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1. Introduct ion 

In this paper we consider the classical solvability of the Dirichlet problem for nonlinear, 

second-order elliptic partial differential equations of the form, 

F(D2u) = f(A[D2u]) = r u, Du), (1.1) 

in domains f~ in Euclidean n-space, R n, where f is a given symmetric function on R n, 

A denotes the eigenvalues A1, ..., An of the Hessian matrix of second derivatives D2u and 
r is a given function in f t •  n. Equations of this type were treated by Calfarelli, 

Nirenberg and Spruek [2], for the case r 1 6 2  who demonstrated the existence of 

classical solutions for the Dirichiet problem, under various hypotheses on the function f 

and the domain ft. Their results extended their previous work [1], and that of Krylov [13], 

Ivochkina [8] and others, on equations of Monge-Amp~re type, 

F(D2u) = det D~u = r u, Du). (1.2) 

Typical cases, embraced by [2] and treated as well by Ivochkina [9], are the elementary 

symmetric functions, 

I(A) = Sk(A) = ~ hi, ... A,~, (1.3) 
i l  < i 2 < . . . < i ~  

k= 1, ..., n. Note that the case k= 1 corresponds to Poisson's equation, while for k =n,  we 

have the Monge--Aml~re equation (1.2). If the function r boundary an  and boundary 

function r are sufficiently smooth and r is uniformly positive in f~, the classical Dirichiet 

problem, 
F(D2u)=Sk(A[D2u])=r in f~, 

(1.4) 
u = r on an,  
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is uniquely solvable, in the class of admissible functions, provided the domain ft is uni- 

formly (k-1)-convex. A function uEC2(I]) is called admissible with respect to the 

operator F if 

F(D2u+rl)  >>. F(D2u) (1.5) 

for all ~/~>0, 1/GS n, where S n denotes the space o f n x n  symmetric real matrices. For the 

operators (1.4) (with k> 1), the function u is admissible if and only if A[DZu] Erk, where 

rk is the cone in R n given by 

rk = {A E R n I Sj(A) > O, j = 1, ..., k}. (1.6) 

The domain fl  is called m- convex (uniformly m- convex), m = 1, ..., n -  1, ff the principal 

curvatures of the boundary ~ t ,  x=(#r x n - 1 ) E r m  (rra). In the Monge--Aml~re 

ease, k=n ,  the above condition with r e = n - 1  reduces to the uniform convexity of ft. 

Recently Guan and Spruek [6] in the Monge--Aml~re case, and Guan [5] in the general 

ease (1.1), showed that these geometric conditions could be replaced by the more general 

assumption of existence of a strict subsolution. 

The hypotheses on the function f in the papers [2], [5], [14] (except for the case of 

constant ~ in [2]), include the t~lukement that 

/(At, ..., A.-I, A.+R) ~ oo (1.7) 

as R---~oo, for each a~mi~ible A with f(A)>0, which precludes the important examples 

of quotients of elementary symmetric functions, 

/(A) = sh,z(x) = sk(x) Sz(A)' n>~k>l>~l. (1.8) 

Specifically, condition (1.7) is used in [2], [51 and [14] to estimate the double normal 

derivative Dnnu of admissible solutions at the boundary. On the other hand, Lipschitz 

viscosity solutions of the Dirichlet problem for these cases are readily deduced by the 

methods of I18]. In this paper, we present a new technique for estimation of the double 

normal second derivatives, which covers the situation when (1.7) does not hold. We also 

show how the same technique can be used to provide alternative proofs in the presence of 

(1.7), including, in particular, a new proof to that of Ivochkina [7] in the Monge--Amp~re 

case. The same technique is applied to curvature quotient equations in [16]. 

To illustrate our results, we formulate two existence theorems that will follow from 

our estimates. The first concerns the special case of quotients of elementary symmetric 

functions. For completeness, we define S0(A)-I .  
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THEOREM 1.1. 

in R n, with 0 n E C  3'1, CEC3'I(0G) and let 42 be a positive function in C1,1(~). 

the Dirichlet problem, 

F(D2u) = Skj()~[D2u]) = 42 in ~, 
(1.9) 

u = r on Og~, 

is uniquely solvable for admissible uECa'a(~) for any 0 < a <  1. 

More generally, let us assume that the symmetric function f is defined on an open 

convex symmetric cone F in R n, with vertex at the origin. The function fEC2(F)  is 

assumed to also satisfy: 

Let O<~ l <k<~ n and n be a bounded, uniformly ( k -  1)-convex domain 

Then 

D i f  > 0 in F, i = 1,...,n; (1.10) 

f is concave in F; (1.11) 

limsup f(A) ~ 0 for every ~0 E OF; (1.12) 

/(R)~)---~oo as R--*oo for every ~EF.  (1.13) 

THEOREM 1.2. 

r a positive function in CI,I(~). Then the Dirichlet problem, 

F(D2u) = f()~[D2u]) = 42 in ~, 

Let ~ be a bounded domain in R n, with OI2EC 3,1, CECS,a(012) and 

(1.14) 
u = r on Oft, 

is uniquely solvable for admissible uEC3,~(~), 0 < a < l ,  provided the curvatures of Oil, 

x l ,  ..., xn-x ,  satisfy (x l ,  ..., xn - l ,  R ) E P / o r  some R>0.  

Note that the above properties of the cone F ensure that an admissible solution of 

(1.14) satisfies A[D2u]EF. The basic properties of quotients of elementary symmetric 

functions (see for example [18]) show that Theorem 1.1 corresponds to the special case 

of Theorem 1.2 when 

f(A) = (Sk,t(A)) x/(k-0, F -  Fk. (1.15) 

The geometric conditions on f~ in Theorems 1.1 and 1.2 are necessary when the boundary 

function ~b is constant. In general we may, as in Guan [5], replace them through the 

existence of an admissible strict subsolution u taking the same boundary values ~b on On. 

We shall also address this more general version below. 

The plan of this paper is as follows. In the next section we derive the fundamental 

double normal second derivative estimate for the cases typified by the example (1.8), 

thereby proving Theorems 1.1 and 1.2 in these cases. In w we show how our techniques 
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provide an alternative and considerably shorter proof of the remaining cases when (1.7) 

holds to that given by Caifarelli, Nirenberg and Spruck in [2]. In the last section we treat 

various extensions to degenerate problems, general domains ~ and inhomogeneous terms 

r as in [5], more general functions f and related curvature equations. Our notation, 

unless otherwise specified, follows the book [4]. 

Finally, it is a pleasure to acknowledge the hospitality of the Department of Mathe- 

matical Sciences, University of Tokyo, where this research was undertaken in the Spring 

of 1993. 

2. S e c o n d  d e r i v a t i v e  e s t i m a t e s  in t h e  b o u n d e d  case  

Let F~  be the projection of the cone F (in the hypotheses of Theorem 1.2) on R n-1 and 

suppose that for some ~=(A1, ..., An-1)EFoo, we have 

f~()~') = lim f(A1, . . . ,  ) i n - l ,  An) r CO. (2.1) 

It follows, by the concavity and positivity of f on F, that f ~  is finite on all of For and 

we shall refer to this case as the bounded case. Typical examples are given by 

I(~)=(s~,~(~)) 1/(k-z), r = r ~ ,  l< . l<k<~n ,  

foo()~') : (~k_l,l_l()~')) 1/(k-l), rc~ = rk_l. 
(2.2) 

As is well known (see, for example, [4], [2]), the solvability of the Dirichlet problem 

(1.14), by the method of continuity, depends upon the establishment of a priori estimates 

for derivatives, up to the second order, of prospective solutions. All of these estimates 

are covered by Calfarelli, Nirenberg and Spruck [2], under our hypotheses (1.10) and 

(1.13), except for the double normal derivative at the boundary, where they assume, in 

addition, (1.7). In this section, we treat this estimate in the bounded case. Accordingly, 

let us assume that the asymptotic limit fr162 is well defined on For and that uEC3(~) is 

an admissible solution of the Dirichlet problem (1.14) with estimates 

[ul+lDu[~M1 in ~, 
(2.3) 

ID~u(y)l <<. M~, i + j  < 2n, y e 0~2, 

already under control. In (2.3), the coordinate system is chosen so that the positive 

zn-axis is directed along the inner normal at the point yE0~2. To complete the estima- 

tion of second derivatives, it therefore remains to estimate the double normal derivative 

D,~nu(y). 
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We first illustrate our procedure for the special case when f is given by (2.2) and 

r  Letting "y denote the unit outer normal vector field on Off we then have, with 

respect to a principal coordinate system at any point y�9 ([4, w 

Diju = (D~u)xi~ij, i, j = 1, ..., n -  1, D~u = -Dnu,  (2.4) 

where x=xx ,  ..., X._l denotes the principal curvatures of Off at y. Consequently we have 

the formulae 
Sk(A[D2u]) = ( D~u)~-l S~_l (x)D,nu + ( D~u)~ S~(x) 

n.--1 

- (D,yu)~-~"~ Sk_2;i(x)(Dinu) 2 (2.5) 

FO(r) = ,O-zO---F(r), r �9 S n, 
ori j  

differentiation of equation (1.14), we have 

F 0 (D2u)Dijnu = Dnr 

where 

in ~, (2.11) 

i=l 

=- Ak Dnnu + Bk, 

where S~_2;i(x)=Sk_2(x)lx,=o. Accordingly we can write equation (1.14) in the form 

Sk,l(,k[D2u]) = AkDnnu+ Bk = Ck-t. (2.6) 
AtDnnu+Bt 

Since u is admissible, we must have 

r {Ak  ~l/(k-')= f~(x)D~u.  (2.7) 
\A l ]  

Note that since Au>0 for •EF, we must have D~u>O and also, by virtue of our geometric 

assumption in Theorems 1.1 and 1.2, fo~(x)>0. Our trick is to consider a point yEOf~, 
where the quantity 

g = D .yu - f~ l r  (2.8) 

is minimized, that is, y satisfies 

D~u(x) >>. D~u(y)+ f : l r  fs162 (2.9) 

for all x6c3fl. With respect to a principal coordinate system at y, we then have 

Dnu(x) <~ -Tn(x)Dnu(y)+Tn(x)[ f : lr  f : l r  (2.10) 

for xeAfNOfl, where A/" is some neighbourhood of y such that 7 , < 0  in A/'NOfl. By 
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so that with the aid of the barrier constructions in [2], we infer a one-sided estimate 

Dn,u(y) <~ C, (2.12) 

with constant C depending on n, Of/, M1 and 1r Observe that our assumptions 

Of~EC 3'1, CEC 1'1 guarantee that the function on the right hand side of (2.10) belongs 

to Cl,l(Of~). From (2.3), (2.12) and since Au~>0 for admissible u, we then have a full 

second derivative estimate at y, that is, 

ID2u(y)l < C (2.13) 

with C depending on n, 0f~, M1, M~ and 1r Consequently, if 

r  >/Co > 0, (2.14) 

we obtain, from (1.10) (and [2, Lemma 1.2]), 

D~uf~(x) = thin f(D2u+t~/@'y) /> r  (2.15) 

for some positive constant 6, depending on r M1, M~, n, Of/and [r An estimate for 

the double normal derivative on the whole boundary then follows from (2.6) and we are 

done. 

Let us now move on to the general case. In place of formula (2.4) we have 

Diju=D~(u-r162162 i , j = l , . . . , n - 1 ,  (2.16) 

where 

O= D-.y(.y.D) (2.17) 

denotes the tangential gradient in ~ .  Furthermore, from equation (1.14), we have 

r F(D2u+t | = (2.1S) 

t__ t~ where A -Ay-(AI, ..., A,-I) are the eigenvalues of [Di#u]ij=l ..... ,-i, with respect to the 

principal coordinate system at y. Following our argument above, for the special case 

(2.2), we now fix a point yEOfl, where the function g given by 

g(x) = foo(A:[D2u])-r (2.19) 

is minimized. To proceed further, we need to express the function g in terms of a fixed 

orthonormal frame. Fixing a principal coordinate system at the point y and a correspond- 

ing neighbourhood A/" of y with ~/,<0 in N'A0ft, we let ~(I), ...,~(n-1) EC2,1(N'A0f/) be 
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an orthonormal vector field which is tangential, i.e. ~(J).7=0, j = 1, ..., n - 1 ,  and which 

agrees with our coordinate system at y, i.e. ~J)(Y)--~ij, i, j = l ,  ..., n--1. Writing 

Vlu  = ~(i)Dku, (2.20) 

in place of (2.17), we then have 

V i V  j .=~} i )  Dl(~(ff) OkU) 

ff))Dk 
"(O"(J)D u - ' ( i )~D ~'(J)~- D " _,~(i)l~ e(J)~(~)w . (2.21) 

=~1 ~k hi "I-~ 1 ( 1~ k f fk  7U-l-~l k~tlgk )~k Vr't~ 

= ~} i) ~(i) ( D k l u -  D, Tk D.ru ) + {} O ( Dl~O) ){(r)VrU. 

Consequently, writing 

(2.22) 
v ~ .  = [vij~], c = [cij], 

we have, for x E ~ n A f ,  
A~[D2u] = A'[V2u](x) (2.23) 

and, moreover, from the boundary condition u = ,  on Off, 

V2u = (D~u)C + V2* - (D~*)C, (2.24) 

which, of course, agrees with (2.16) at the point y. For any matrix r E S  n - l ,  with eigen- 

values A1,...,An-1, let us now define 

G(r) =/oo(A1, ..., ~ ,-I) ,  

G'J = ~ ,  G'd =G'J(V~u(v)). 
(2.25) 

Clearly the limit function foo is non-decreasing and concave in the cone r ~  and hence 

so also is the function G for matrix arguments having eigenvalues A'EFar (see [2]). We 

thus have, from (2.19), (2.23), (2.25), 

G*o j {D~ r uCij (x) + Vi j*(x)  - D. r r (x) - D.~ uCij (V) - Vij*(V) + D'r*Cij (y) } 
(2.26) 

~> r162 

and hence 

G~J Cij (y)D.ru(x) >1 G~ j { ( D.ru(z) - D.ru(v) )(ei j ( y ) - e i j  (z) ) + D.ru(v)Ci i (V) 

+ D.ruCY)(Cij (y) - Cij (z)) + Vii *(y) - Vii ,C a: ) (2.27) 

+ D.r*Cij( = ) - D.r*Cij(y ) } + r  z ) - r  ). 
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Now, with respect to the principal coordinate system at y, we have 

so that for 6>0, 

G~i C _ ~.~ii  = ( x~ - 6 )G ~i + 6G i~. (2.28) 0 z3 -- ,u 

Since x E F ~  by hypothesis, we also have 

(Xl --6, X2 --6, ..., Xn--1 --6) E roo 

for some positive 6, depending on Of L Consequently, by the concavity of G, we have for 

A>0, 

(xi-6)G~i>~ A{foo(A(x i -~) ) - foo(A ' (D2u))} /> 6z > 0 (2.29) 

if A is chosen sufficiently large, where 61 depends on On and max r Note that we can 

assume that fcr162 1. If the function foo is homogeneous of degree one, we 

can simply estimate 

(X i - 6 ) G  ii ~ fo~(x 1-6,  ..., xn_ 1 -6 )  ~ 61. (2.30) 

From (2.27), (2.28) and (2.29), we thus obtain 

D.~u(x) - D.yu(y) >1 a ~j { D.yu(y)(Cij (Y) -C, i  (x)) 

+Viir162162162 (2.31) 

+a(r162 ~ Ix- yl 2 
for xEOf~, where C is a constant depending on n, 0f~ and a *i, a, i , j = l , . . . , n - 1 ,  are 
constants satisfying 

1 1 
[a~J I <~ -~, 0 < a <. ~ .  (2.32) 

Finally, we deduce, in place of (2.10), 

Dnu(x) <. -Tn(x)Dnu(y)+On$(x) -Tn  (z) IaiJ { D.yu(y)(Cii(z)-Vii(y)) 

+ Viir  - V~ir D.yr -D.yr } (2.33) 

+a(C(y)-C(x)) + - ~  Ix-ul'] �9 
As in our previous case (2.2), we then conclude an estimate of the form (2.12), where the 

constant C depends in addition on M~ and 1r Subsequently, by the same argument 

as before, if r162 we obtain a lower bound g>.6o for the function g in (2.19), where 

60 is a positive constant depending on n, 0f~, Mz, M~, 1r 1r and Co. Since the 

convergence in (2.15) is uniform for A[D2u] in a compact subset of F, we finally obtain 

an estimate for Dnnu on all of 0fL Taking account of our remarks at the beginning of 

this section, we thus complete the proof of Theorem 1.2 in the bounded case (2.1). 
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3. A n e w  p r o o f  in t h e  u n b o u n d e d  case  

In the unbounded case, condition (1.7) holds and all the necessary second derivative 

estimates to establish Theorem 1.2 are covered by Caffarelli, Nirenberg and Spruck [2]. 

However, our approach to the double normal second derivatives in the preceding section 

extends simply to the unbounded case, thereby providing an alternative proof to that 

in [2]. As in the bounded case, the method is readily illustrated for the special case of 

elementary symmetric functions, 

/(A)=(S~(A)) l/k, r = r ~ ,  r ~ = r ~ _ l ,  l<k~<n .  (3.1) 

In this case, an estimate for Dnnu arises from the equation itself, if we bound 

Sk_I(A'[D2u]) from below on On, so that in place of (2.8), (2.9) we may minimize the 

function 

g = {S~_I(A'[D2u])} I/(k-I). (3.2) 

At a minimum point y6On, we infer an estimate of the form (2.12), as before, except 

that the details are simpler here because r is not present in g. If r r >0, we deduce 

an estimate from below for g on 0n and then from equation (1.14) the desired estimate 

for D,~,u on all of on. 

For the general case, we can still work with a concave function g by proceeding as 

follows. Fixing r as before, we choose Ro>0 by the formula, 

Ro = inf{R' > R ] (A', R') 6 F, f(A', R') > r on 0n}, (3.3) 

where R is as given in the hypothesis of Theorem 1.2, and then define 

g = f(A'[D~u], tto) - G(V2u) (3.4) 

in place of (2.19). Again, we obtain an estimate of the form (2.12) at a minimum point 

yqOn. From this estimate, we infer an upper bound for Ro, namely 

Ro C, (3.5) 

where C depends on n, On, M1, M~, 14'14, Ir and r We thus have 

/(A'[D2u],C)/>C0, f(A[D2u]) ~<r on On (3.6) 

and an estimate for D,~nu on all of On, follows by virtue of (1.7) and Lemma 1.2 of [2]. 

Note that the convergence in (1.7) will be uniform on compact subsets of F. Furthermore, 

we can extend this argument to embrace the bounded case without explicit use of the 

limit function foo. 
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4. Other  results  

In this section, we treat various extensions of Theorems 1.1 and 1.2. 

(i) Degenerate equations. Under our hypotheses (1.10)-(1.13) on the function f ,  the 

equation (1.1) will be only degenerate elliptic when r  This situation is covered by 

the following existence theorem. 

THEOREM 4.1. Let n be a bounded domain in R n, with OnEC 3,1 and r  r  

C1'1(~). Then the Dirichlet problem, 

F (D2u)=r  in n, (4.1) 

u = O on Oft, 

is uniquely solvable for admissible uECI ' I (~)  (uEC3'a(n)NCl'l(~) if r  in ~'~), pro- 
vided the curvatures of On, x = ( x l ,  ..., xn-1), satisfy (x, R)EF for some R>0.  

Proof. By replacement of r by r  for constant e>0,  it suffices to obtain second 

derivative estimates for solutions that are independent of inf r As in the non-degenerate 

case, we only need to check the double normal second derivatives on the boundary an,  

as the remaining estimation follows by direct extension of estimates in [2]. Returning to 

our proofs in w167 2 and 3, we see that we need to establish a lower bound for the functions 

g, given by (2.19), (3.4) at points y where r vanishes. From the representation (2.4), it 

therefore suffices, in all cases, to bound 

g = f (xD~u,  R) (4.2) 

from below for sufficiently large R, which follows, by virtue of our geometric assumption 

on ~ ,  from a lower positive bound for D~u on an.  If r162 >0 for some x0En, then 

clearly Au(xo)~6o for some 60 depending on r and our particular function f .  From 

this observation we infer a bound 

D,~u >16 (4.3) 

on On, for some positive constant 6 depending on Ir and n, provided r  in n. 

The uniqueness assertion in Theorem 4.1 follows from the Aleksandrov maximum prin- 

ciple, [4]. 

(ii) General domains. As indicated in the introduction, the geometric assumption 

on the boundary On in Theorems 1.1 and 1.2 can be replaced by the existence of a strict 

subsolution, as shown by Guan [5] for the case when (1.7) holds. 
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THEOREM 4.2. Let ~ be a bounded domain in R '~, with ONEC a,1, CECa,l(012) 
and r a positive function in CI,I(~). Then the Dirichlet problem (1.14) is uniquely 

solvable for admissible uECa,a(~),  0 < a <  1, provided there exists an admissible function, 

uo ECa'I(~) satisfying 
F(D2uo) >1r in fl, 

Uo=r on 0~, (4.4) 

]or some positive constant 5o. 

Proo]. From [5], we need only estimate the double normal second derivatives on the 
boundary 0~, and this estimation is readily accomplished by modification of the previous 
arguments. Observe that, by the maximum principle, u>uo in ~, D~u<D~uo on 012. 
Substituting uo for r we then have, instead of (2.29), 

1 (G(V2uo-SD~(uo-u ) I ) -G(V2u)}  (4.5) (x -5)c >1 D (uo-U) 

where 5>0 is chosen sufficiently small to ensure that 

A'[V2u0-SD~(uo-u)I]  E F~, 
(4.6) 

G(V2u0-SD~(u0-u) I )  >1 r  �89 

But then, if G(VUu)- r  �89 we obtain 

5o 
(x i -5 )G  ii/> 3(O~(u0-u))  ~> 51 > 0, (4.7) 

where 51 depends on u0 and M1. The unbounded case is similarly modified. 

Condition (4.4) is clearly also a necessary condition for existence of an admissible so- 
lution in Cu(~). While it is more general than the hypothesis, (g, R)EF, in Theorem 1.2, 
the two conditions coincide for constant boundary values [2]. 

(iii) General inhomogeneous terms. The general equation (1.2) is treated by Guan [5] 
under condition (4.4) and our techniques also permit elimination of condition (1.7) in his 

results, although the special cases (1.8) are excluded by further conditions imposed to 
obtain global second derivative bounds. To obtain second derivative boundary estimates, 
we assume that the function C ECI,I(~ x R x R n) is positive and convex with respect to 
the gradient variables. Retaining our previous conditions (1.10)-(1.13) on the function 
f and l~, namely 81~EC s,1, we then have the following second derivative estimate. 

THEOREM 4.3. Let uECa(~)  be an admissible solution of equation (1.2) in n with 

u=uo on O~ where uoECa,X(~) is an admissible function satisfying (4.4). Then we have 

the estimate 
max ID2u[ C, (4.8) 

ON 
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where C depends on n, f~, r uo and lulx. 

Proof. The mixed tangential-normal derivatives are controlled by [5], with the 

function w=u-uo serving as a barrier ([5, Lemma 3.1]). The estimation of double nor- 

real second derivatives is achieved by replacing r by the composite function 

r Uo(x), Du(x)) in the proof of Theorem 4.2 and replacing the coefficient GioJCij(y) in 

(2.27) by 

G~J C,j(y)- Dp., r (4.9) 

which is estimated from below, as in the proof of Theorem 4.2, by invoking the convexity 

of r z,p) with respect to p. 

As we remarked above, we would have to impose strong restrictions on r to conclude 

an existence theorem from Theorem 4.3, without further assumptions on f .  The case 

r 1 6 2  with Or is however readily embraced by Theorems 1.1, 1.2, 4.1, 4.2; 

also the case where r is independent of x, z is permissible in Theorem 4.2. 

(iv) More general functions. We can permit more general symmetric functions f in 

the hypotheses of our preceding theorems. In particular, the cone F may be replaced 

by any convex symmetric open set r c l ~  ~ ( ~ R  '~) satisfying F + K + c F ,  aFCF for all 

a~>l, where K+=Kn denotes the positive cone. That is, F is closed under addition of 

the positive cone and scalar multiplication by a~> 1. Moreover, we can by approximation, 

relax the condition fEC2(F)  to feC~ with infK Dif>O on compact subsets of F, 

i=l,.. . ,n. In this situation we can only infer our solutions uEC2,O(~) for some o > 0  

(C2'~(f~)NCI'I(~) in the case of Theorem 4.1). 

(v) Curvature problems. Associated curvature problems are obtained by replacing 

the eigenvalues of the Hessian in (1.2) by the principal curvatures of the graph of u. The 

technique of this paper is applied in [16] to treat the special case (1.8), although here a 

much finer structure of the elementary symmetric function is necessary for the barrier 

arguments [15]. We may also adapt our technique here to the general equations studied 

by Calfarelli, Nirenberg and Spruck [3], thereby eliminating their condition (6). 

Hessian and curvature equations involving elementary symmetric functions are linked 

to properties of Minkowski quermassintegrals. An application of Theorem 1.1, in the case 

r  to isoperimetric inequalities is given in [19] (see also [17]). 

Further remarks (January 4, 1995). By means of a completely different approach, 

which avoids independent estimation of boundary second derivatives, Krylov established 

existence theorems, which include Theorems 1.1, 1.2, 4.1, in his Lipschitz lectures, Uni- 

versity of Bonn, 1993. However, the estimations of this paper, in particular Theorems 4.2, 

4.3, do not appear to be obtainable by his approach. 
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