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Abstract. Consider the homogeneous equation

u
′(t) = ℓ(u)(t) for a.e. t ∈ [a, b]

where ℓ : C([a, b];R) → L([a, b];R) is a linear bounded operator. The efficient conditions
guaranteeing that the solution set to the equation considered is one-dimensional, generated
by a positive monotone function, are established. The results obtained are applied to get
new efficient conditions sufficient for the solvability of a class of boundary value problems
for first order linear functional differential equations.
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ity, solution set
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1. Introduction

In many applications, it is of great importance to know whether a linear boundary

value problem has a unique solution. Thus a lot of papers recently published are

devoted to the study of the unique solvability of the general boundary value problem

u′(t) = ℓ(u)(t) + q(t) for a.e. t ∈ [a, b],(1.1)

h(u) = c(1.2)

where ℓ : C([a, b];R) → L([a, b];R) and h : C([a, b];R) → R are linear bounded op-

erators, q ∈ L([a, b];R), and c ∈ R (see, e.g., [1]–[14] and the references therein).

For the second and third authors, the research was supported by RVO: 67985840.
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A well-known result, the so-called Fredholm Theorem, describes the relation be-

tween the unique solvability of the inhomogeneous and the corresponding homoge-

neous linear boundary value problems. To be more precise, the following theorem

is well-known from the general theory of boundary value problems for functional

differential equations:

Theorem 1.1. The problem (1.1), (1.2) is uniquely solvable if and only if the

corresponding homogeneous problem

u′(t) = ℓ(u)(t),(1.10)

h(u) = 0(1.20)

has only the trivial solution.

Remark 1.1. If the problem (1.10), (1.20) has only the trivial solution then the

solution to the problem (1.1), (1.2) can be expressed in the form

(1.3) u(t) = cu0(t) +

∫ b

a

G(t, s)q(s) ds for t ∈ [a, b],

where G : [a, b] × [a, b] → R is the so-called Green’s function of the problem (1.10),

(1.20) and u0 is a nontrivial solution to the homogeneous equation (1.10) satisfying

h(u0) = 1.

It is also known that the dimension of the solution set to the homogeneous equation

(1.10) plays an important role in the theory. Although we are dealing with a first

order linear ordinary differential equation, the dimension of the solution set U to

the equation (1.10) can be any natural number. More precisely, it is known that

dimU > 1 (see Section 4 in [6]), and if dimU > 2 then for every linear bounded

operator h : C([a, b];R) → R, the problem (1.10), (1.20) has a nontrivial solution (see

[6, Remark 4.7]). Therefore, it is of great importance to find conditions guaranteeing

the relation dimU = 1, and, in general, to study the structure of the solution set U .

1.1. Basic notation and definitions.

The following notation is used throughout the paper:

N is the set of all natural numbers.

R is the set of all real numbers; R+ = [0, +∞[.

C([a, b];R) is the Banach space of continuous functions u : [a, b] → R with the norm

‖u‖C = max{|u(t)| : t ∈ [a, b]}.
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L([a, b];R) is the Banach space of Lebesgue-integrable functions p : [a, b] → R with

the norm

‖u‖L =

∫ b

a

|p(t)| dt.

AC([a, b];R) is the set of absolutely continuous functions u : [a, b] → R.

C([a, b];R+) = {u ∈ C([a, b];R) : u(t) > 0 for t ∈ [a, b]}.

L([a, b];R+) = {p ∈ L([a, b];R) : p(t) > 0 for a.e. t ∈ [a, b]}.

Lab is the set of all linear bounded operators ℓ : C([a, b];R) → L([a, b];R).

Pab is the set of all positive operators ℓ ∈ Lab, i.e., such operators that transform

the set C([a, b];R+) into the set L([a, b];R+).

For every x ∈ R, [x]− = max{−x, 0}.

An operator ℓ ∈ Lab is called an a-Volterra operator (or a b-Volterra operator,

respectively) if for arbitrary c ∈ ]a, b] (or c ∈ [a, b[) and v ∈ C([a, b];R) such that

v(t) = 0 for t ∈ [a, c] (or v(t) = 0 for t ∈ [c, b]),

the equality

ℓ(v)(t) = 0 for a.e. t ∈ [a, c] (or ℓ(v)(t) = 0 for a.e. t ∈ [c, b])

is fulfilled.

By a solution to the equation (1.1) or (1.10), we understand a function u ∈

AC([a, b];R) satisfying (1.1) or (1.10), respectively, almost everywhere on [a, b]. By

a solution to the problem (1.1), (1.2) or (1.10), (1.20), we understand a solution u to

(1.1) or (1.10), satisfying (1.2) or (1.20), respectively.

Notation 1.1. Throughout the paper, by U we denote the set of all solutions u

to the equation (1.10). Obviously, U is a linear vector space.

To formulate the main results it is convenient to introduce the following definitions:

Definition 1.1. An operator ℓ ∈ Lab is said to belong to the set Sab(a) if every

function u ∈ AC([a, b];R) satisfying

u′(t) > ℓ(u)(t) for a.e. t ∈ [a, b],(1.4)

u(a) > 0(1.5)

satisfies the inequality

(1.6) u(t) > 0 for t ∈ [a, b].

Remark 1.2. The inclusion ℓ ∈ Sab(a) implies that the problem (1.10), (1.20)

with h(v) = v(a) has only the trivial solution. Therefore, according to Remark 1.1,

every solution to (1.1), (1.2) (with h(v)
def
= v(a)) has the representation (1.3). Thus

the inclusion ℓ ∈ Sab(a) is equivalent to the non-negativity of u0 and G.
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Definition 1.2. An operator ℓ ∈ Lab is said to belong to the set Sab(b) if every

function u ∈ AC([a, b];R) satisfying

u′(t) 6 ℓ(u)(t) for a.e. t ∈ [a, b],(1.7)

u(b) > 0(1.8)

satisfies the inequality (1.6).

Remark 1.3. The inclusion ℓ ∈ Sab(b) is equivalent to the non-negativity of u0

and non-positivity of G in (1.3) with h(v)
def
= v(b).

Definition 1.3. An operator ℓ ∈ Lab is said to belong to the set S′

ab
(a) if every

function u ∈ AC([a, b];R) satisfying (1.4) and (1.5) satisfies the inequalities (1.6)

and

(1.9) u′(t) > 0 for a.e. t ∈ [a, b].

Remark 1.4. It follows from the integral representation (1.3) (with h(v)
def
= v(a))

that the inclusion ℓ ∈ S′

ab
(a) is connected, in a certain sense, with the non-negativity

of u′

0, G, and G′

t (see Remark 1.2 and [1, §3.4, Theorem 4.2]).

Definition 1.4. An operator ℓ ∈ Lab is said to belong to the set S′

ab
(b) if every

function u ∈ AC([a, b];R) satisfying (1.7) and (1.8) satisfies the inequalities (1.6)

and

(1.10) u′(t) 6 0 for a.e. t ∈ [a, b].

Remark 1.5. It follows from the integral representation (1.3) (with h(v)
def
= v(b))

that the inclusion ℓ ∈ S′

ab
(b) is connected, in a certain sense, with the sign-properties

of u′

0, G, and G′

t (see Remark 1.2 and [1, §3.4, Theorem 4.2]).

Definition 1.5. An operator ℓ ∈ Lab belongs to the set P
+

ab
(or P−

ab
, respec-

tively) if it transforms non-negative non-decreasing (or non-increasing) absolutely

continuous functions into non-negative functions.

Similarly, we say that an operator ℓ ∈ Lab belongs to the set N
+

ab
(or N−

ab
, respec-

tively) if it transforms non-negative non-decreasing (or non-increasing) absolutely

continuous functions into non-positive functions.

Remark 1.6. In contrast with the set Pab (of positive operators), having ℓ ∈ P+

ab

(or ℓ ∈ P−

ab
, respectively), it is not supposed that the operator ℓ transforms every

non-negative function into a non-negative function. For example, let

ℓ(u)(t)
def
= p(t)u(τ(t)) − g(t)u(µ(t)) for t ∈ [a, b]
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be an operator with p, g ∈ L([a, b];R+), τ, µ : [a, b] → [a, b] measurable functions. If

p(t) > g(t) for a.e. t ∈ [a, b] and g(t)(τ(t)−µ(t)) > 0 for a.e. t ∈ [a, b], then ℓ belongs

to P+

ab
but does not belong to Pab.

More precisely, Pab ⊂ P+

ab
∩ P−

ab
. However, Pab 6= P+

ab
∩ P−

ab
as the following

example illustrates: Let

ℓ(u)(t)
def
=

2

b − a

∫ b

a

u(s) ds − u
(a + b

2

)

for t ∈ [a, b].

Then, supposing u to be a non-negative, non-decreasing function, we obtain ℓ(u)(t) >

0 for t ∈ [a, b]. We obtain the same inequality, i.e. the inequality ℓ(u)(t) > 0 for

t ∈ [a, b], whenever u is a non-negative and non-increasing function. Therefore,

ℓ ∈ P+

ab
∩ P−

ab
.

On the other hand, let ε ∈ ]0, (b − a)/2[ and put

u0(t) =























0 for [a, a + ε[ ∪ ]b − ε, b],

2(t − a − ε)

b − a − 2ε
for

[

a + ε,
a + b

2

[

,

2(b − ε − t)

b − a − 2ε
for

[a + b

2
, b − ε

]

.

Obviously, u0(t) > 0 for t ∈ [a, b], but

ℓ(u0)(t) = −
2ε

b − a
< 0 for t ∈ [a, b].

Consequently, ℓ 6∈ Pab.

Remark 1.7. Define the operator ϕ : C([a, b];R) → C([a, b];R) as follows:

ϕ(v)(t) = v(a + b − t) for t ∈ [a, b], v ∈ C([a, b];R).

Put

ℓ̃(v)(t) = −ℓ(ϕ(v))(a + b − t) for a.e. t ∈ [a, b], v ∈ C([a, b];R).

Then it can be easily verified that ℓ̃ ∈ Sab(a) or ℓ̃ ∈ S′

ab
(a) if and only if ℓ ∈ Sab(b)

or ℓ ∈ S′

ab
(b), respectively. Furthermore, ℓ̃ ∈ P+

ab
(or ℓ̃ ∈ P−

ab
), if and only if ℓ ∈ N−

ab
,

(or ℓ ∈ N+

ab
, respectively).

Remark 1.8. Note that the inclusion ℓ ∈ Sab(a), and consequently also the

inclusion ℓ ∈ S′

ab
(a), guarantees that the unique solution to (1.10) satisfying u(a) = 0

is a trivial solution. Similarly, the inclusion ℓ ∈ Sab(b), or ℓ ∈ S′

ab
(b), implies that

the unique solution to (1.10) satisfying u(b) = 0 is the trivial solution.

For monotone operators the following theorems can be found in [5].
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Theorem 1.2 (Theorem 1.1 in [5]). Let ℓ0 ∈ Pab. Then ℓ0 ∈ Sab(a) if and only

if there exists γ ∈ AC([a, b];R) such that

γ(t) > 0 for t ∈ [a, b],

γ′(t) > ℓ0(γ)(t) for a.e. t ∈ [a, b].

Theorem 1.3 (Theorem 1.5 in [5]). Let ℓ1 ∈ Pab. Then −ℓ1 ∈ Sab(b) if and only

if there exists γ ∈ AC([a, b];R) such that

γ(t) > 0 for t ∈ [a, b],

γ′(t) 6 −ℓ1(γ)(t) for a.e. t ∈ [a, b].

Remark 1.9. Note that the function γ appearing in Theorem 1.2 and Theo-

rem 1.3 is non-decreasing and non-increasing, respectively. Therefore, from Theo-

rem 1.2 it follows that if ℓ0 ∈ Sab(a) is a b-Volterra positive operator then ℓ̃0 ∈ Scb(c)

for every c ∈ [a, b[, where ℓ̃0 is the restriction of ℓ0 to the space C([c, b];R) defined

by

ℓ̃0(y)(t) = ℓ0(ϑ(y))(t) for a.e. t ∈ [c, b], y ∈ C([c, b];R),

ϑ(y)(t) =

{

y(c) for t ∈ [a, c[ ,

y(t) for t ∈ [c, b].

Similarly, from Theorem 1.3 it follows that if −ℓ1 ∈ Sab(b) is an a-Volterra non-

increasing operator then −ℓ̃1 ∈ Sac(c) for every c ∈ ]a, b], where ℓ̃1 is the restriction

of ℓ1 to the space C([a, c];R) defined by

ℓ̃1(y)(t) = ℓ1(ϑ(y))(t) for a.e. t ∈ [a, c], y ∈ C([a, c];R),

ϑ(y)(t) =

{

y(t) for t ∈ [a, c],

y(c) for t ∈ ]c, b].

2. Main results

In this section, the main results are formulated using the general terms that the

operator ℓ, or its positive or negative part, belong to one of the sets Sab(a), Sab(b),

S′

ab
(a), and S′

ab
(b). The effective criteria guaranteeing such an inclusion can be found

in Section 4 of the paper. For more conditions guaranteeing the mentioned inclusions

one can see [2], [5] or the monograph [7] in which also a detailed introduction to the

problem is contained.
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Proposition 2.1. Let ℓ ∈ S′

ab
(a). Then dimU = 1 and the set U is generated by

a positive non-decreasing function.

Theorem 2.1. Let ℓ ∈ P+

ab
admit the representation ℓ = ℓ0 − ℓ1 with ℓ0, ℓ1 ∈ Pab

and let ℓ0 ∈ Sab(a). Then dim U = 1 and the set U is generated by a positive

non-decreasing function.

Theorem 2.2. Let ℓ ∈ P+

ab
admit the representation ℓ = ℓ0 − ℓ1 with ℓ0, ℓ1 ∈ Pab

and let −ℓ1 ∈ Sab(b). Let, moreover, there exist γ ∈ AC([a, b];R) satisfying

γ(t) > 0 for t ∈ [a, b],(2.1)

γ′(t) > ℓ(γ)(t) for a.e. t ∈ [a, b].(2.2)

Then dimU = 1 and the set U is generated by a positive non-decreasing function.

Theorem 2.3. Let ℓ ∈ N+

ab
admit the representation ℓ = ℓ0− ℓ1 with ℓ0, ℓ1 ∈ Pab

and let −ℓ1 ∈ Sab(b) be an a-Volterra operator. Then dimU = 1 and the set U is

generated by a positive function u with the following property: the relation

(2.3) u(a) = max{u(t) : t ∈ [a, b]}

holds and, in addition, if there exists c ∈ ]a, b] such that u(c) = u(a) then

(2.4) u(t) = u(c) for t ∈ [a, c].

Theorem 2.4. Let ℓ ∈ P−

ab
admit the representation ℓ = ℓ0 − ℓ1 with ℓ0, ℓ1 ∈ Pab

and let −ℓ1 ∈ Sab(b) be an a-Volterra operator. Let, moreover, there exist γ ∈

AC([a, b];R) satisfying (2.1) and (2.2). Then dimU = 1 and the set U is generated

by a positive function u with the following property: the relation

(2.5) u(a) = min{u(t) : t ∈ [a, b]}

holds and, in addition, if there exists c ∈ ]a, b] such that u(c) = u(a) then (2.4) is

fulfilled.

According to Remark 1.7, the following assertions immediately follow from Propo-

sition 2.1 and Theorems 2.1–2.4:

Proposition 2.2. Let ℓ ∈ S′

ab
(b). Then dimU = 1 and the set U is generated by

a positive non-increasing function.
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Theorem 2.5. Let ℓ ∈ N−

ab
admit the representation ℓ = ℓ0− ℓ1 with ℓ0, ℓ1 ∈ Pab

and let −ℓ1 ∈ Sab(b). Then dimU = 1 and the set U is generated by a positive

non-increasing function.

Theorem 2.6. Let ℓ ∈ N−

ab
admit the representation ℓ = ℓ0− ℓ1 with ℓ0, ℓ1 ∈ Pab

and let ℓ0 ∈ Sab(a). Let, moreover, there exist γ ∈ AC([a, b];R) satisfying (2.1) and

(2.6) γ′(t) 6 ℓ(γ)(t) for a.e. t ∈ [a, b].

Then dimU = 1 and the set U is generated by a positive non-increasing function.

Theorem 2.7. Let ℓ ∈ P−

ab
admit the representation ℓ = ℓ0 − ℓ1 with ℓ0, ℓ1 ∈ Pab

and let ℓ0 ∈ Sab(a) be a b-Volterra operator. Then dim U = 1 and the set U is

generated by a positive function u with the following property: the relation

(2.7) u(b) = max{u(t) : t ∈ [a, b]}

holds and, in addition, if there exists c ∈ [a, b[ such that u(c) = u(b) then

(2.8) u(t) = u(c) for t ∈ [c, b].

Theorem 2.8. Let ℓ ∈ N+

ab
admit the representation ℓ = ℓ0 − ℓ1 with ℓ0, ℓ1 ∈

Pab and let ℓ0 ∈ Sab(a) be a b-Volterra operator. Let, moreover, there exist γ ∈

AC([a, b];R) satisfying (2.1) and (2.6). Then dimU = 1 and the set U is generated

by a positive function u with the following property: the relation

(2.9) u(b) = min{u(t) : t ∈ [a, b]}

holds and, in addition, if there exists c ∈ [a, b[ such that u(c) = u(b) then (2.8) is

fulfilled.

3. Auxiliary propositions

Lemma 3.1. Let ℓ ∈ P+

ab
admit the representation ℓ = ℓ0 − ℓ1 with ℓ0, ℓ1 ∈ Pab

and let −ℓ1 ∈ Sab(b). Let, moreover, u ∈ AC([a, b];R) satisfy (1.4) and (1.6). Then

u satisfies also (1.9).
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P r o o f. Put

(3.1) w(t) = min{u(s) : s ∈ [t, b]} for t ∈ [a, b]

and

(3.2) A = {t ∈ [a, b] : w(t) = u(t)}.

Obviously,

w ∈ AC([a, b];R),(3.3)

w(t) > 0 for t ∈ [a, b],(3.4)

w′(t) > 0 for a.e. t ∈ [a, b],(3.5)

w(t) 6 u(t) for t ∈ [a, b],(3.6)

and

(3.7) w′(t) =

{

u′(t) for a.e. t ∈ A,

0 for a.e. t ∈ [a, b] \ A.

Put

(3.8) q(t) = u′(t) − ℓ(u)(t) for a.e. t ∈ [a, b].

Then in view of (1.4) we have

(3.9) q(t) > 0 for a.e. t ∈ [a, b].

Moreover, according to (3.6) from (3.8) it follows that

(3.10) u′(t) = ℓ(u)(t) + q(t) 6 ℓ0(u)(t) − ℓ1(w)(t) + q(t) for a.e. t ∈ [a, b].

On the other hand, in view of the inclusion ℓ ∈ P+

ab
, on account of (3.3)–(3.6), and

(3.9), we have

(3.11) ℓ0(u)(t) − ℓ1(w)(t) + q(t) > ℓ(w)(t) + q(t) > 0 for a.e. t ∈ [a, b].

Now from (3.7), (3.10), and (3.11) we get

(3.12) w′(t) 6 ℓ0(u)(t) − ℓ1(w)(t) + q(t) for a.e. t ∈ [a, b].
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Put

(3.13) z(t) = w(t) − u(t) for t ∈ [a, b].

Then in view of (3.1), (3.8), (3.12), and (3.13) we have

z′(t) 6 −ℓ1(z)(t) for a.e. t ∈ [a, b], z(b) = 0.

Now the inclusion −ℓ1 ∈ Sab(b) implies z(t) > 0 for t ∈ [a, b], whence in view of

(3.13) we obtain

(3.14) w(t) > u(t) for t ∈ [a, b].

However, (3.14) together with (3.6) yields w ≡ u, and consequently, on account of

(3.5), the inequality (1.9) is true. �

Lemma 3.2. Let ℓ ∈ N+

ab
admit the representation ℓ = ℓ0 − ℓ1 with ℓ0, ℓ1 ∈ Pab

and let −ℓ1 ∈ Sab(b) be an a-Volterra operator. Let, moreover, u ∈ AC([a, b];R)

satisfy (1.4) and let there exist c ∈ ]a, b] such that

(3.15) u(c) = min{u(t) : t ∈ [a, b]} 6 0.

Then (2.4) holds.

P r o o f. Define operators ϑ : C([a, c];R) → C([a, b];R) and ℓ̃i : C([a, c];R) →

L([a, c];R) (i = 0, 1) as follows:

ϑ(y)(t) =

{

y(t) for t ∈ [a, c[ ,

y(c) for t ∈ [c, b],
y ∈ C([a, c];R),(3.16)

ℓ̃i(y)(t) = ℓi(ϑ(y))(t) for a.e. t ∈ [a, c], y ∈ C([a, c];R) (i = 0, 1).(3.17)

Then it can be easily verified, according to Definition 1.5, (3.16), and (3.17), that

(3.18) ℓ̃0 − ℓ̃1 ∈ N+
ac.

Moreover, according to the assumption that ℓ1 is an a-Volterra operator,

(3.19) ℓ̃1(y)(t) = ℓ1(y)(t) for a.e. t ∈ [a, c], y ∈ C([a, b];R),

where y is the restriction of y to the interval [a, c].
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Let ū be the restriction of u to the interval [a, c]. Thus the function ū, in view of

(1.4), (3.15)–(3.17), and (3.19), satisfies the inequalities

ϑ(ū)(t) 6 u(t) for t ∈ [a, b],(3.20)

ū′(t) > ℓ̃0(ū)(t) − ℓ̃1(ū)(t) for a.e. t ∈ [a, c].(3.21)

Furthermore, note that according to Remark 1.9, the inclusion −ℓ1 ∈ Sab(b) yields

(3.22) −ℓ̃1 ∈ Sac(c).

Now put

(3.23) w(t) = max{[ū(s)]− : s ∈ [a, t]} for t ∈ [a, c],

and

A = {t ∈ [a, c] : w(t) = −ū(t)}.

Obviously,

w ∈ AC([a, c];R),(3.24)

w(t) > 0 for t ∈ [a, c],(3.25)

w′(t) > 0 for a.e. t ∈ [a, c],(3.26)

w(t) > [ū(t)]− > −ū(t) for t ∈ [a, c],(3.27)

and

(3.28) w′(t) =

{

−ū′(t) for a.e. t ∈ A,

0 for a.e. t ∈ [a, c] \ A.

Put

(3.29) q(t) = ū′(t) − ℓ̃0(ū)(t) + ℓ̃1(ū)(t) for a.e. t ∈ [a, c].

Then in view of (3.21) we have

(3.30) q(t) > 0 for a.e. t ∈ [a, c].

Moreover, according to (3.27) from (3.29) we obtain

−ū′(t) = −ℓ̃0(ū)(t) + ℓ̃1(ū)(t) − q(t) > −ℓ̃0(ū)(t) − ℓ̃1(w)(t) − q(t)(3.31)

for a.e. t ∈ [a, c].
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On the other hand, in view of (3.18), on account of (3.24)–(3.27), and (3.30), we find

(3.32) −ℓ̃0(ū)(t)− ℓ̃1(w)(t)−q(t) 6 ℓ̃0(w)(t)− ℓ̃1(w)(t)−q(t) 6 0 for a.e. t ∈ [a, c].

Now from (3.28), (3.31), and (3.32) we get

(3.33) w′(t) > −ℓ̃0(ū)(t) − ℓ̃1(w)(t) − q(t) for a.e. t ∈ [a, c].

Put

(3.34) z(t) = w(t) + ū(t) for t ∈ [a, c].

Then in view of (3.15), (3.23), (3.29), (3.33), and (3.34) we have

z′(t) > −ℓ̃1(z)(t) for a.e. t ∈ [a, c], z(c) = 0.

Now the inclusion (3.22) implies z(t) 6 0 for t ∈ [a, c], whence, according to (3.34),

we get

(3.35) w(t) 6 −ū(t) for t ∈ [a, c].

However, (3.35) together with (3.27) yields w ≡ −ū, and consequently, on account

of (3.25) and (3.26), we obtain

ū(t) 6 0 for t ∈ [a, c],(3.36)

ū′(t) 6 0 for a.e. t ∈ [a, c].(3.37)

However, (3.18), (3.36), and (3.37) result in

(3.38) ℓ̃0(ū)(t) − ℓ̃1(ū)(t) > 0 for a.e. t ∈ [a, c],

whence, in view of (3.21), we have ū′(t) > 0 for a.e. t ∈ [a, c]. Consequently, the last

inequality and (3.37) imply that ū′(t) = 0 for a.e. t ∈ [a, c], i.e., (2.4) holds. �
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Lemma 3.3. Let ℓ ∈ P−

ab
admit the representation ℓ = ℓ0 − ℓ1 with ℓ0, ℓ1 ∈ Pab

and let −ℓ1 ∈ Sab(b) be an a-Volterra operator. Let, moreover, u ∈ AC([a, b];R)

satisfy (1.4) and (1.6). Then (2.5) holds and, in addition, if there exists c ∈ ]a, b]

such that u(c) = u(a), then (2.4) holds.

P r o o f. To prove the lemma it is sufficient to show that whenever there exists

c ∈ ]a, b] such that

(3.39) u(c) = min{u(t) : t ∈ [a, b]}

then u satisfies (2.4) and so (2.5) holds necessarily. Therefore, let c ∈ ]a, b] be

arbitrary but fixed, such that (3.39) holds. Define operators ϑ : C([a, c];R) →

C([a, b];R), ℓ̃i : C([a, c];R) → L([a, c];R) (i = 0, 1) by (3.16) and (3.17). Then it

can be easily verified, according to Definition 1.5, (3.16), and (3.17), that

(3.40) ℓ̃0 − ℓ̃1 ∈ P−

ac.

Moreover, according to the assumption that ℓ1 is an a-Volterra operator, (3.19) is

fulfilled, where y is the restriction of y to the interval [a, c].

Let ū be the restriction of u to the interval [a, c]. Thus the function ū, in view

of (1.4), (3.16), (3.17), (3.19), and (3.39), satisfies the inequalities (3.20) and (3.21).

Furthermore, note that according to Remark 1.9, the inclusion −ℓ1 ∈ Sab(b) yields

(3.22).

Now put

(3.41) w(t) = min{ū(s) : s ∈ [a, t]} for t ∈ [a, c],

and

A = {t ∈ [a, c] : w(t) = ū(t)}.

Obviously, (3.24), (3.25),

w′(t) 6 0 for a.e. t ∈ [a, c],(3.42)

w(t) 6 ū(t) for t ∈ [a, c],(3.43)

and

(3.44) w′(t) =

{

ū′(t) for a.e. t ∈ A,

0 for a.e. t ∈ [a, c] \ A
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hold. Define q by (3.29). Then in view of (3.21) we have (3.30). Moreover, according

to (3.43) from (3.29) we obtain

ū′(t) = ℓ̃0(ū)(t) − ℓ̃1(ū)(t) + q(t) 6 ℓ̃0(ū)(t) − ℓ̃1(w)(t) + q(t)(3.45)

for a.e. t ∈ [a, c].

On the other hand, in view of (3.40), on account of (3.24), (3.25), (3.30), (3.42), and

(3.43), we find

(3.46) ℓ̃0(ū)(t)− ℓ̃1(w)(t) + q(t) > ℓ̃0(w)(t)− ℓ̃1(w)(t) + q(t) > 0 for a.e. t ∈ [a, c].

Now, from (3.44)–(3.46), we get

(3.47) w′(t) 6 ℓ̃0(ū)(t) − ℓ̃1(w)(t) + q(t) for a.e. t ∈ [a, c].

Put

(3.48) z(t) = w(t) − ū(t) for t ∈ [a, c].

Then in view of (3.29), (3.39), (3.41), (3.47), and (3.48) we have

z′(t) 6 −ℓ̃1(z)(t) for a.e. t ∈ [a, c], z(c) = 0.

Now the inclusion (3.22) implies z(t) > 0 for t ∈ [a, c], whence according to (3.48)

we get

(3.49) w(t) > ū(t) for t ∈ [a, c].

However, (3.49) together with (3.43) yield w ≡ ū, and consequently, on account

of (3.42), we obtain (3.37). Furthermore, (1.6), (3.37), and (3.40) result in (3.38),

whence, in view of (3.21), we have ū′(t) > 0 for a.e. t ∈ [a, c]. Consequently, the last

inequality and (3.37) imply that ū′(t) = 0 for a.e. t ∈ [a, c], i.e., (2.4) holds. �

Lemma 3.4. Let every nontrivial solution u to (1.10) satisfy

u(t) 6= 0 for t ∈ [a, b].

Then dimU = 1.

P r o o f. Let u and v be arbitrary nontrivial solutions to (1.10). Put

w(t) = u(a)v(t) − v(a)u(t) for t ∈ [a, b].
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Then, obviously,

w′(t) = ℓ(w)(t) for a.e. t ∈ [a, b], w(a) = 0.

Therefore, according to the assumptions we have w ≡ 0, i.e.,

v(t) =
v(a)

u(a)
u(t) for t ∈ [a, b].

�

4. On the sets Sab(a), Sab(b), S′

ab
(a), and S′

ab
(b)

Theorem 4.1. Let ℓ ∈ P+

ab
admit the representation ℓ = ℓ0 − ℓ1 with ℓ0, ℓ1 ∈ Pab

and let ℓ0 ∈ Sab(a). Then ℓ ∈ S′

ab
(a).

P r o o f. Let u ∈ AC([a, b];R) satisfy (1.4) and (1.5). We will show that (1.6)

and (1.9) hold.

Put

(4.1) w(t) = max{u(s) : s ∈ [a, t]} for t ∈ [a, b]

and define the set A and the function q by (3.2) and (3.8), respectively. Then

according to (1.4), (1.5), and (4.1) we have (3.3)–(3.5), (3.7), (3.9), and (3.14).

Moreover, according to (3.14) from (3.8) it follows that

(4.2) u′(t) = ℓ(u)(t) + q(t) 6 ℓ0(w)(t) − ℓ1(u)(t) + q(t) for a.e. t ∈ [a, b].

On the other hand, in view of the inclusion ℓ ∈ P+

ab
, on account of (3.3)–(3.5), (3.9),

and (3.14), we have

(4.3) ℓ0(w)(t) − ℓ1(u)(t) + q(t) > ℓ(w)(t) + q(t) > 0 for a.e. t ∈ [a, b].

Now from (3.7), (4.2), and (4.3) we get

(4.4) w′(t) 6 ℓ0(w)(t) − ℓ1(u)(t) + q(t) for a.e. t ∈ [a, b].

Define z by (3.13). Then in view of (3.8), (3.13), (4.1), and (4.4) we have

z′(t) 6 ℓ0(z)(t) for a.e. t ∈ [a, b], z(a) = 0.

Now the inclusion ℓ0 ∈ Sab(a) implies z(t) 6 0 for t ∈ [a, b], whence in view of (3.13)

we obtain (3.6). However, (3.6) together with (3.14) yields w ≡ u, and consequently,

on account of (3.4) and (3.5) the inequalities (1.6) and (1.9) hold. �
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Theorem 4.2. Let ℓ ∈ P+

ab
admit the representation ℓ = ℓ0 − ℓ1 with ℓ0, ℓ1 ∈ Pab

and let −ℓ1 ∈ Sab(b). Then ℓ ∈ S′

ab
(a) if and only if there exists γ ∈ AC([a, b];R)

satisfying (2.1) and (2.2).

P r o o f. If ℓ ∈ S′

ab
(a), then the problem

(4.5) u′(t) = ℓ(u)(t), u(a) = 1

has a unique solution γ. Therefore, γ satisfies (2.2). Moreover, according to Defi-

nition 1.3, the function γ satisfies γ′(t) > 0 for a.e. t ∈ [a, b], which together with

γ(a) = 1 implies (2.1).

Let there exist γ ∈ AC([a, b];R) satisfying (2.1) and (2.2), and let u ∈ AC([a, b];R)

satisfy (1.4) and (1.5). We have to show that (1.6) and (1.9) hold. However, according

to Lemma 3.1, it is sufficient to show that (1.6) holds.

Assume on the contrary that there exists t0 ∈ ]a, b] such that

(4.6) u(t0) < 0.

Put

(4.7) λ = max
{−u(t)

γ(t)
: t ∈ [a, b]

}

.

Then, in view of (2.1) and (4.6), we have

(4.8) λ > 0.

Furthermore,

(4.9) λγ(t) + u(t) > 0 for t ∈ [a, b]

and there exists t1 ∈ [a, b] such that

(4.10) λγ(t1) + u(t1) = 0.

From (1.4), (2.2), and (4.8) we get

(4.11) λγ′(t) + u′(t) > ℓ(λγ + u)(t) for a.e. t ∈ [a, b].

Now according to Lemma 3.1, in view of (4.9) and (4.11), the inequality

(4.12) λγ′(t) + u′(t) > 0 for a.e. t ∈ [a, b]

1048



holds. However, (4.9), (4.10), and (4.12) yield

(4.13) λγ(a) + u(a) = 0,

whence, on account of (1.5), (2.1), and (4.8), we obtain

(4.14) 0 < λγ(a) = −u(a) 6 0,

a contradiction. Therefore, (1.6) holds. �

Theorem 4.3. Let ℓ ∈ N+

ab
admit the representation ℓ = ℓ0− ℓ1 with ℓ0, ℓ1 ∈ Pab

and let −ℓ1 ∈ Sab(b) be an a-Volterra operator. Then ℓ ∈ Sab(a).

P r o o f. Let u ∈ AC([a, b];R) satisfy (1.4) and (1.5). We will show that (1.6)

holds. Assume on the contrary that there exists t0 ∈ ]a, b] such that (4.6) is fulfilled.

Then the assumptions of Lemma 3.2 are satisfied for a suitable c ∈ ]a, b]. Therefore,

(2.4) holds and, in particular, u(a) = u(c). However, the latter equality together

with (1.5), (3.15), and (4.6) result in

0 6 u(a) = u(c) 6 u(t0) < 0,

a contradiction. Therefore, (1.6) holds and so ℓ ∈ Sab(a). �

Theorem 4.4. Let ℓ ∈ P−

ab
admit the representation ℓ = ℓ0 − ℓ1 with ℓ0, ℓ1 ∈ Pab

and let −ℓ1 ∈ Sab(b) be an a-Volterra operator. Then ℓ ∈ Sab(a) if and only if there

exists γ ∈ AC([a, b];R) satisfying (2.1) and (2.2).

P r o o f. If ℓ ∈ Sab(a), then the problem (4.5) has a unique solution γ. Therefore,

γ satisfies (2.2). Moreover, according to Definition 1.1, the inequality γ(t) > 0 for

t ∈ [a, b] is fulfilled. Now from Lemma 3.3 it follows that

γ(a) = min{γ(t) : t ∈ [a, b]},

which together with γ(a) = 1 implies (2.1).

Let now there exist a function γ ∈ AC([a, b];R) satisfying (2.1) and (2.2), and let

u ∈ AC([a, b];R) satisfy (1.4) and (1.5). We will show that (1.6) holds.

Assume on the contrary that there exists t0 ∈ ]a, b] such that (4.6) holds. Define

λ by (4.7). Then, in view of (2.1) and (4.6), we have (4.8). Furthermore, (4.9) is

fulfilled and there exists t1 ∈ [a, b] such that (4.10) holds true. Moreover, from (1.4),

(2.2), and (4.8) we get (4.11). Now according to Lemma 3.3, in view of (4.9)–(4.11),

the equality (4.13) is satisfied, whence, on account of (1.5), (2.1), and (4.8), we obtain

(4.14), a contradiction. Therefore, (1.6) holds. �
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5. Proofs of the main results

P r o o f of Proposition 2.1. Let u be an arbitrary nontrivial solution to (1.10).

Without loss of generality we can assume that (1.5) holds. Therefore, in view of the

inclusion ℓ ∈ S′

ab
(a) we have (1.6) and (1.9).

If u(a) = 0 then v ≡ −u satisfies

v′(t) = ℓ(v)(t) for a.e. t ∈ [a, b], v(a) = 0,

and, consequently, due to the inclusion ℓ ∈ S′

ab
(a) again, we have v(t) > 0 for

t ∈ [a, b], i.e., u(t) 6 0 for t ∈ [a, b]. Thus the latter inequality together with (1.6)

yields u ≡ 0, a contradiction.

Therefore, u(a) > 0 and from (1.9) it follows that u is a positive non-decreasing

function. Now the conclusion of the theorem follows from Lemma 3.4. �

Theorems 2.1 and 2.2 immediately follow from Proposition 2.1, according to The-

orems 4.1 and 4.2.

P r o o f of Theorem 2.3. According to Theorem 4.3 we have

(5.1) ℓ ∈ Sab(a).

Let u be an arbitrary nontrivial solution to (1.10). Without loss of generality we can

assume that (1.5) holds.

If u(a) = 0 then in view of (1.10) and (5.1) we have u ≡ 0, a contradiction.

Therefore, u(a) > 0. We will show that u is a positive function. Assume on

the contrary that u has a zero. Then according to Lemma 3.2 we have u(a) 6 0,

a contradiction. Therefore, u is a positive function and the relation dimU = 1 follows

from Lemma 3.4.

Now we will prove the second part of the theorem. It is sufficient to show that if

there exists c ∈ ]a, b] such that

(5.2) u(c) = max{u(t) : t ∈ [a, b]}

then (2.4) holds. Thus let c ∈ ]a, b] be such that (5.2) is fulfilled. Obviously,

(5.3) u(c) > 0.

Put

(5.4) v(t) = −u(t) for t ∈ [a, b].

1050



Then in view of (1.10), (5.2), and (5.3) we have

v′(t) = ℓ(v)(t) for a.e. t ∈ [a, b], v(c) = min{v(t) : t ∈ [a, b]} < 0.

Therefore, the assumptions of Lemma 3.2 are fulfilled and so we have v(t) = v(c) for

t ∈ [a, c], i.e., in view of (5.4), (2.4) holds. �

P r o o f of Theorem 2.4. According to Theorem 4.4 we have (5.1). Let u be an

arbitrary nontrivial solution to (1.10). Without loss of generality we can assume that

(1.5) holds. Obviously, (5.1) yields (1.6).

If u(a) = 0 then in view of (1.10) and (5.1) we find u ≡ 0, a contradiction.

Therefore, u(a) > 0. Now the conclusion of the theorem follows from Lemmas 3.3

and 3.4. �

6. Application

The following general theorem is a simple consequence of Theorem 1.1.

Theorem 6.1. Let for every u ∈ U the following implication hold: if h(u) = 0

then u ≡ 0. Then the problem (1.1), (1.2) is uniquely solvable.

From Theorem 6.1 it immediately follows that the knowledge of the structure of the

solution set U allows us to find effective criteria guaranteeing the unique solvability

of the problem (1.1), (1.2). In particular, the following consequence is true:

Corollary 6.1. Let dim U = 1 and let the set U be generated by a positive

function. Let, moreover, the operator h have the following property: if h(u) = 0

then u has a zero. Then the problem (1.1), (1.2) is uniquely solvable.

According to the results obtained in Section 2, Theorem 6.1, and Corollary 6.1,

one can easily derive statements dealing with the solvability of special cases of the

problem (1.1), (1.2). As an illustration, we give the results dealing with the initial,

anti-periodic, and periodic boundary value problems:

Theorem 6.2. The assumptions of each of Propositions 2.1 and 2.2 or Theo-

rems 2.1–2.8 guarantee the existence of a unique solution u to the equation (1.1)

satisfying

u(t0) = c,

where t0 ∈ [a, b] is arbitrary but fixed and c ∈ R.
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Theorem 6.3. The assumptions of each of Propositions 2.1 and 2.2 or Theo-

rems 2.1–2.8 guarantee the existence of a unique solution u to the equation (1.1)

satisfying

u(b) + u(a) = c,

where c ∈ R.

The previous theorems immediately follow from Corollary 6.1 and the results es-

tablished in the Section 2. Applying Theorem 6.1 and the statements of Section 2

we obtain

Theorem 6.4. Let ℓ(1) 6≡ 0. Then the assumptions of each of Propositions 2.1

and 2.2 or Theorems 2.1–2.8 guarantee the existence of a unique solution u to the

equation (1.1) satisfying

u(b) − u(a) = c,

where c ∈ R.
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