ANNALES
POLONICI MATHEMATICI
XLIII (1983)

On the Diricillet problem for linear elliptic equations
in plane domains with corners*

by A. Azzam (Hamilton, Ontario)

Abstract. In this paper we consider the first boundary value problem for linear second
order elfiptic equations in a plane domain Q with corners. Conditions sufficient for the solutions
to be of class C™*2+%(f2) are given; m> 0 an integer and 0 <a < L.

1. Introduction. In this paper we shall consider the Dirichlet problem for
linear second order elliptic equations in domains with sectionally smooth
boundaries. In Section 2 we introduce the problem and state some known
results. Section 3 contains Theorem 2, which is the main result of this work.
In Section 4 we study the problem in a circular sector. The proof of Theorem
2 follows from the sector case and will be given in Section 5.

2. The problem. In a bounded domain Q — R? with boundary I' we
consider the Dirichlet problem

(2.1) ay () uyy+a;(x)u; +a(x)u = f(x),
(2.2) u=¢ onl.
Here x =(x,, Xx,), u; = du/0x,, u; = 0*u/Cx;0x; and we use the summation

convention. We make the following assumption.

(A1) The coefficients of (2.1) belong to C,,,.(Q), where m > 0 is an
integer, 0 <o < 1 and R is the closure of ; cf. [1] for the definition of
Cln+a‘

A known result is as follows (cf. [1]). Let u be a solution of (2.1), (2.2)
and let (A1) be satisfied. Furthermore, assume that I' can be represented
parametrically by C,, . ,,.-functions and ¢ € C,,.,(I). Then ueC,, ;..(f2).
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If I' has a corner, this result may not hold. We now state another
assumption.

(A2) I has a corner at 0 and elsewhere can be represented para-
metrically by C,,,,.-functions of the arc length s (measured from the
corner point), and ¢ € C,,, ., (F\{0}) Co(IN).

Under assumptions (Al), (A2), for any solution of (2.1), (2.2) we have
UE Cpryz4a(2,)NCo(R) (cf. [1]), where @, is any compact subdomain of
Q with positive distance from the corner. It was proved in [4] that
in the neighbourhood of the corner, u € C,; here v = min(m+ 2+ a, n/w—¢)
with arbitrarily small ¢ > 0,

(23) o = arctan |[a,,(0)a;,(0)—a},(0)]'*/[a,;(0)coty—a,,(0)]}

and y is the angle at the corner. Note that w = y il the leading part of {2.1) is
the Laplacian. For the Poisson equation analogous results in Sobolev spaces
related to L7 (S2) for every p were proved in [7]. For more references in the
case of boundaries with corners see [7] and the list given at the end of this
paper.

3. The main result of the paper. The Dirichlet problem for the Poisson
equation has been extensively studied; cf [5]-[9], [13] and [14]. The
following result is known.

THeorReM 1. Let 2, be a sector with center at the origin and radius 2r,.
Assume that this sector has an angle w =m/q, q 22 an integer. In Q,
consider the Dirichlet problem

(3.1 4w =F,
(3.2) w=¢ on the boundary of Q,, .

If F eC,,,+¢(Qz,o) and on each of the radii bounding the sector Q,, we have

Q€Chizia,thenweC,,, 2+,(£_2,0) provided that at the corner the compatibility
conditions imposed by (3.1) and (3.2) are satisfied.

We extend this result to the case of (2.1), (2.2), as follows.

THEOREM 2. Let u be a solution of (2.1), (2.2), and assume that (Al) and
(A2) hold. If w in (2.3) is such that n/w = q, and integer > 2, and at the corner
the functions in (2.1) and (2.2) satisfy the compatibility conditions imposed by
(2.1) and (2.2), then ueC,, . ;..(Q).

From [4] it follows that it is sufficient to consider the case g < m+2,
and the case of a circular sector.

4. The case of a circular sector. We first consider the problem in a
circular sector. In Section 5 we shall prove that the general case can be
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reduced to the present one by a suitable transformation. We make the
following assumptions.

(A3) Let the sector be
Q=0 r<o<l, f<OLf+o),

where (r, 8) are the polar coordinates of x = (x,, x,) and > 0 is arbitrarily
small, and w = n/q, 2 < q < m+ 2. Let w(x) be a bounded solution of (2.1) in
Q,, where the coeflicients of (2.1) satisfy (Al) in , and g;(0) = §;;, the
Kronecker delta. The boundary value ¢ of w is continuous at the corner, and
YeC,,3,, On the lines 6 = and 8 =f+w (0 <r < o).

(A4) At the corner, ¥ (r, 8) and f(x) satisfy

4.1) Yy (0, 0) = d"y/drt|,.o =0, k=0,1,..,p+2,
4.2) D) =0, k=01,..,p,

where D¥f is any partial derivative of f of order k, and 0 < p< m.
We now state a result from [4] which we are going to use.

THEOREM 3. Let w be a bounded solution of (2.1) in Q, and let assumption
(A3) be satisfied. Then

(a) weC,(Q, ), where v =min(m+2+a, n/w—e¢) and ¢ > 0 is arbitrarily
small.

(b) If for some A < p+2+a we have |w(x)| < M,r* in Q,,, and if (Ad) is
satisfied, then in Q, we have

|ID*w| < Myr*™% k=0,1,...,p+2.
We shall now see that the regularity of Dw (¢ < m+2) can be improved

by multiplying D%w by a suitable function. The details are as follows.
THEOREM 4. Let w be a bounded solution of (2.1) in Q, and let assump-
tions (A3), (A4) be satisfied. Suppose that for some integer p, 0 < p < m
we have we C,,,_.(Q,) and |DP*?w| < M3r™%, 0 < e < 1. Then for any
Sunction heCy(82,), ¢ <0 <1, vanishing at the corner point, we have
hD**?we C, (?,,), where
{5—8 if p<m,
h= min(x, d—¢) if p=m.
Proof. Consider any two points P(r,, 6,) and Q(r;, 6,) in ©, and
suppose that 0 <r, <r, <r,. If r; <r,/2, then PQ >r,/2 and

4.5)  |h(PYD"* 2 w(P)—h(Q) D" 2 w(Q)/PQ* < 2M3Mri™*/(r,/2F < Ms,

since |h(x)] < M r°. We turn to the case r, >r,;/2. We first prove that
|D?* 2w(P)— D" 2w(Q)/PQ* < Mgr, *¢; from this we shall then readily
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derive an inequality of the form (4.5) [(4.12), below]. Consider the
transformation

(4.6) x" = 2r1y"/ro, i = l, 2

This transformation takes
Qo=i(r,0)| r/2<r<r, <0< f+o)

and

Qo=1{r,0| r/d<r<2r, <0< f+w)
to

Q, =1, 0] ro/d<e<ry2, <O B+
and

Q'l = {(Q’ 0)' r0/8<9<r09 ﬂ<9<ﬂ+w}’

respectively, where ¢ = ror/2r,. In Q) the function v(y) = w(2r,y/r,) satisfies
the elliptic equation

4.7 by () 0y +(2r1/ro) b; (¥) v +(2ry /ro)? b(y) v = (21 /ro)* g (¥),

where the coefficients of (4.7) are thosc of (2.1) after the transformation (4.6).
On the two straight line segments I'; of the boundary of ), the function

v(y) coincides with x(o, 0) = Y (2r,0/ro, 8). In 2, and @}, Schauder’s inequal-
ity yields

(4.8) Holly2 24, < cOllells ! +(2ri/ro) gyt w4+ 1Kl b 2 4.
Now,
[[vlls” = IIWllo® < M, 5272,
4.9
lglt, = 3 D5 gl + H (D g),
0<k<p

where D% is the derivative in the (y,, y,)-plane corresponding to D* and

Hf 1 (D% g) is the Holder coefficient of Dfg with exponent u in ;. From (4.6)
and the definition g(y) = f (2r,y/r,) we have

Dig{y) = (Qri/ro D*f(x), k=0,1,..,p.
From (4.2) it also follows that in £
DY (X)) < Mgry™%*# k=0,1,...,p.
Thus in Q],
IDYg (W) < Morg™™.
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Using the definition of Hf 1 (D%g) and a similar argument, we also obtain

(4.10) H1(DEg) < Myori*e.
Together,
@.11) lglly2, < My, 5t

In a similar way, by (4.3), we conclude that
lxllpt 24 < My2 2%

From (4.8), (4.9) and (4.11) we obtain [|u]],! 5., < cor5* >™¢. We now return to
the x-plane. Noting that in Q,,

(2r\/roP D" 2w| = |D5* 20| < llollp? 54,
and
@ry/rof 2  Ho(DP* 2 w) = H, (D5 20) < |Iollpt 24,0
we see that in £, '
Hlo(DP*2w) < Mgri=™*.

Using these estimates as well as the fact that, in the present case, r, > r,/2,
we finally arrive at the desired inequality

4.12)  |h(P)D***w(P)—h(Q) D***w(Q)|/PQ"
< Ih(P) D"+ 2 w(P)—D** 2 w(Q)|/PQ" +

+(D7* 2w (Q)l (1h(P)— h(Q)I/PQ P (Ih(P)+1h(Q)I}"*
SMrt Meri= "+ Myry* My (rS +r3)° < M, 5.

This completes the proof of Theorem 4.
We now prove Theorem 2 for a sector, in which case it takes the
following form.

THEOREM 5. Let w be a solution of (2.1) in Q, and suppose that (A3)
holds. Let n/w = q be an integer and 2 < q < m+2. Assume that the com-
patibility conditions at the corner are satisfied. Then weC, ;...

Proof. Let m> 0. If g =2, then from Theorem 3(a) it follows that
weCz_,(Q,o). Consider the function v = w—Y, where

2
(413)  Y(X) =y,+ Y (x,cos B+ x,sin ) yh/k! +
k=1

2 &
+ Y Y [Vh+ulit (k=] (x, cos B+ x, sin B)* (- x, sin B+ x, cos BY.

k=1j=1
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Here , = (0, ) = (0, f+w) and yh = dy (r, f)/dr*,—o and b, is de-

fined in a similar way. In €, the function v satisfies
(4.14) Lv=f,=f—LY

and on the lines # = f and 8 = w+ f it coincides with , (r, 8). The function
¥, vanishes at the corner point, together with its first and second derivatives
in the directions of § = f and 8 = f+w. It also [ollows from (4.14) that the
compatibility conditions at the corner point give f; (0, 0) = 0. Thus condition
(A4) is satisfied with p = 0. For the simplicity of writing we shall still use the
functions w, f and y, assuming (A4) with p=0 to be satisfied. From
Theorem 3(b) it then follows that in Q, we have |[D*w| < M,r™". We now
write (2.1) 1in the form

(4.15) Aw = F(x) = f(x)—aw—aw; —(a;;— ;) w;;.

To prove that we(C,,,(£,), it is sufficient to show that FeC,. Here C,
means C, (€2, ) and similarly we omit 2, until the end of this proof. The first
three terms in F belong to C,. Put h(x) = g;;(x)—9;;. Clearly he C, and h(0)
= 0. Using Theorem 4, we get Fe(C,_,. Thus weC,,,_,, where ¢ >0 is
arbitrarily small. Before proceeding we note the following. If w has been
shown to belong to C,,;4,, 0<p<m, 0<n <1, then the function z =
w—T ., satisfies in @, the equation

(4.16) Lz=f =f-LT.,.

Here, T,. , is the sum of the first terms of the Maclaurin expansion of w, up
to and including terms of order p+2. The function z vanishes at the corner
together with all its partial derivatives of order not exceeding p+2. Thus it
follows that the boundary value ¢, of z on the lines 8 =8 and 0 = f+w
satisfies (4.1). It also follows from (4.1) that f; satisfies (4.2). Without loss of
generality and for the sake of simplicity in writing, whenever w has been
proved to belong to C,,,,, we shall assume that (A4) is satisfied and that
|D*w| < MrPt2 %% | =0,...,p+2. We now show that from weC,,,_, it
follows that we C,,,. Take h = a;;—6;;€ C,. Since (A4) with p = 0 is satisfied
and |D*w| < A,r*"* < A,, Theorem 4 with d =a and ¢ =0 gives (q;—
—0;;)w;;€ C,. Using Theorem 1 we obtain weC,,,. If m=0; then g = 2.
This case has been discussed. Let m > 0 and g > 2. Suppose that it has been
shown that weC,,,_,, where 0 < p<mand e =1—-a if g < p+2 while ¢ is
arbitrarily small if g = p+ 2. Since the coefficients of (2.1) belong to C,,.,, 1t
follows that f—aw—aw;€C,,,. To show that (a;;— ;) w;;€C,,, (< a), it is
sufficient to prove that (a;—8,) D" 2we C,. As it was mentioned above, we
may assume that D'w(0) =0, k=0, 1,...,p+1, and |D*w(x)| < Ayr"*2 k¢ k
=0,1,...,p+1. We also assume that (A4) with p replaced by p—1 is
satisfied. Thus Theorem 3(b) gives |D**2w(x)| < Ayr™*. Using Theorem 4



Dirichlet problem for linear elliptic equations 49

with h=gq;-06,;,€C, we finally conclude that (a;—8;)D**?weC,. This
completes the proof of Theorem 5.

We now prove Theorem 2 by showing that the general case may be
reduced to the case just studied.

5. Proof of Theorem 2. To prove the theorem it is sufficient to show
that ueC, 4 14,(N), where

N = {(x, xz)| (xq, x5)€R, x}+x3 < Ug}-

This follows from the known result that ueC,,,,,.(2\N). Without loss of
generality, assume that the corner point is at the origin and the two curves
bounding the corner are represented by x, = g,(x,) and x, = g,(x,), where
g1(0) =g,(0) =g7(0) =0 and g5(0) = coty. We transform the equation

(5.1 a;(O)u; =0

to canonical form. The new angle after the transformation is independent of
the transformation used and is given by

(52) o =arctan{[a,;(0)a;,(0)—a7,(0)]"*/[a;;(0)cot y—a,, (0)]}.

This transformation is of class C,, (cf. (3.51+3.6) in [4]) and transforms the
domain N to a domain N, bounded by two straight-line segments I'; and I,
making angles f and §+ w with the horizontal line, and by a curve joining
the two non-oinciding end points of these segments. In this domain the
transformed function w is a solution of an equation of the form (2.1) with all
the conditions of Theorem 5 being satisfied. Thus in a subdomain £, of N,
we have weC,,, ,,,. Noting that the transformation used is of class C,, and
its Jacobian at (0, 0) has the value [a,,(0)a,,(0)—a3,(0)]" ! (cf. [4]), we
conclude that in a subdomain N < Q we have ueC,,, ,.,,. This completes the
proof of Theorem 2.

We conclude this section by a theorem which follows from [1], [4] and
Theorem 2 of this paper.

THEOREM 6. Let Q < R? be a bounded domain whose boundary I' consists
of a finite number of curves I'y,...,I',, k> 2. Let I''€Cpyr4a i =1, 2,...,k,
and suppose that I'; and T';, | intersect at O; making an angle y;, 0 < y; < 2m.
Assume that u satisfies (2.1) in Q and on I coincides with
PECps2+(F\UO) N Co(DN). If (A) is satisfied and the necessary compatibility
conditions at the corners hold, then ueC,, ,,,(82,), where Q, is a compact
subdomain of Q with positive distance from those corners satisfying neither (i)
nor (ii):

(1) m/w; > m+2+a.

(i) w/w; is an integer.
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In the neighbourhood of such an “excluded” corner we have ue Cyy, .,
where ¢ > 0 1s arbitrarily small.
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