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Abstract. We discuss several questions which remained open in our joint
work with M. Sodin “Almost periodic Jacobi matrices with homogeneous spec-
trum, infinite-dimensional Jacobi inversion, and Hardy spaces of character-
automorphic functions”. In particular, we show that there exists a non-
homogeneous set E such that the Direct Cauchy Theorem (DCT) holds in
the Widom domain C \E. On the other hand we demonstrate that the weak
homogeneity condition on E (introduced recently by Poltoratski and Remling)
does not ensure that DCT holds in the corresponding Widom domain.
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1. Introduction

Several recent publications [3, 7, 9, 10, 15, 18] indicate a certain interest in our
paper [19]. We recall the main result of this paper as well as introduce some
notation and give the necessary definitions in what follows.

Let E be a compact set on the real axis without isolated points,

E = [b0, a0] \
⋃
j≥1

(aj, bj).

By J(E) we denote the set of reflectionless (two-sided) Jacobi matrices J with
the spectrum on E. This means that the diagonal elements of the resolvent

Rk,k(z) =
〈
(J − z)−1ek, ek

〉
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possess the property ReRk,k(x + i0) = 0 for almost all x ∈ E. As usual ek’s
denote the standard basis in l2. For a special role of this class of Jacobi matrices
see [17].

The function R(z) = Rk,k(z) has positive imaginary part in the upper half plane,
and therefore possesses the representation

(1) R(z) =

∫
E

dσ(x)

x− z
.

Moreover, since R(z) assumes pure imaginary values on E we have

σ′a.c. =
1

π
|R(x)|.

We follow the terminology in [15] and call reflectionless the measures σ related
to reflectionless functions R(z) of the form (1), ReR(x+ i0) = 0, a.e. x ∈ E.

The collection of reflectionless functions associated to the given compact E can
be parameterized in the following way: we chose arbitrary xj ∈ [aj, bj] and set

(2) R(z) = R(z, {xj}) = − 1√
(z − a0)(z − b0)

∏
j≥1

z − xj√
(z − aj)(z − bj)

.

By D(E) we denote the set of so-called divisors D, where

D = {(xj, εj) : xj ∈ [aj, bj], εj = ±1}, (aj, 1) ≡ (aj,−1), (bj, 1) ≡ (bj,−1).

The map J(E)→ D(E) is defined in the following way. For a reflectionless J the
resolvent function R0,0(z) possesses the representation (2) and this representation
produces the collection {xj}. To define εj we represent J as a two-dimensional
perturbation of the block-diagonal sum of one-sided Jacobi matrices J±, that is,

J =

[
J− 0
0 J+

]
+ p0e−1〈·, e0〉+ p0e0〈·, e−1〉.

This representation generates the identity

(3) − 1

R0,0(z)
= − p0

2

r−(z)
+ r+(z),

where

r+(z) = 〈(J+ − z)−1e0, e0〉, r−(z) = 〈(J− − z)−1e−1, e−1〉.

For xj ∈ (aj, bj) this point is a pole of only one of the two functions in the right
hand side of (3). We set εj = 1 if xj is a pole of r+(z) and εj = −1 in the
opposite case.

Next we will define the so called generalized Abel map, the map from the col-
lection of divisors D(E) to the group of characters of the fundamental group of
the domain Ω = C̄ \ E. We are able to do this for Widom domains.
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Let z : D/Γ → Ω be a uniformization of the domain Ω, that is, every analytic
function F in Ω can be represented by an analytic function f in D, which is
automorphic with respect to the action of the Fuchsian group Γ:

F (z(ζ)) = f(ζ), f(γ(ζ)) = f(ζ), ζ ∈ D, γ ∈ Γ.

The dual group Γ∗ is formed by characters

α : Γ→ T such that α(γ1γ2) = α(γ1)α(γ2), γ1,2 ∈ Γ.

For a character α the Hardy space Hp(α) is the subspace of the standard Hp

consisting of character automorphic functions f(γ(ζ)) = α(γ)f(ζ).

A domain is called of Widom type if H∞(α) is not trivial (contains a non-constant
function) for all α ∈ Γ∗. Let b(ζ, ζ0) be the Green function of the group Γ [16],
i.e.

b(ζ, ζ0) =
∏
γ∈Γ

γ(ζ0)− ζ
1− ζγ(ζ0)

|γ(ζ0)|
γ(ζ0)

.

Note that G(z(ζ), z0) := − log |b(ζ, ζ0)| is the Green function in the domain Ω.
We assume that z(0) = ∞, that is, G(z) = − log |b(ζ, 0)| is the Green function
with respect to infinity.

A regular domain Ω is of Widom type if and only if

(4)
∑

ck : ∇G(ck)=0

G(ck) <∞.

Let us point out that the critical point ck belongs to (ak, bk). The condition (4)
guarantees that the following product

(5) KD(ζ) =

√√√√∏
j≥1

z(ζ)− xj
z(ζ)− cj

b(ζ, cj)

b(ζ, xj)

∏
j≥1

b(ζ, xj)
(1+εj)/2

converges for an arbitrary D ∈ D(E).

The Abel map D(E)→ Γ∗ is defined by the relation

KD(γ(ζ)) = αD(γ)KD(ζ).

The third map Γ∗ → J(E) is defined as follows. Let kα be the reproducing kernel
in H2(α) with respect to the origin, i.e. 〈f, kα〉 = f(0) for all f ∈ H2(α). Let
α0 be the character of the Green function b, b ◦ γ = α0(γ)b. Then J(α) is the
matrix of the multiplication operator by z(ζ) with respect to the orthonormal
basis {e(ζ, n)}n∈Z in L2(α), where

e(ζ, n) = bn
kαα0

−n√
kαα0

−n(0)
.

The main result in [19] claims that under a certain additional condition on the
domain Ω all three maps

J(E)→ D(E)→ Γ∗ → J(E)



398 P. Yuditskii CMFT

are one-to-one and continuous with respect to the operator norm topology in
J(E). Recall that Γ∗ is a compact Abelian group, D(E) is equipped with the
product topology.

This additional condition is called the Direct Cauchy Theorem (DCT) [11]. In
fact, it is not a theorem, but a certain property of a Widom domain. For some
of them DCT holds true, for others it fails.

We say that F (z) is of Smirnov class in Ω if the corresponding function

f(ζ) = F (z(ζ))

is of Smirnov class in D, that is, it possesses a representation

f =
f1

f2

,

where f1, f2 are uniformly bounded, moreover the denominator is an outer func-
tion.

Definition 1. The space E1
0(Ω) is formed by Smirnov class functions F in Ω

such that

‖F‖ =
1

2π

∫
E

|F (x+ i0)| dx+
1

2π

∫
E

|F (x− i0)| dx <∞,

and F (∞) = 0.

Definition 2. We say that the Direct Cauchy Theorem (DCT ) holds if

1

2πi

∮
E

F (x)dx = Res∞ F (z)dz = A, F (z) = −A
z

+ · · · , z →∞,

for all F ∈ E1
0(Ω).

Theorem 1 (Sodin-Yuditskii [19]). Let E be such that Ω = C̄ \ E is of Widom
type with DCT. Then every Jacobi matrix J ∈ J(E) is almost periodic.

The following notion was introduced by Carleson [8]. A compact E is homoge-
neous if there exists η = η(E) > 0 such that

(6) |E ∩ (x− δ, x+ δ)| ≥ ηδ

for all x ∈ E and δ ∈ (0, 1).

It was noted in [19] that if E is homogeneous then Ω is a Widom domain with
DCT. Thus the homogeneity is a very nice explicit metric condition on E that
guaranties that J(E) consists of almost periodic operators. For instance all
Cantor sets of positive length (Cantor-type construction with a non-constant
ratio) are homogeneous, for a proof see e.g. [14].

In this note we answer several remaining open questions in the above context.
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First, the map J(E)→ D(E) is one-to-one if and only if all reciprocal −1/R(z)
to reflectionless (Nevanlinna class) functions have no singular component on the
set E in their integral representation, i.e. for

(7) − 1

R(z)
= z − q0 +

∑
xj∈(aj ,bj)

τj
xj − z

+

∫
E

dτ(x)

x− z

the singular component of the measure τ is trivial, τs(E) = 0.

The fact that neither the reflectionless measure nor its reciprocal, which is defined
by the integral representation (7), has a singular component on E for Widom
domains with DCT was shown in [14].

In general, the question of the possible support of the singular part of a reflection-
less measure was studied in [15]. In particular the authors introduced a notion
of a weakly homogeneous set: a Borel set E is weakly homogeneous if

(8) lim sup
δ→+0

1

δ
|E ∩ (x− δ, x+ δ)| > 0, x ∈ E,

and proved that all reflectionless measures on a weakly homogeneous set are
absolutely continuous.

Moreover, previously known examples of Widom domains such that DCT fails
were based on the idea to construct a reflectionless measure with a non-trivial
singular component, for details see Section 4.

So, assume a priori that Ω = C̄ \ E is of Widom type.

• Does the weak homogeneity (8) imply DCT in this case?

Note that the assumption (8) is even stronger than the property that all re-
flectionless measures associated with the given E (and their reciprocals (7)) are
absolutely continuous.

Second, the map D(E)→ Γ∗, which was defined for Widom domains, is one-to-
one if and only if DCT holds. It deals with the following property of H2-spaces
in Ω.

In the classical Hardy space theory there is an important description of their
orthogonal complement in the standard L2, namely, f̄ ∈ L2 	H2 if and only if
f ∈ H2 and f(0) = 0. In the Widom domain case the following statement holds
true. Define the Blaschke product

θ(ζ) =
∏
j≥1

b(z, cj),

which converges due to the Widom condition (4), and denote by αθ the cor-
responding character, θ ◦ γ = αθ(γ)θ. Now, if f̄ ∈ L2(α) 	 H2(α), then
θf ∈ H2(αθα

−1) and f(0) = 0. In other words, if we define

Ȟ2(α) =
{
f ∈ L2(α) : θf̄ ∈ L2(αθα

−1)	H2
0 (αθα

−1)
}
,
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then Ȟ2(α) ⊂ H2(α).

Thus, generally speaking, for a Widom domain and to a given character α one
can associate the biggest H2(α) and the smallest Ȟ2(α) possible Hardy spaces.
They coincide, i.e. H2(α) = Ȟ2(α) for all α ∈ Γ∗, if and only if DCT holds in
the Widom domain [19]. Both reproducing kernels kα/‖kα‖ and ǩα/‖ǩα‖ are
functions of the form (5). Thus, as soon as H2(α) 6= Ȟ2(α) two different divisors
in D(E) correspond to the same character α.

• How big can the defect subspace H2(α)	 Ȟ2(α) be?

Finally, it is worthwhile to study:

• Is the homogeneity (6) just a sufficient condition for DCT or is it also
necessary?

To answer these three questions we first relate DCT with an L1-extremal problem,
in Section 2. In Section 3 we reveal the structure of the extremal function in
Theorem 8. It shows, that in the simplest case, when E consists of a system
of intervals having a unique accumulation point x0 ∈ E, our questions can be
reduced to approximation problems for entire functions (with respect to the
variable 1/(z − x0)), e.g. see Lemma 12. This area was developed essentially
recently by Borichev-Sodin [4, 5, 6].

We can summarize the results of the last two sections in the following proposition.

Proposition 2. Define the following three classes of Widom(-Denjoy) domains:

• Ω = C̄ \ E ∈ Whom if E is homogeneous;
• Ω ∈ WDCT if Direct Cauchy Theorem holds in Ω;
• Ω ∈ Wa.c if all reflectionless measures (1) in Ω and their reciprocal (7) are

absolutely continuous on E.

Then

Whom ⊂ WDCT ⊂ Wa.c.

and both inclusions are proper.

2. L1 extremal problem in Widom Domain
and Direct Cauchy Theorem

We consider here the following extremal problem:

Problem 1. Find

(9) M = inf

{
‖F‖ : F ∈ E1

0(Ω), F (z) = −1

z
+ · · · , z →∞

}
.

This extremal problem is closely related with the DCT.
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Theorem 3. For a Widom domain Ω the DCT holds if and only if M = 1 in
Problem 1.

Proof. We adapt the general proof of this kind of theorem [11] to the special
Denjoy domain case. Let R(z) be a reflectionless function, see (2). It was shown
in [19] that R(z) is of Smirnov class, so R ∈ E1

0(Ω) and we get

M ≤ ‖R‖ ≤
∫
E

dσ = 1.

On the other hand, if DCT holds, then for every function F of the set (9) we
have

1 =
1

2πi

∮
E

F ≤ ‖F‖.

Thus M = 1.

Conversely, M = 1 implies
|Λ(F )| ≤ ‖F‖

for the functional

Λ(F ) = A, F ∈ E1
0(Ω), F = −A

z
+ · · · , z →∞.

Since E1 ⊂ L1 we can extend Λ to a functional in L1. Therefore there exists
w ∈ L∞, ‖w‖ ≤ 1 such that

(10) A =
1

2πi

∮
E

w(z)F (z) dz.

Now we put here F = R. We get

1 =
1

2πi

∮
E

w(z)R(z) dz =
1

2π

∮
E

w(z)|R(z) dz|

≤ 1

2π

∮
E

|w(z)| |R(z) dz| ≤ 1

2π

∮
E

|R(z) dz| ≤ 1.

Thus w = 1, and hence, by (10),

A =
1

2πi

∮
E

F (z) dz

for all F ∈ E1, F (∞) = 0.

At the end of this section we show that the infimum (9) is attained.

Other than by (4) one can characterize a Widom domain by the following prop-
erty: if ω(dx, z) is the harmonic measure in the domain with respect to z ∈ Ω,
then the harmonic measure ω(dx) := ω(dx,∞) is absolutely continuous, i.e.
ω(dx) = ρ(x) dx, and moreover [16]∫

E

ρ(x) log ρ(x) dx > −∞.
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So we can define an outer function Φ(z) multi-valued in Ω, such that

1

2π
|Φ(z)| = exp

(∫
E

log ρ(x)ω(dx, z)

)
,

i.e.

ρ(x) =
1

2π
|Φ(x)|, |Φ(x)| = lim

ε→0
|Φ(x± εi)|

a.e. in E. By α1 we denote the character generated by Φ−1(z(ζ)),

Φ−1(z(γ(ζ))) = α1(γ)Φ−1(z(ζ)).

Let us use an alternative description of the space E1
0(Ω).

Proposition 4. Let

H1
0 (α1) := {f ∈ H1 : f(γ(ζ)) = α1(γ)f(ζ), f(0) = 0}.

f ∈ H1
0 (α1) if and only if f(ζ) = F (z(ζ)) and FΦ ∈ E1

0(Ω).

Proof. It follows from the fact that one can identify f ∈ H1(α1) with a multi-
valued Smirnov class function F (z), F (z(ζ)) = f(ζ), which is integrable with
respect to the harmonic measure∫

T
|f(t)| dm(t) =

∮
E

|F (x)|ω(dx) =
1

2π

∮
E

|F (x)Φ(x)| |dx|.

Note also that FΦ is single valued in Ω by the definition of the character α1.

Lemma 5. There exists H ∈ E1
0(Ω) such that

M = ‖H‖.

Proof. In an extremal sequence we chose a subsequence that converges uniformly
on compact subsets in Ω, that is,

H(z) = limFn(z), z ∈ Ω.

In other words fn(ζ) = FnΦ−1(z(ζ)) converges to h(ζ) = HΦ−1(z(ζ)) uniformly
on compact subsets in D. Therefore∫

T
|h(rt)| dm(t) = lim

n→∞

∫
T
|fn(rt)| dm(t) ≤ lim

n→∞
‖fn‖.

Thus h ∈ H1
0 (α1), moreover ‖h‖ ≤ limn→∞ ‖fn‖. In other words H ∈ E1

0(Ω) and
‖H‖ ≤ limn→∞ ‖Fn‖.
Therefore we get

inf ‖F (x)‖ ≤ ‖H(x)‖ ≤ lim
n→∞

‖Fn‖ = inf ‖F (x)‖.



11 (2011), No. 2 On the Direct Cauchy Theorem in Widom Domains 403

3. Reduction to a weighted L2 extremal function.
Structural Theorem

Lemma 6. Among the extremal functions of Problem 1 there is a function of
the form

(11) H(z) = − 1√
(z − a0)(z − b0)

∏
j≥1

√(
z − aj
z − bj

)δ̃j
K2(z), δ̃j = ±1,

where K is a single-valued Smirnov class function, K(∞) = 1.

Proof. We can assume that H(z) ∈ R, for z ∈ R \ E, otherwise we use the

extremal function (H(z) + H(z̄))/2. Let us obtain some properties of such a
function H.

H may have at most one zero in each gap (aj, bj). Indeed, if H(z1) = H(z2) = 0,
aj < z1 < z2 < bj, then the function

H(z)

(
1− ε

(z − z1)(z − z2)

)
has the smaller E1-norm for a sufficiently small ε.

In the same way we can show that the extremal function has no complex zeros
and also H(z) 6= 0 for z ∈ (a0,∞) ∪ (−∞, b0).

Thus the extremal function is of the form (see (2))

(12) H(z) = R(z, {xj})F (z), F (∞) = 1,

where xj ∈ [aj, bj] and F (z) is of Smirnov class, F (z) 6= 0 in C \E and such that

1

2π

∮
E

|F (x)||R(x, {xj})| dx =(13)

1

π

∫
E

|F (x)|
∏
j≥1

x− xj√
(x− aj)(x− bj)

dx√
(a0 − x)(x− b0)

<∞.

Assume now, that xk ∈ (ak, bk) for a certain k, i.e. it is not one of the end
points. With all other parameters frixed (including the function F ) we consider
the integral in (13) as a function of the given xk. It is well defined in this domain
(xk ∈ (ak, bk)), moreover it represents a linear function of xk. Therefore the
infimum is assumed on the left or right boundary point of the interval. That is,
the extremal function is of the form

H(z) = − 1√
(z − a0)(z − b0)

∏
j≥1

√(
z − aj
z − bj

)δj
F (z), δj = ±1.

The function F has no zeros and it is single-valued in the domain. Let γj be
a contour that starts at the “upper” bound of the interval (aj, bj), and goes
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through infinity to the “lower” bound. Then the change of its argument along
the contour is of the form

∆γj argF = 2πnj.

Now we represent F in the form

F (z) =
∏

{j : nj is odd}

(
z − aj
z − bj

)−δj
F̃ (z).

The point is that
√
F̃ (z) is single-valued in Ω and we set K(z) =

√
F̃ (z). Thus

the lemma is proved.

The following lemma is almost evident. For a given weight w we define

E2
w = E2

w(Ω)

as a set of single-valued Smirnov class functions, which are square-integrable
against w|dx|, i.e.:

‖F‖w2 =
1

2π

∮
E

|F |2w |dx| <∞.

Lemma 7. Let χ(x) be the weight function of the form

χ(x) =
1√

(a0 − x)(x− b0)

∏
j≥1

√(
x− aj
x− bj

)δ̃j
,

which corresponds to the particular choice of xj given by (11). Let k be the
reproducing kernel in E2

χ with respect to ∞. Then

(14) K(z) =
k(z)

k(∞)
.

Proof. For every function F ∈ E2
χ, F (∞) = 0, we have

min
ε

∮
E

|K(x) + εF (x)|2χ(x) dx =

∮
E

|K(x)|2χ(x) dx.

Therefore

(15)

∮
E

K(x)F (x)χ(x) dx = 0.

We write

K(z) =
k(z)

k(∞)
+ K̃(z),

where, evidently, K̃(∞) = 0. Putting F = K̃ in (15) we get ‖K̃‖χ = 0.

Now we use a description (5) of reproducing kernels in H2-spaces in Widom
domains, for details see [19].
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Theorem 8. Let B(z, xj) be the complex Green function, that is, a multi-valued
analytic function in Ω such that − log |B(z, xj)| = G(z, xj). Then there exists an
extremal function for Problem 1 of the form

(16) H(z) = − 1√
(z − a0)(z − b0)

∏
j≥1

z − xj√
(z − aj)(z − bj)

I(∞)

I(z)
,

where I(z) =
∏

j Bxj(z) is single-valued in Ω.

Proof. Similar to Proposition 4, E2
χ corresponds to the H2-space with a suitable

character, that is, we can relate the scalar product and the normalized reproduc-
ing kernel K of (14) in E2

χ with the scalar product and the reproducing kernel

KD with respect to the harmonic measure:∫
E

|K(x)|2χ(x)dx = C

∫
E

|KD(x)|2
∏
j≥1

x− cj√
(x− aj)(x− bj)

dx√
(x− a0)(b0 − x)

with a certain D ∈ D(E) and C > 0. This implies

K(z) =(17)

∏
j≥1

√√√√ z − xj√
(z − aj)(z − bj)

(
z − bj
z − aj

)δ̃j/2 Bxj(∞)

Bxj(z)

∏
j≥1

(
Bxj(z)

Bxj(∞)

)(1+εj)/2

.

Recall that K(∞) = 1. Since K(z) has no zeros in Ω we have εj = −1. We
substitute (17) into (11) to get (16). Since K(z) is single valued in Ω the product
I(z) is also single valued.

4. Singular components of the reflectionless measures
and DCT

Proposition 9. Assume that at least one of the functions R in (2) contains a
singular component in its integral representation (1). Then DCT fails.

Proof. Since

R(z) =

∫
dσs(x)

x− z
+

1

π

∫
E

|R(x)|dx
x− z

we have
1

π

∫
E

|R(x)|dx = 1− σs(E).

Thus M in (9) is less than 1 if σs(E) > 0.

The simplest example of a Widom domain where DCT fails was constructed
in this way [11], see also [13]: assume that E is a system of intervals, which
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accumulate at b0 only. In this case there exists a reflectionless measure with a
non-trivial masspoint at b0 if and only if

(18)

∫
E

dx

x− b0

<∞.

The main point of the example was to demonstrate that (18) does not contradict
the Widom condition.

Note that a much more advanced example of a reflectionless measure with the
singular continuous component was constructed in [13]. Conditions that ensure
that all reflectionless measures have no singular component were studied in [15].

Now we show that already in this simplest case (18) we have

(19) M < inf
R(z,{xj})

∫
E

|R(x)|dx.

Moreover, in the next section we demonstrate that Proposition 9 cannot be
inverted: the absence of a singular component for all reflectionless measures
does not guarantee DCT for a Widom domain.

To prove (19) we define

Π(z) = −
√∏

j≥0

z − bj
z − aj

= (z − b0)R(z, {bj}).

Note that (18) implies that the following limit exists

λ∗ := − lim
x↑b0

Π(x) = exp

(
−1

2

∫
E

dx

x− b0

)
> 0

and represents the biggest possible value of the mass for reflectionless measures,
i.e.:

(20) inf
R

1

π

∫
E

|R(x)|dx = 1− λ∗.

For λ ∈ (0, λ∗) we define

Rλ(z) =
1

1− λ2

Π(z)2 − λ2

(z − b0)Π(z)
, Iλ(z) =

Π(z) + λ

Π(z)− λ
.

Here Rλ(z) is of the form (2) and Iλ(z) is the Blaschke product of the form given
in Theorem 8. For the first function we have

Rλ(z) =
σ0,λ

b0 − z
+

1

π

∫
E

|Rλ(x)| dx
x− z

.

Moreover

σ0,λ = lim
x↑b0

(b0 − x)Rλ(x) =
λ2
∗ − λ2

λ∗(1− λ2)
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and therefore

1

π

∫
E

|Rλ(x)| dx = 1− λ2
∗ − λ2

λ∗(1− λ2)
=

1− λ∗
λ∗

λ∗ + λ2

1− λ2
.

Thus for

Hλ(z) := Rλ(z)
Iλ(∞)

Iλ(z)
, Iλ(∞) =

1− λ
1 + λ

,

we get

1

π

∫
E

|Hλ(x)| dx =
|Iλ(∞)|

π

∫
E

|Rλ(x)| dx =
1− λ∗
λ∗

λ∗ + λ2

(1 + λ)2
.

The last function decreases with λ, so the smallest value corresponds to λ = λ∗.
On the other hand the extremum (20) corresponds to λ = 0. Thus

(21) M1 =
1

π

∫
E

|Hλ∗(x)| dx =
1− λ∗
1 + λ∗

and

inf
R

1

π

∫
E

|R(x)| dx =
1

π

∫
E

|H0(x)| dx = 1− λ∗ > M1.

Remark 1. Let ∫
E

1

(x− b0)n
dx <∞.

In this case the extremum is less than (21). This smaller value Mn can be
expressed by means of a suitable finite moment problem (depending on n).

5. No DCT: an infinite dimensional defect space related
to a single singular point

We start with the trace of the following matrix function

(22) A(z) =

 cos t
√
z

sin t
√
z√

z
−
√
z sin t

√
z cos t

√
z

[ cos z sin z
− sin z cos z

]
, t > 0.

It is easy to check that det A(z) = 1 and

A∗(z)JA(z)− J
z − z̄

≥ 0, J =

[
0 −1
1 0

]
.

For this reason

∆(z) =
1

2
tr A(z)

is an entire function with the real ±1 points. Moreover the function

λ(z) =
∆(z) +

√
∆(z)2 − 1

2
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is well defined in the upper half-plane, see e.g. [20]. This is the eigenvalue of
A(z) with the characteristic property |λ(z)| > 1. So, if we define the domain
C \ E1, E1 = {x ∈ R : |∆(x)| ≤ 1}, then log λ(z) represents the complex Martin
function of this domain with the singular point at infinity. In [12, VIII] the
function log |λ(z)| is called the Phragmén-Lindelöf function of the domain.

To simplify further consideration we define E = E1 ∪ [0,∞).

Lemma 10. For the given E the domain C \ E is of Widom type.

Proof. First of all we use Theorem [12, p. 407]. Since log |λ(iy)| = |y|+ O(|y|),
y → ±∞, according to this theorem∫ ∞

−∞
G1(x, i)dx <∞,

where G1(z, i) is the Green function of the domain C\E1. Thus for the extended
boundary E we have also

(23)

∫ ∞
−∞

G(x, i)dx <∞,

where G(z, i) is the Green function of the domain C \ E.

Using the explicit formula for

(24) ∆(z) = cos t
√
z cos z − z + 1

2

sin t
√
z√

z
sin z

we conclude that on the negative half-axis E consists of a system of intervals
[bk+1, ak] close to the points −kπ (the leading term in the asymptotics) of length

ak − bk+1 ∼
e−t
√
kπ

√
kπ

.

We note that G(x, i) is a concave function on the interval (ak, bk). Therefore∫ bk

ak

G(x, i) dx ≥ G(ck, i)
bk − ak

2
,

where the right hand side is the area of the triangle built on the interval (ak, bk)
with the vertex (ck, G(ck, i)), and ck is the critical point of G(z, i) + G(z,−i).
Thus (23) implies ∑

G(ck, i)
bk − ak

2
<∞.

Since bk − ak ≥ δ > 0 (in fact, bk − ak → π) we obtain the Widom condition∑
G(ck, i) <∞.

Proposition 11. For ∆(x) given by (24), let the system of intervals (ak, bk) be
defined by the condition |∆(x)| > 1 on the negative half-axis R−. Then the DCT
does not hold in the Widom domain Ω = (C \ R−)

⋃
k(ak, bk).
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Proof. Let us chose a normalization point in a gap, say, the critical point
c1 ∈ (a1, b1). We claim that the function F (z) = cos τ

√
c1 − cos τ

√
z, 0 < τ ≤ t,

belongs to the class E1
0 (with respect to c1), that is, it is of Smirnov class in Ω

and

(25)

∫
E

|F (x)|
|x− c1|2

dx <∞.

If so, by the Direct Cauchy Theorem,

1

2πi

∮
∂Ω

F (z)

(z − c1)2
dz = τ

sin τ
√
c1

2
√
c1

6= 0,

but, in fact, this integral vanishes just due to the symmetry F (x+i0) = F (x−i0).

We note that eiτ
√
z is in absolute value less than one in Ω and does not vanish.

Since the Phragmén-Lindelöf function of the domain behaves as Im z at infinity
this function also does not have the singular inner factor (with the only possible
singular point at infinity). Thus it is an outer function in the domain. Therefore
cos τ

√
z is of Smirnov class in Ω.

The size of the intervals [bk+1, ak] guarantees that the integral (25) converges.
The proposition follows.

Remark 2. Note that in the current example
∫
E

(1 + |x|)−1 dx = ∞, compare
with (18). Since infinity is the only possible support for a mass-point, there is no
reflectionless measure with a singular component, see Section 4. Evidently, this
set is weakly homogeneous, so we can also refer to the general result [15]. Thus
infR 1/π

∫
E
|R(x)|dx = 1, but DCT fails and M = M(E) < 1 in Problem 1.

Remark 3. Let us mention that the example in [11], which was discussed in
Section 4, corresponds to the case when the defect space H2(α) 	 Ȟ2(α) (for
a certain α) has dimension one (in particular, it is non-trivial). The example
with a singular measure [13] corresponds to an infinite defect space, but with
infinitely many “singular” points in the domain. Our example corresponds to an
infinite-dimensional defect space related to a single singular point in the domain.
This remark explains the main idea of the current construction. The form of the
product (22) is dictated by a simple reason: each defect space generates a factor
with a smaller growth nearby the singular point comparably with the growth
of the Martin function of the corresponding domain (in the given case O(

√
z)

and O(z) respectively). We will discuss such relations in detail in a forthcoming
paper.

6. Widom domain with DCT and non-homogeneous
boundary

First of all we note that Theorem 8 was stated for a bounded set E. We will
consider a domain with a unique accumulation point, say b0, for the endpoints
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of intervals [ak, bk]. It is convenient to send this point to infinity by the change
of the variable z1 = 1/(b0 − z). In this case a function with the only possible
singularity at b0 becomes a standard entire function.

Let E be an unbounded closed set. Note that an unbounded closed set E is
homogeneous if (6) holds for all x ∈ E and for all δ > 0. In [19] it was shown
that homogeneity of the boundary of the Denjoy domain implies DCT. In this
section we show that homogeneity is not a necessary condition for DCT.

Lemma 12. Let E be a system of intervals on the negative half-axis which ac-
cumulate at infinity only. Assume that Ω = C \ E is of Widom type and DCT
fails. Then there exists an entire function F of Smirnov class in Ω such that

(26)

∫
E

|F (x)| dx

1 + |x|
<∞.

Proof. If
∫
E

(1 + |x|)−1 dx < ∞ then we choose F to be constant. If not, then
there is no reflectionless measure with a singular component. Thus, the factor
I(z) in Theorem 8 is not a constant. We define

F (z) =
I(0)√
1− z

a0

∏
j≥1

1− z
xj√(

1− z
aj

)(
1− z

bj

) ( 1

I(z)
− I(z)

)
.

It is of Smirnov class in Ω, moreover it is real valued on the whole real axis.
Since

1

I(x± i0)
− I(x± i0) = 2i Im

1

I(x± i0)
,

the integral (26) converges and all possible singularities on E are removable.
Thus F (z) is an entire function.

Remark 4. Recall that |I(z)| < 1 in the domain. Thus F (z) has only real zeros,
moreover only in the set E. Note also that as soon as F (z) is not a constant there
exists F1(z) such that

∫
E
|F1(x)|dx < ∞. For instance F1(z) = F (z)/(z − x0),

where x0 is a zero of F (z).

We denote by ME(z) the Martin function for C \E with singularity at infinity.

The function ME(z) is at most of order 1/2, that is, ME(z) = O(
√
|z|). We

say that a set E is an Akhiezer-Levin set [2, 5] if

lim sup
|z|→∞

ME(z)√
|z|

> 0.

It is worth mentioning that in this case limx→+∞ME(x)/
√
x exists.

Using the change of variable z = −z1
2 we can work with even functions in the

upper half-plane, related, correspondingly, to symmetric subsets of the real axis.
In particular, in this case we can refer directly to [12, Sect. VIII].
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Theorem 13. Let E = R \
⋃∞
k=−∞(ak, bk), a−k = −bk, consist of uniformly

separated intervals, say,

(27) bk − ak ≥ 1, for all k.

Let −ck2, ck ∈ (ak, bk), be the critical points of the Green function G(z, 1,Ω) in
the domain

Ω :=
(
C \ (−∞,−a0

2]
) ⋃
k≥1

(
−bk2,−ak2

)
and let G(z,±i) = G(z,±i,C \ E) be the Green functions in the symmetric
domain C \ E, so that G(−z2, 1,Ω) = G(z, i) +G(z,−i).

Assume that the following “weighted” Widom condition holds true∑
ck : ∇G(−ck2,1,Ω)=0

G(−ck2, 1,Ω)(bk − ak) =(28)

∑
ck∈(ak,bk) : ∂

∂x
G(ck,i)=0

2G(ck, i)(bk − ak) <∞.

For an arbitrary δ ∈ (0, 1/2) define

(29) Eδ = R \
∞⋃

k=−∞

(ak + δ, bk − δ).

If

(30)

∫
Eδ

dx

1 + |x|
=∞,

then the domain Ωδ = C \ Eδ is of Widom type with DCT.

Proof. First of all (27) and (28) imply that C \ E is of Widom class. Further,
(28) implies

∫
RG(t, z)dt < ∞. By the Koosis’ criterion [12] E is a symmetric

Akhiezer-Levin set, that is,

lim
y→+∞

ME(iy)

y
> 0.

Evidently the extended set Eδ (29) belongs to the Akhiezer-Levin class and Ωδ

is of Widom class.

Assume that DCT fails. By Lemma 12 there exists a non-trivial even entire
function F̃ (z) of Smirnov class in Ωδ such that∫

Eδ

|F̃ (x)| dx

1 + |x|
<∞.

Due to (30) F̃ (z) is not a constant and we can find a non-trivial entire function
F (z), see Remark 4, such that

(31)

∫
Eδ

|F (x)|dx ≤ 1.
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Since F (z) is of Smirnov class in Ωδ we have

lim
|z|→+∞

log |F (z)|
MEδ(z)

= 0, z = x+ iy, y ≥ c|x|, c > 0.

Moreover, since F (z), in particular, is in the Cartwright class and all its zeros
are real, one can show, see e.g. [1, p. 58], that for all ε > 0 the following a priori
estimate |F (z)| ≤ A(ε)eε|z| holds true in the whole complex plane.

Now for δ′ < δ we define the entire function

H(z) = H(z, δ′) =

∫ δ′

−δ′
F (z + t)dt.

By (31) the function H(z) is uniformly bounded on E, |H(x)| ≤ 1, x ∈ E, and
also possesses the a priori estimate |H(z)| ≤ A(ε)eε|z|. We apply the Phragmén-
Lindelöf principle to H(z) in the domain Ω = C \E (see [12, p. 406]) to get that
in fact |H(z)| ≤ eεME(z). Since ε is arbitrarily small, H(z) = H(z, δ′) is bounded
in the whole complex plane, therefore it is a constant. Since this holds for an
arbitrary positive δ′ < δ, F (z) is a constant, and due to (31) and (30) F (z) = 0.
This contradiction to the fact that F (z) is a non-trivial function shows that DCT
holds in Ωδ.

Example 1 (Benedicks’ set). Let p > 1 and put

Eδ =
∞⋃
n=1

([−np − δ,−np + δ] ∪ [np − δ, np + δ]) ,

δ > 0 being taken small enough so that the intervals in the union do not intersect.
This set is not homogeneous and it is of Akhiezer-Levin class due to the Koosis’
criterion. In fact, due to Benedicks [12, p. 439]

G(x, i) ≤ C(δ)
log |x|
|x|(p+1)/p

,

i.e. it is integrable on the real axis and (28) is satisfied.

The set has a finite logarithmic length (30). So we modify it by adding each
second interval formed by the geometric progression:

Eδ,q = Eδ

∞⋃
n=1

(
[−q2n,−q2n−1] ∪ [q2n−1, q2n]

)
, q > 1.

The resulting set is still not homogeneous, but satisfies all requirements of The-
orem 13 (we can add to the set all possible gaps of the standard length less than
one, in case such open intervals are present in R \Eδ,q). Thus the DCT holds in
Ω := C \ Eδ,q.
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Corollary 14. For p > 1 let

Ẽ = {0} ∪
{
x :

1

x
∈ Eδ,q

}
, δ ∈ (0, 1), q > 1.

Then every reflectionless Jacobi matrix J ∈ J(Ẽ) is almost periodic.
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