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ON THE DIMENSION OF THE Ç-SUBSPACES

OF BANACH SPACES, FOR 1 < p < 2

BY

GILLES PISIER

Abstract. We give an estimate relating the stable type p constant of a Banach space

X with the dimension of the /"-subspaces of X. Precisely, let C be this constant and

assume 1 < p < 2. We show that, for each e > 0, X must contain a subspace

(1 + e)-isomorphic to /*, for every k less than S(e)C where 5(e) > 0 is a number

depending only on p and e.

Introduction. It is known (cf. [11,7]) that if a Banach space X is not of stable type

p, for 1 < p < 2, then X must contain almost isometric copies of lp for every integer

n. The aim of this paper is to give a quantitative estimate relating the stable type p

constant of a finite-dimensional space X with the dimension of the /^-subspaces of

X.

Precisely, let STp(X) denote the stable type/? constant of X. Assume for simplicity

that 1 < p < 2. We show in this paper that, for each e > 0, there is a number

8(e) > 0 depending only on e and p such that the following holds: Any Banach

space X contains a subspace (1 + e)-isomorphic to /* for every k such that

(1) k < 8(e)(STp(X))P'   where \/p + \/p' = 1.

In the particular case X = /,", it is easy to see that STp(l") ~ nx/p', so that our result

implies that /*" is (1 + £)-isomorphic to a subspace of /" for some 8 — 8(e, p) > 0.

This last result was discovered recently by Johnson and Schechtman [6], and it

strongly motivated the present paper.

Our proof is different from that of [6], although it rests on the same basic

ingredients (i.e. /»-stable random variables and the exponential inequality stated in

this paper as Lemma 1.5).

It is worthwhile to note that our result also implies the theorem of Krivine [7], but

only for 1 < p < 2; (indeed, if X is isomorphic to lp, then X is not of stable type p,

so that STp(X) = oo, and we can take any k in (1)). Moreover, our paper yields a

new proof, rather direct, of the main results of [11], but only for the section devoted

to the " type" of Banach spaces.
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202 GILLES PISIER

1. Preliminary results. Throughout this paper, we will write simply i.i.d. for

"independent and identically distributed". We recall that a real-valued symmetric

random variable 0 is called /»-stable if its Fourier transform is as follows: for some

a > 0, E exp it 0 = exp — a 11 f for all real t. When a = 1, we will say that 6 is

standard. A symmetric Banach space valued random variable S is called /»-stable if

1(5) is /»-stable for any R-linear continuous linear form £ on the Banach space.

Throughout this paper, we consider only real Banach spaces, but the complex case

can be treated similarly.

Definition 1.1. Let 1 < p < 2. A Banach space X is said to be of stable type /» if,

for each r <p, there is a constant C such that, for any finite sequence x,,... ,x„ in

X, we have

(E\\leix,\\r)Vr<c{2\\x,\\p)
i//'

(l.i)

where 0X,02,.. .,#„,... is an i.i.d. sequence of standard /»-stable random variables as

above. If p > 1, we will denote by STp(X) the smallest constant C such that (1.1)

holds with r = 1. If p = 1, we will denote by STX(X) the smallest constant C such

that (1.1) holds with (say) r = j-. For more details on this notion, cf. [11]. We recall

only that if the above property (in Definition 1.1) holds for some r < p, then it also

holds for all r </>. We will use repeatedly the fact that if Sx, S2,...,Sk are i.i.d.,

/»-stable, Banach space valued random variables, then any linear combination of

them, SfoS',-, has the same distribution as the variable (Zx \ a, \f)l/pSx. In particular,

we have, for each r </>,

E
k

2« A
i

l/r

= (2i«,r) (»«i')i'A

(For p < 2, E|| Sx IIr is finite only if r < p.) It will be convenient to record also the

following simple observation.

Proposition 1.2. Let r — 1 if p > 1 and r = { if p = 1. The constant STp(X) is

equal to the smallest constant C such that, for any sequence xx,... ,xn in X, we have

(1.2) E 20,*,

'A

Cn1/P sup || x,. |

Proof (Sketch). It is clear that (1.1) implies (1.2), so that it is enough to prove

the converse. Let us assume that (1.2) holds for arbitrary sequences (x(). We claim

that we then have V(a,) G R",

(1.3) 2«/*;*/
1A

Csup||x,||(2|«,f )
Wp

Clearly, (1.3) implies (1.1), so that it is enough to prove (1.3). Now if we apply (1.2)

to a sequence (y¡) = (x,, x,,... ,x,, x2,... ,x2, x3,...) where x, is repeated kt times,

we find, with N = 2"=xk¡,

(1.4) E
N

2 yfi-,
i=i

\/r

2 k\"otx,

i A
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/"-SUBSPACES OF BANACH SPACES 203

and (1.2) implies

E

Therefore, we,have by (1.4),

N

i

\/r

CA'/'supllx,-!!.

2M-TV,
1A

<Csup||x,|

and this last result clearly implies (1.3) by a density argument.To state the next

result, we will need more notation. Consider x,,... ,x„ in a Banach space X. We will

denote by (Yj)J>x an i.i.d. sequence of random variables uniformly distributed on the

set {: -xn). In other words, the distribution of each variable Yj is equal to

the probability 2^2"=1SX. + 8_x. Let (Aj)j7xX be an i.i.d. sequence of exponential

random variables (i.e. P(Aj > X) = e'x for any X > 0). We will always assume that

(Aj)j>x is independent of the sequence (Yj)j^x. Finally, we set Tj = 2kZJxAk. It is

well known (cf. [3, p. 10]) that

for all X > 0. We can now state the representation which we will use.

Proposition 1.3. There is a number Cp>0 depending only on p such that

(l/ni/p)l'¡=xeixi has the same distribution as CplJLx(Tj)-[/pYJ.

This result follows from [9] (for more details, see [10]). More generally, it is known

(cf. [9]) that if (Yj)j>x is an i.i.d. sequence of symmetric A'-valued random variables,

then the variable S - ^f-yTf^'Yj is /»-stable, and we have

V| e X* Eexpi(É,S)= exp(-E| (£, Yx )f/{Cp)p).

For more information we refer the reader to [10].

For the proof of the main result, we will use the fact that, on the average, S

behaves very much like the series 2/>i/~,/^,I/, which is obtained from S by

replacing r, by j. The next lemma, which is entirely elementary, will allow us to do

this substitution:

Lemma 1.4. For any p such that 1 < p < 2, we have

$=2 e| r,-1^-/-■//'i < oo.
i>i

Moreover,

(1.5)

Proof. Recall that

2E|iy
y>2

j    \< oo-

7-1

Vx > 0    P{r < x) = f    U    ,,,e-"du;
Jo (J- 1)!
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204 GILLES PISIER

therefore

$ = f y I u-Wp - j-VP i _ü-e-u
y-'

du.

Elementary computations using Stirhng's formula show that this integral converges.

I am grateful to B. Maurey for showing me Lemma 1.4, Which is an improvement of

a previous version.

We will also need the following lemma, which can be proved by an argument

similar (but simpler) to the one used in [6].

Lemma 1.5. Let 1 </» < 2 and let p' be the conjugate of p. Let (Zj)j>x be a sequence

of independent Banach space valued random variables which are uniformly bounded.

Let Xj = esssup||Z,(-)||; we denote by (X*)J3,X the nonincreasing rearrangement of

(\w
If W{Xj}\\paa = sup,-», jl/pX* is finite, and if Z = 1J=\Zj converges a.s., then we

have, for alle > 0,

0.6, F{||ZI-HZI|>.)«^-,(irj£i-f(

where K and tj > 0 are constants depending only on p. (Note that, by the result of

Hoffmann-Jorgensen [5], E||Z|| is necessarily finite.)

Proof (Sketch). By some elementary arguments (see [6] for details) it is possible

to prove that if (dj)J>x is a scalar martingale difference sequence such that

\dj\< 2Xj a.s. for all/, and if sup/'^X* < oo, then we have

(1.7) Ve>0    P Idj > c   < K exp — tj
ll{\}ll,

This result immediately implies (1.6): indeed if we denote by % the a-algebra

generated by (Z,,... ,Zy-} then we have

|EÍ||Z|| - E*;-'||Z|| |< 2esssup||Z,|| < 2X,,

so that we may apply (1.7) to the sequence

rf, = E5||Z||-E5->||Z||.

Since IIZII - EIIZII = 2°°=,^-, this yields (1.6). In the case p = 1, the preceding

result becomes

Lemma 1.6. Let Zj, A, be as in Lemma 1.5. Assume that II {A,} II Xoo = sup/A* < oo.

Then, if Z — 'ZZj converges a.s., we have

Vc>0   P{| IIZII - EHZII \>c] ^Kexp- JexpT,-

where K and tj > 0 are absolute constants.
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Proof. The argument is the same as for Lemma 1.5 except that we use instead the

following estimate:

Vc>0   P 24 > c> < Kexp — \ exp 17
l{X,}|too

which can be proved by an argument similar to the one included in [6].

Remark 1.7. The preceding inequalities estimating the "rate of deviation" of || ZII

from its mean were first used in the vector valued case by Yurinski [13]. Further

applications appear in [2]. Note that by orthogonality, we have

(1.8) e|||zii-eiizii|2 = e|2¿,| <a^ (Cf. [2]).

Remark 1.8. Let (X-)y-^, be a sequence of scalars. We denote by X* the nonin-

creasing rearrangement of (|X/|)/>i. The space of all sequences (Xy)>1; such that

suP/>i y'^X* < oo, is usually referred to as weak lp and is denoted by / It is easy

to check that

(1-9) 11(^)11,» = sup/1/*X* = (sup^cardOMX,^/})17''.
j>\ v r>0 '

Now, let Ex, E2,... be a sequence of subsets of N forming a partition of N. If we set

at — H(X7)y6£ II ̂oo, then from (1.9) it is easy to deduce

(i-io) n(\wu<(2«fr-
2. The main result. The main result of this paper is

Theorem 2.1. Assume that 1 </» < 2, and \/p + l/p' = 1. For each e > 0, there

is a number 8p(e) > 0 with the following property: Any Banach space X contains a

subspace (1 + e)-isomorphic to lk as long as

(2.1) k<8p(e)STp(X)p'    if\<p<2,

(2.2) Logk<8x(e)STx(X)    ifp=l.

Proof of Theorem 2.1. We first consider the case 1 < /» < 2. By Proposition 1.2,

we can find a finite sequence xx,...,x„in X such that

1
Sup||x,||<l    and   n~x/f¥. 2<U *2STpW-

By Proposition 1.3, we have (with (Yj) as defined in Proposition 1.3)

(2-3) E iTfV'Yj >(2CpY'STp(X).
/>i

Now let (Yji)J>x and (TJ¡)j>x be i.i.d. copies of the sequences {Y¡)j>\ and (I})^, for

i = 1,2,... in such a way that if we set

Si,= 2 (TjtrPYj
j>\

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



206 GILLES PISIER

then (Sx, S2,... ,Sk) is a sequence of i.i.d. copies of

S = 2 Tj-VpYj.
/>i

Since (by Proposition 1.3) S is/»-stable, we have

k \ 'A

(2.4)

k

2 «A
i

=  2 KM   El1511-

We will now compare 2f=1a,5, with 2f=,a,S, where we have set S¡ = 2,^,/ x/pYjt.

We may write clearly

k

2 «¡s,
i

Hence by Lemma 1.4:

and by (2.1)

k

2 aÂ
i

<E 2«,(S,- -§,) <2l«(|E||SI.-S/l

* Ik \Vp
<2KI*<    2 I«, M     kl/p'*,

(8p(£y/psTp(x)<i>) 2i«,r
i/p

It follows that if 5 (e) is chosen small enough, precisely if

(2.5) k<(8*-*STp(X))P',

then we have

(2.6)

k

2«,s, E
k

2«,s,
A: \ 'A

'|2i«,r

We now analyse the behaviour of 112^,5, || using Lemma 1.5. We first observe that

K-y^-'^H^Kir17'-
and using Remark 1.8,

H\*,irl»),j,„<{2\*,ry*.
Therefore, applying Lemma 1.5 we obtain

(2.7)

Vc> 0    P
k

2 ctiSi
i

k

2 aÂ > c> < Ä"exp — tj

k \ i/p

I2kt

Now, let us fix (a,) such that 2f | a, f - 1. Combining (2.6) and (2.7), we obtain

2 "A
k

2 «, 5,
i

> c + 8STp(X)\ < Kexp - tj c"'.
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Therefore taking c = 5E|| 5II, we find by (2.3) and (2.4)

(2.8)

k

2 «iÄ ns\\ >8KlE\\S\\\ <Kexp-ri(8E\\S\\y

with Kx = 1 + 2Cp.

Of course, we may assume that 8KX < 1, so that the last result tells us that, with

"large" probability, H2f=,a,S,ll remains "close" to EUSII. We can now conclude. By

a well-known argument (cf., e.g., [4, Lemma 2.4]), there is a 5-net in the unit sphere

of /* of cardinality at most (1 + 2/0)*, which is less than exp(2/c/S). Therefore we

deduce from (2.8) that, with probability greater than

1 - tfexp(2/c/S)exp - Tj(aE||S||)'',

we have, for each (a,) in this S-net,

(2.9) (1 - ff,fi)E||S| 2«iÂ-(«)=£ EH S 11(1+^,0)

with Kx as before.

Hence, if 2k/8 « tj(8E|| S \\)p'—which is true, by (2.3), if

(2.10) k<x(8){STp(X)Y'

for some suitable x(8)—then the event considered in (2.9) has positive probability.

Consequently, we can find an w in our probability space such that Sx(u),... ,Sk(u)

verify (2.9) for all (a,) in the 5-net. By another well-known argument (cf., e.g.,

[4, Lemma 2.5]), we may replace the 5-net by the whole sphere of /* without spoiling

too much the estimate (2.9). Precisely, there is a constant A(8), with A(8)

8 ->0, such that (if (2.5) and (2.10) hold) we can deduce from (2.9)

0 when

E||S||(1 -Kx8)(\ -A(8)) 2«â-(w) EIISHO + Kx8)(\ + A(8))

for all (a,) in the sphere of lk. This means that the span of {Sx(u),...,Sk(u)} is

<!>(<5)-isomorphic to lk, with $(5) -» 1 when 5^0, and this concludes the proof of

Theorem 2.1 in the case 1 < /» < 2.

Proof of Theorem 2.1, in the case p — \. The basic idea is the same. By

Proposition 1.2 we can find x,,... ,x„ in the unit ball of X such that

1
24*,
i

r\ \/r

>\STX(X)

(recall that r = \). Let m be an integer which will be specified later. With the same

notation as before, we deduce from Lemma 1.6 that if

*,- = 2 r%
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we have, for all c > 0,

(2.11) P

k

2 «,-*,
l

2«,*, >c *exp{_exp2Kï)

for each (a,) in R*. In the sequel, we will always assume that Log A: < x($)ST\(X)

for some number x(8) > 0 which will be specified later. We will establish below the

following

Claim. The numbers x(5) > 0 and m = m(8) can be chosen (depending only on

5) so that we have

(2.12) ¿(l-9(fi))2KI<E
k

2«,*, .¿(i+9(«))2KI

for all (a,) in R*, where A. is a number such that

(2.13) A>(\/2CX)STX(X),

and where <p(ô) — 0 if 8 -* 0.

From this claim, it is easy to complete the proof of Theorem 2.1 by showing that,

for some w, the vectors <bx(u),.. .,$k(u) span a subspace (1 + <]p'(ô))-isomorphic to

lx, with <p'(8) -» 0 if 8 -» 0. We find for k the values indicated in Theorem 2.1; the

proof of this part is the same as in the case 1 < p < 2.

To complete this proof, we now prove the above claim. We define \p¡ —

2yÄm(ry()"1!^,. By (1.5), if m is chosen large enough, say m > m(8) > 1, then we

have

i
E

k

1

«2KI-

Therefore, it remains only to show that we can obtain (2.12) and (2.13) with (\p¡) in

the place of ($,). Let i = HSfo^H, Applying (1.8) (first for "fixed" I}, and then

integrating over r,,) we obtain

E^-E^i 2 4KfEi}72<42Kl)2,
/= i ys*m

where ym = {42,>mEry2}1/2 tends to zero when m tends to infinity. If 2f K |= 1,

we have a fortiori \\\p — Et//1| r < ym so that

(2.14) Ey-y'm<(^Y<EV + y'm.

But, on the other hand, we know that x, = 2j>\T¡¡lYj¡ is 1-stable so that

(2.15) 2a,x/

'A

= A

with A = (EH x, II r)1/r. Note that A verifies (2.13). Let lii = 27<mry71Y,,. We have

(2.16)       |E^r- E||2«,X,|r|1A< (E|2«,Hf)n'VA
21«,-1 2 y~
i j<m    j'
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Let us assume that m — m(8) is chosen so that ym < 8. Then, by known estimates on

P(r, > x), we easily find a constant B(8) such that

Pllr;^)^
j*m

for all c > 0. It is then easy to check that (for k > 1)

k

<^\ a,\ (hog k)-B'(8)
l

for some constant B'(8). Combining (2.16), (2.17) and (2.15), we obtain finally that

if Log k < x(8)STx(X) for some suitable x(^), and if m = m(8), we have

\E\pr-Ar\^<p"(8)

with y"(8) -» 0 when 5-> 0. Taking (2.14) into account, this gives finally (as

announced) (2.12) with the functions \p¡ instead of 0, and this concludes the proof.

Remark. Actually, Proposition 1.2 is not really needed to prove Theorem 2.1.

Indeed, let x„...,x„ be such that 2IU,II'= 1 and E||2^,-x,-|| > \STp(X). Let

y i = x,.||x,.||"'. Let Y be a symmetric X- valued random variable with distribution

equal to 2"=1llx,IK(5r + 8_y)/2, and let Yx, Y2,... be i.i.d. copies of Y. By the

remarks following Proposition 1.3, we know that 2"=1#,x, has the same distribution

as Cp¿]j>xTj~]/pYj. Using this fact and the observation that H^H < 1, we can prove

Theorem 2.1 without referring to Proposition 1.2.

3. Applications. The most interesting case in Theorem 2.1 is probably the follow-

ing, which was recently discovered by Johnson and Schechtman [6].

Corollary 3.1. Let 1 < /» < 2. For each e > 0, there is a number r¡p(e) > 0 such

that I" contains, for each n, a subspace (1 + e)-isomorphic to lk with k > i\p(e)n.

Proof. Since E2f=1 | 6,,\ = «E | 0, | , it is obvious that STp(l¡n) ~ n]/p' when n -> oo.

Therefore Corollary 3.1 follows from Theorem 2.1.

We can also derive from Theorem 2.1 a new proof of Krivine's theorem [7] (cf.

also [12, 8]), but only for 1 < p < 2: any space X which is isomorphic to lp contains,

for each n and each e > 0, a subspace (1 + e)-isomorphic to lp. (In that case, we will

say that X contains lp's uniformly.) Indeed, this follows from Theorem 2.1, since

STp(X) = oo. More generally, we easily derive from Theorem 2.1 a new proof of the

results of [11] on the type of Banach spaces.

Corollary 3.2. (a) Let 1 < p < 2. A Banach space X is of stable type p iff it does

not contain lp 's uniformly.

(b) // X is of stable type p (\ < /» < 2), then there is a q > p such that X is of stable

type q.

(c) Define p(X) = Sup{/» | X is of stable type /»}; then, for each integer k and each

£ > 0, X contains a subspace (1 + e)-isomorphic to lk.

Proof, (a) The nontrivial part is to show that 57^(A') = oo implies that X

contains lp 's uniformly. This follows from Theorem 2.1.

(2.17)

k

2 I2-1
y«ïm    J'
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(b) Suppose that there does not exist q > p such that X is of stable type q. Then by

(a) the space X must contain, for each n and each e > 0, a subspace (1 + e)-

isomorphic to lnq; a fortiori, this subspace is X-isomorphic to lp with X <

(1 + e)nl/p~]/q. Letting qlp,v/e find that for each n and each 8 > 0, X contains a

subspace (1 + ô)-isomorphic to lp, so that X cannot be of stable type/». Finally, (c)

follows from (a) if p(X) < 2. In the casep(X) = 2. (c) follows Dvoretzky's theorem

(cf. [4]). This concludes the proof.

Remark. Since our proof is more direct and constructive than that of [11], we can

obtain some more precise estimates. For instance, in (b) of Corollary 3.2, we can

obtain an estimate of q > p in terms of STp( X).

Remark. It is worthwhile to recall that the notion of stable type /» is closely

related to the more usual notion of Rademacher type p (often referred to simply as

"type/»"). Indeed, it is known and rather easy to prove (cf. [11]) that for 1 </» < q

< 2, a Banach space X is of stable type /» if it is of Rademacher type q; and, in the

converse direction, X is of Rademacher type q if it is of stable type q. Therefore, in

the definition of the index p(X), we may use indifferently either one of these two

notions of type. We can also obtain a quantitative version of Krivine's theorem as

follows.

Corollary 3.3. Let 1 < p < 2. For each e > 0 there is a constant Ap(e) > 0 such

that any n-dimensional space which is C-isomorphic to lp contains a subspace (1 + e)-

isomorphic to lk with

k>Ap(e)C-p'(Logn)p'/p   if p > 1

and

Logk> Ax(e)C']Logn   ifp=\.

For better estimates see [1].

Proof. This follows from Theorem 2.1 and the easy observation that STp(lp) ~

(Log n)]/p when n -* oo. (For more details see, e.g., [11, p. 80]).

Remark. When /» = 1 this result is already known and can be obtained by a

rather standard "blocking" argument (cf., e.g., [11, Proposition 0.1]). When /» = 2

the quantitative version of Dvoretzky's theorem proved in [14 and 4] yields an

integer k proportional to n. These observations and the results of [1] show that the

preceding estimate is not the "right" one, especially when /» is close to 2, but we do

not see how to improve it.

Remark. Using similar ideas, one can obtain some estimates valid for any /» but

with some much more restrictive assumptions on the Banach space. For instance, let

X be a Banach space with a 1-unconditional and 1-symmetric basis (ey-)yeN. Let

1 </» < oo. Assume that 1%xj~x/pej converges and let M = Il2/>i./~1/'e/l|. Then X

contains, for each e > 0, a subspace (1 + e)-isomorphic to /* for every k such that

k *s Xp(e)Mp' where X^e) > 0 is a constant depending only on /» and e. We only

sketch briefly the argument: let /: N X N -> N be a bijection; we consider

zt= 2(r,r,/V,r
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It is possible to check that, for each (a,) in R*, the distribution of ||2f=1a,Z,|| is the

same as that of (2 |a, H'^HZJI. Indeed, assume 2 | a,f = 1. Let us denote by

\/y* the decreasing rearrangement of the collection (| a, IV1}, \ i < k, j G N}. The

distribution of (\/y¡*)¡>\ is the same as that of (l/I\),->i (cf., e.g., [9]). Hence,

\YZ(y*)~x/pej\\, which is equal to 112a, Z, 11 (since (e,) is a symmetric basis), has the

same distribution as ||Z,||. Therefore, the above statement follows easily using

Lemma 1.4 and the variables obtained from Z, by replacing T~¡l/p byj~l/p.
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