmm) — dim(@reTf [T]Rm,m//jfn’m, (7))
+ dim(D, 7o W Bonow /T3 (7)) + dim(Ho (3,7, (T))),
which yields the dimension formula (BI]) using Lemma O

As an immediate corollary of this theorem and of Proposition 2.5 we deduce the
following result:

Corollary 3.2. If the T-mesh T has no mazimal interior segments, then hy, ,..(T)
=0.

In the case of a constant smoothness distribution, Theorem [3.1] is written as
follows:

Theorem 3.3. Let T be a T-mesh and let v = (r,r") be a constant smoothness
distribution on T. Then

(3.2) dim Sy, ./ (T)

(m+1)(m' +1)fs

— (m+ D"+ D)+ m +D)(r+1)f7)
+ (r+1)0"+1)fo

mam (T

_|_
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where

o fo is the number of 2-faces € Ta,

o fI' (resp. f?) is the number of horizontal (resp. wvertical) interior edges
6 7107

o fo is the number of interior vertices € Ty,

® Iy (T) = dim Ho(37, ., (T)).

r
m,m’

Definition 3.4. Let ¢ be an ordering of Mi1s(7) that is a map from MIS(7) to N.
For p € M1s(T), let I',(p) be the set of vertices v of p which are not on a maximal

interior segment p’ € MIS(T) with ¢(p’) > ¢(p). The number of elements of I',(p) is
denoted A, (p).

We define now the weight of a maximal interior segment.
Definition 3.5. For p € Mis(T), let

o w.(p) = X, e, (m — 1 (7)) if p € MISH(T).
o w,(p) = cp (m' —rp(7)) if p € MIS,(T).
We called it the weight of p.

We are now going to bound h (T) for general T-meshes.

As in the usual spline terminology, for an interior point v € 7T, we call v
m —rp(y) (resp. m’ — rp(7y) ) the horizontal (resp. vertical) multiplicity of .

If p is horizontal (resp. vertical), the weight of p is the sum of the vertical (resp.
horizontal) multiplicities of the vertices v € T',(p).

Notice that if r = (r,7’) is a constant smoothness distribution on 7, then w,(p) =
(m —1)X(p) for p € Mi1S,(T) (resp. w,(p) = (m' —r")A\(p) for p € MIS,(T)).

Example 3.6. We consider the T-mesh of Example [[9 with (m,m’) = (2,2),
the constant smoothness distribution r = (1,1) and the ordering of the maximal

interior segments «(p;) =i for i = 1,...,4. Then we have
e wlp)=(@2-1)x2=2
e wlp)=(2-1)x2=2
o wip)=(2-1)x3=3,

w,(ps) =(2-1)x3=3,
since the multiplicity of a vertex is 2 — 1 = 1 and the interior points of p1, ps are
not in I', (p1) or T',(p2).

In the following, we will drop the index ¢ to simplify the notation, assuming that
the ordering ¢ is fixed. Then we have the following theorem:

Theorem 3.7. Let T be a T-mesh and let v be a smoothness distribution on T.

Then
0 < h(T) < > (m+1-w(p)s x (m' —r(p))
pemis, (T)
+ ) (m—x(p) x (M +1-w(p)), .
pemis, (T)

Proof. Let p1,...,p; be the maximal interior segments of 7. By Proposition 2.5
RE. ... (T) is the dimension of the quotient in bi-degree < (m,m’) of the module

m,m’
M = @izl[pi] R by the module K generated by the following relations: for each
vertex v € Ty which is on a maximal interior segment,
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o A"(pj)lp.] — A%(ps)[p;] if v is the intersection of the maximal interior seg-
ments p; and p;,
e A%(p)[p,] if v is the intersection of the maximal interior segment p; with
another maximal segment p intersecting 0.
To compute the dimension of M/K in bi-degree < (m,m’), we use a graduation
on M given by the indices of the segments. For r := Y. pi[p;] € M (with p; €
R(1m,m/)—s(p:))s let In(m) be the element p;,[p;,] where 4g is the minimal index such
that p; # 0. We denote it by In(r) and called it the initial of . Let In(K) =
{In(k) | k € K}. The dimension hj, ,..(T) is then

v (T) = dim(M/K) = dim(M/ In(K)).

m,m’
Notice that In(K) contains the multiples in bi-degree < (m,m’) of
o A"(p;)[p,] if 7y is the intersection of two maximal interior segments p; and
pj with 7 > j,
e A¥(p)[p,] if 7y is the intersection of the maximal interior segment p; with a
maximal segment p intersecting §2.
Let L; be the vector space spanned by these initials in bi-degree < (m,m’), which
are multiples of [p;]. By definition, for each v € I'(p;), we have a generator A*(p)[p;]
in L; for {7} = p; N p. By Proposition [[.] L, is of dimension
e min(m + 1,w(p;)) x (m’ —r(p;)) if p; € M18,(T),
e min(m’' + Lw(p;)) X (m—r(p;)) if p; € M1S, (7).
Thus the dimension of [p;] R m/)—5(p,)/ Li i
e (m+1—w(pi))s x (M —rx(p)) if p; € m1sy(T),
o (m—r(pi) X (M +1—w(p))s if pi € 1S, (T).
As In(K) D >, L;, we have
mom (T) dim(M/In(K))

dim([p,] R(m,m’)f5(p1;)/(z L)) = Z dim ([p,] Rim,mn)~s5(0)/ Li) -

IN

r

This gives the announced bound on h (T), using the previous computation of

dim([p,] Rm,me)—s(ps)/ Li)- 0
Definition 3.8. The T-mesh 7 with a smoothness distribution r is (k, k)-weighted
if

o Vp e wmis,(T), w(p) >k,
o Vp e Mis,(T), w(p) > K

Theorem 3.9. Let T be a T-mesh and let v be a smoothness distribution on T . If
T is (m+1,m' + 1)-weighted, then hy, ,..(T) = 0.

Proof. By definition, Vp € MIS,(T), w(p) > m+1 (ie. (m+1—w(p))+ =0) and
Vp € MIS,(T), w(p) > m' +1 (i.e. (m'+1—w(p)); =0). By Theorem B we
directly deduce that A, ,..(T) = 0. O

Here is a direct corollary which generalizes a result in [16]:

Corollary 3.10. Suppose that the end points of a mazimal interior segment p €
MIS(T) are in T'(p). If for each horizontal (resp. vertical) mazimal interior segment
p € MIS(T), the sum of the vertical (resp. horizontal) multiplicities of the end points
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and of the vertices of p on a maximal segment connected to the boundary is greater
than or equal to m + 1 (resp. m' +1), then h:__,(T)=0.

Proof. Let p be a maximal interior segment of 7. By hypothesis, the end points of p
are in I'(p). As any point v € p which is also on a maximal segment connected to the
boundary is in I'(p), the hypothesis implies that w(p) > m+ 1 if p is horizontal and
w(p) > m' + 11if p is vertical. We deduce by Theorem BT that A%, . (T)=0. O

m,m’

Another case where hX

wu.m(T) is known is described in the next proposition.

Proposition 3.11. If Vp € MIS,(T), w(p) < m+ 1 and Vp € Mi1S,(T), w(p) <
m' + 1, then

(3.3) B (T) = 3 (m+1—w(p))s x (m' —x(p))

pemisy, (T)

+ > (m=x(p) x (m'+1-w(p)), .
PEMIS, (T)
Proof. In the case where Vp € MIS,(T), w(p) < m+ 1 and Vp € Mi1S,(T), w(p) <
m’ + 1, Proposition [[.F implies that there is no relations in bi-degree < (m,m’)
of the monomial multiples of A™(p;)[p,], A"(p)[p,] for ¢ =1,...,1,j < i using the
same notation as in the proof of Theorem 37} This implies that In(K) = €D, L;,
which shows that

m,m (T) = dim(M/In(K)) = Z A (R mr)—s(p) [0:1/ Li)-

Thus the equality (33) holds. O
As a corollary, we have the following result for constant smoothness distribution:

Theorem 3.12. Let T be a T-mesh and let v = (r,r") be a constant smoothness
distribution on T. Then

0< iy (T) < D (m+1=(m=r)A(p)s x (m' 1)
pemisy, (T)

Y e x 1= (= A, -
pemis, (T)
Moreover, equality holds in the following cases:
o Vp € MIS,(T), (m—7)A(p) > m+ 1 and Vp € Mis,(T), (m' — r")A(p) >
m' +1;
o Vp € MISK(T),(m —r)A(p) < m+1 and Vp € M1S,(T), (m' —r")A(p) <
m' + 1.

4. HIERARCHICAL T-MESHES

We consider now a special family of T-meshes, which can be defined by recursive
subdivision from an initial rectangular domain 2. Their study is motivated by
practical applications, where local refinement of tensor-product spline spaces are
considered e.g. in isogeometric analysis [14].

Definition 4.1. A hierarchical T-mesh is either the initial axis-aligned rectangle
Q or obtained from a hierarchical T-mesh by splitting a cell along a vertical or
horizontal line.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ON THE DIMENSION OF SPLINE SPACES ON PLANAR T-MESHES 863

A hierarchical T-mesh will also be called a T-subdivision. It can be represented
by a subdivision tree where the nodes are the cells obtained during the subdivision
and the children of a cell o are the cells obtained by subdividing o.

In a hierarchical T-mesh T, the maximal interior segments are naturally ordered
in the way they appear during the subdivision process. This is the ordering ¢ that we
will consider hereafter. Notice that a maximal interior segment p is transformed by
a split either into a maximal segment which intersects 02 or into a larger maximal
interior segment with a larger weight.

We remark that in a hierarchical T-mesh, if p; is blocking p; then ¢ < j.

Example 4.2. Here are an hierarchical T-mesh (case a) and a non-hierarchical
T-mesh (case b):

”””””””W””’g’”’””””””g”?’WEEE —4 ””””’"”””””””””””””gﬁﬁﬁﬁzE
— & = @ — &

(a) (b)
4.1. Dimension formula for hierarchical T-meshes. As a corollary of Theo-
rem 3.7 we deduce the following result, also proved in [6], [16], [13]:
Proposition 4.3. Let T be a hierarchical T-mesh and let v = (r,7’) be a constant
smoothness distribution on T . Form > 2r-+1 and m’ > 2r'+1, we have h;’:m/ (T) =

0.

Proof. We order the maximal interior segments in the way they appear during the
subdivision. If a segment p; € M1S(7) is blocking p; € Mis(7), we must have i < j.
This shows that the end points of p; are in I'(p;). Thus, A(p;) > 2.
As m > 2r + 1, we have
(m—r)X(p:)) =2 2(m—r)>m+ (m—2r) >m+ 1.

Thus, (m+1—(m—7r)X(p;))+ = 0. Similarly (m’+1— (m’ —7")A(p;))+ = 0 holds

since m’ > 2r’ + 1. By Theorem [3.7} we deduce that Aj, ,..(T) = 0. O
Theorem [3.9 leads us to the following construction rule of a T-subdivision 7 for
which Y, . (T) = 0.

Algorithm 4.4 ((k, k')-weighted subdivision rule).
For each 2-face o of a T-mesh to be subdivided:
(1) Split o with the new edge 7;
(2) If the edge T does not extend an existing segment, extend T (on one side
and/or the other) so that the maximal segment containing T is either in-
tersecting 02 or horizontal (resp. vertical) and of weight > k (resp. > k).
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If such a rule is applied in the construction of a T-subdivision,

e either a new maximal interior segment is constructed so that its weight is
> k if it is a horizontal maximal interior segment (resp. > k' it is a vertical
maximal interior segment),

e or an existing maximal interior segment is extended and its weight is also
increased,

e or a maximal segment intersecting 0f2 is constructed.

In all cases, if we start with a (k, k’)-weighted T-mesh, we obtain a new T-mesh,
which is also (k, k')-weighted.

By Theorem 39 if K > m + 1 and k¥ > m’ + 1 then hﬁl’m/(T) = 0 and the
dimension of dim Sy, ., (T), given by formula (8.I), depends only on the number
of cells, interior segments and interior vertices of 7. From this analysis, we deduce

the dimension formula of the space of Locally Refined splines described in [9].

5. EXAMPLES

In this section, we analyse the dimension formula of spline spaces of small bi-
degree and small constant smoothness distribution r = (r,7’) on a T-mesh 7.

5.1. Bilinear C%° T-splines. We consider first piecewise bilinear polynomials on
T which are continuous, that is, m = m’ = 1 and r = ' = 0. By Proposition
A3 we have h?:?(T) = 0. Using Theorem B and Lemma[A.]in the appendix, we
obtain:

(5.1) dimSYY(T) = 4fs — 27 + f§ = fo + £

5.2. Biquadratic C''! T-splines. Let us consider now the set of piecewise bi-
quadratic functions on a T-mesh 7, which are C'. Form=m’' =2andr =71' =1,
Theorem [3.1] and Lemma [A 1] again yield

. 1 3
(5:2) dim 8,5 (T) = 9f> = 67 +4f5 +hya(T) = fo = 5f7 + 55 +3+haa(T).

If the T-mesh T is (3, 3)-weighted, then by Theorem B9 we have a hé;(T) =0,
but this is not always the case.

Example 5.1. Here is an example where h;;(T) = 1 by Proposition B.I1] since
there is one maximal interior segment p with w(p) =2—-14+2—-1=2:

S
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The dimension of 52121(’7') is9x4—6x5+4x2+ hé% (T) =14+1 = 15. Notice
that the dimension is the same without the (horizontal) interior segment. Thus a
basis of 82121(7') is the tensor product B-spline basis corresponding to the nodes
50,80, S0, 51:52, S3, 3, S3 in the horizontal direction and the nodes tg, tg, tg, t1, t1, t1
in the vertical direction.

Example 5.2. Here is another example. We subdivide the T-mesh 7; to obtain
the second T-mesh Ts:

2 a a NI

=
|
|

1
|
|
|

I

Doing this, we increase the number of cells by 9 — 1 = 8, the number of interior
edges by 24 — 4 = 20, the number of interior points by 16 —4 = 12. The dimension
of the spline space increases by 9 x 8 — 6 x 20 +4 x 12 + héé(Tg) - héé(Tl) =
h;é(Tg) - héé(ﬂ). Since there is no maximal interior segment in 77, by Corollary
we have héé('ﬁ) = 0. Choosing a proper ordering of the interior segments,
we deduce by Theorem B1] that h;é(Tg) < 1. Suppose that o1 = [ag, as] X [bo, b3]
and 02 = [al,ag] X [bl,bg]. For U S (51 S (5] S us € ]R,, let N(U;UO,ul,UQ,Ug)
be the B-spline basis function in the variable u of degree 2 associated to the nodes
Ug, - - ., u3 (see [5]). Then the piecewise polynomial function

N(s;ap,a1,a2,a3) x N(t;bg, by, ba, b3)

is an element of 82121 (72), with support in 0. It is not in 82121 (71), since the function
is not polynomial on ¢;. Thus we have dim 82121 (T2) = dim 82121 (Th) + 1.

Notice that Tz is (2,2)-weighted but not 3-weighted, since any new maximal
segment intersects two of the other new maximal segments.

For a general hierarchical T-mesh, we consider a sequence of T-meshes Ty, ..., 7T;
where 7y has one cell, 7, = T and such that 7; 11 refines 7; by inserting new edges.
We can assume that at each level ¢ # 0 a new maximal interior segment p; appears
and that we number the maximal interior segments of 7 in the order they appear
during this subdivision. Notice that any maximal interior segment of 7 extends
one of the maximal interior segments p; and thus its weight is bigger. Notice also
that the maximal interior segment p; introduced at level i extends to a maximal
segment of 7', which may intersect the boundary. In this case, it is not involved in
the dimension upper bound. Then, we have the following corollary:

Proposition 5.3. Let T be a hierarchical T-mesh.
(5.3) 9Ofo = 67 +4f5 < dimSy5(T) < 9fo — 6f7 +4f5 +0
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where o is the number of levels of the subdivision where a maximal interior segment
with no-interior point is introduced.

Proof. Consider the new maximal interior segment p; of 7; appearing at level i. By

construction, the end points of p; are not on maximal interior segments of bigger

index. Thus w(p;) > 2. If p; contains an interior vertex then w(p;) > 3 and

(3—w(pi))+ = 0. Otherwise (3—w(p;))+ = 1. As p; extends to a maximal segment

pi which is either interior or intersecting the boundary, we have (3 — w(p;))+ <

(3 — w(ps))+ with the convention that w(p;) = 3 if p; is intersecting the boundary.
By Theorem [3.7, we have

l l
0<hé§ SZS w(pq)) §Z3 w(pi))

where [ is the number of levels in the subdivision, p; is the maximal interior segment
introduced at level ¢ and p; is its extension in 7. By the previous remarks, Zi’:1 (3—
w(p;i))+ = o is the number of levels of the subdivision where a maximal interior
segment with no interior point is introduced. Using Theorem [B.1] this proves the
bound on the dimension of 82121 (7). O

Examples 5.1l and 5.2l show that the dimension can be given by the upper bound.
On other other hand, for any (3,3)-weighted hierarchical subdivision, the lower
bound is reached. This shows that the inequalities (53] are optimal for dim 52121 (7).

Remark 5.4. In the case of a hierarchical subdivision where some cells of a given
level are subdivided (as o; in Example 5.2)) into 9 sub-cells which have the same
length and height, it can be proved that the dimension is in fact,

dim Sy (T) = 9fo — 67 + 4f5 + 0,

where o is the number of isolated subdivided cells (i.e. the cell is subdivided, not
touching the boundary and the adjacent cells sharing an edge are not subdivided)
at some level of the subdivision. Indeed, any maximal interior segment subdividing
a non-isolated cell contains an interior point and is not involved in the upper bound.
As in Example 5.2, only the isolated cells have a maximal interior segment with
no interior points. This example also shows that a new C"1) bi-quadratic basis
element can be constructed for each isolated cell, proving that the upper bound
is reached. This gives a dimension formula similar to the one in [7], for a slightly
different subdivision strategy.

5.3. Bicubic C''! T-splines. For m = m/ = 3 and r = r’ = 1, that is, for piece-
wise bicubic polynomial functions which are C*, Proposition .3 yields hézl,)(T) =0.
Using Theorem 3.1l and Lemma [A1]in the appendix, we obtain:

(5.4) dim S33(T) = 16f2 — 87 + 415 = 4(fo + f2).

5.4. Bicubic C?? T-splines. For m = m’ = 3 and r = ' = 2, by Theorem [B.1]
and Lemma [A.1] we have:

(5.5) dim S35 (T) = 16f2 — 127 + 9f5 + h35(T) = fo — fo +2f0 + 8+ h35(T).

If 7 is a hierarchical (4,4)-weighted subdivision, then by Theorem B9, we have
h35(T) =0,
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APPENDIX A. COMBINATORIAL PROPERTIES

We recall some well-known enumeration results for a T-mesh of an axis-aligned
rectangular domain Q.

Lemma A.1.

o fo=fi +3f0 +5f0—1,
o fP=2ff +3f7+3/8-2,
o fS=1f+17-

Proof. Each face o € T is a rectangle with 4 corners. If we count these corners for
all cells in 73, we enumerate 4 times the crossing vertices, 2 times the T-vertices
which are interior or on the boundary and one time the corner vertices of €. This
yields the relation

Afy =4fF +2(f0 + (f§ —4) +4

Each interior edge 7 € T° has two end points. Counting these end points for all
interior edges, we count 4 times the crossing vertices, 3 times the T-vertices which
are interior and one time the T-vertices on the boundary:

2f7 =Af +3fg +(fo = 4.
Finally, as an interior vertex is a crossing vertex or a T-vertex, we have

o=+ O

APPENDIX B. COMPLEXES AND HOMOLOGY

Let us recall here the basic properties that we will need on complexes of vector
spaces. Given a sequence of K-vectors spaces A;, i = 0,...,0 and linear maps
0; : A; — A;4+1, we say that we have a complex

AIA[ —)Al,1 —>"'A7;—>Ai,1—>"'A1—)A0
if im9; C ker 9;_1.
Definition B.1. The i*" homology H;(A) of A is kerd;_,/imd; for i =1,...,1.

The complex A is called ezact (or an exact sequence) if H;(A) =0 (i.e. im9; =
ker 9;_1) for i = 1,...,1. If the complex is exact and A; = Ag = 0, we have

i=1
Given complexes A = (A;)i=o,..;1 B = (Bi)i=0,...1, C = (Ci)i=o,...; and exact se-
quences
for i =0,...,1, we have a long exact sequence [4], [22] p. 182]:
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APPENDIX C. DUAL TOPOLOGICAL COMPLEX

The dual complex 7* of the subdivision T, is such that we have the following
properties.

e a face o € Ty is a vertex of the dual complex T*.

e an edge of T* is connecting two elements o, 0’ € T if they share a common
(interior) edge T € T°. Thus it is identified with the edge 7 of T between
o,0';

e a face of 7* corresponds to an elements v € 7. It is either a triangle if v
is a T-junction or a quadrangle if v is a crossing vertex.

Notice that the boundary cells of 7 correspond to boundary vertices of 7*. They
are connected by boundary edges which belong to a single face of T*.

APPENDIX D. TOPOLOGICAL CHAIN COMPLEX

In this appendix section, we recall the main properties of the topological chain
complex

9%m,m’(7—o) : @ [J]Rm,m’ — @ [T]Rm,m’ — @ [’Y]Rm,m’ — 07
o€T2 TETY YETY

where

b V'y € 7?707 80([7]) = 07

o V7 =[y1,7%2] € T, ([ 72]) = [l — [re] with [y] = 0iff v € 69, and

e Vo € TP with its counterclockwise boundary formed by the edges [y1,72],

oo [l O2(0) = [y1v2] + - + [y, ] with [y,7'] = 0 iff 7,9 € 09.

We assume that 2 is simply connected and Q° is connected. We prove that
Ron.m (T°) is acyclic on a T-mesh of Q.
Proposition D.1. Hy(R,,.m (T°)) = 0.

Proof. Let v € 7). There is a sequence of edges 70 = Yoy1, ™1 = Y17Y2y---,7T1 =
Y1Vi+1, such that ; € T?, y0 € Ty’ and 741 = 7. Then

On(lro] +---+[n]) = [nl = Dol + -+ Iyl = [n] = ]

since [yo] = 0 and [y,41] = [y]. Multiplying by any element in R,, ,,,/, we get that
[Y]Rm,m C im &y and thus Ho(Ry, m (T°)) = 0. 0

Proposition D.2. H; (R, ./ (T°)) = 0.

Proof. Let p = 2767—10 [T]pr € ker 01 with p; € Ry, . Let us prove that p is in
the image of 0;. For each v € 7y and each edge 7 which contains ~, we have

> erpr = 0 with e, = 1if 7 ends at v, e, = —1 if 7 starts at v and e, = 0
otherwise.

For any o € 7Ty and 7 € 7°, we define ¢, , = 1 if 7 is oriented counterclockwise
on the boundary of o, £, = —1 if 7 is oriented counterclockwise on the boundary

of o and ¢, = 0 otherwise.

For any oriented edge of the dual graph 7* from ¢’ to o, let us define 9f ([0’ 0]) =
€s,-Pr. Notice that 0f ([o,0']) = €5 +Dr = —€05.70r = —07([0’, 0]), since the orien-
tation of 7 on the boundary of o and ¢’ are opposite.

Let o be the 2-face of T with the lowest left corner for the lexicographic ordering.
We order the cells o € T3 according to their distance to oq in this dual graph 7*.
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We define an element ¢ = > - g,[0] where g, € Ry ;s by induction using this
order, as follows:
L4 qo'() = Oa
e For any 0,0’ € 73, if 0 > ¢’ and o and ¢’ share a common edge 7, then
4o = q4or + O ([0", 0)).
Thus, if [0g, 01], [01,02], . .., [ok—1,0%] is a path of T* connecting oy to o, = o with
i1 > 0; then ¢, = Zi:ol 0% ([04,0441])- Let us prove that this definition does not
depend on the chosen path between o and o.
We first show that for any face v* of T* attached to a vertex =, if its counter-

clockwise boundary is formed by the edges [0, 0], [0/, 0"],...,[0"", o] corresponding
to the edges 7,7/, 7",... of T containing -y, then
01 (0,01 + 01 (07, 0" 4+ + B3 ([0", 01) = £+ Egr 2131+ Eqrr i -+ = 0.

By changing the orientation of an edge 7, we replace p, by —p, and &, by —€,.-
so that the quantity &, .p, is not changed. Thus we can assume that all the edges
7,7, 7",... are pointing to 7. As p € ker 9y, we have p, + p,s + prv +--- = 0.

Now as the cells 0,0’,0”,...,0 are ordered counterclockwise around ~ and as
the edges are pointing to v, we have €, = €5/ 7+ = €4 7# = -+ = 1, so that the
sum 05 ([o,0']) + 05 ([o’,0"] + - - - + 0 (0", 0]) over the boundary of a face v* of
T* is 0.

By composition, for any loop of 7*, the sum on the corresponding oriented edges
is 0. This shows that the definition of ¢, does not depend on the oriented path
from o to o.

By construction, we have

82(Q) = Z ( Z ea,TQU[T]) = Z (Z 50,7'(]0)[7—]'

c€Ty TETY TETPS 0€T2

For each interior edge 7 € 7%, there are two faces o1 > o2, which are adjacent to
7. Thus, we have €5, r = —€4,,r and ¢», = Gy, + €0,,-P-. We deduce that

(Z 50,7‘Q0) = €o01,790, + €oy,740, = 501,T(QU2 + Eal,TpT) + €o9,7905 = Pr-
o

This shows that d2(¢) = p. In other words, im0y = ker 91 and Hy (R, (T°))
0.

Ol

Proposition D.3. If Q has one connected component. Then Ho(Rp, m/ (T°)) =
Rm,m’-

Proof. An element of Hy (R, m/ (T°)) = ker 0 is a collection of polynomials (py)se7;
such that p, € Ry, and p, = po if 0 and ¢’ share an (internal) edge. As T
is a subdivision of a rectangle Dy, all faces o € T3 share pairwise an edge. Thus
Do = por for all o,0" € Ty and Ho (R i/ (T)) = R - O

Notice that by counting the dimensions in the exact sequence Ry, o/ (T), we
recover the well-known Euler formula: fo — f1 + fo = 1 (the domain  has one
connected component).
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