On the Dirichlet problem for linear elliptic equations in plane domains with corners*

by A. Azzam (Hamilton, Ontario)

Abstract. In this paper we consider the first boundary value problem for linear second order elliptic equations in a plane domain Ω with corners. Conditions sufficient for the solutions to be of class $C^{m+2+\alpha}(\bar{\Omega})$ are given; $m \ge 0$ an integer and $0 < \alpha < 1$.

- 1. Introduction. In this paper we shall consider the Dirichlet problem for linear second order elliptic equations in domains with sectionally smooth boundaries. In Section 2 we introduce the problem and state some known results. Section 3 contains Theorem 2, which is the main result of this work. In Section 4 we study the problem in a circular sector. The proof of Theorem 2 follows from the sector case and will be given in Section 5.
- 2. The problem. In a bounded domain $\Omega \subset R^2$ with boundary Γ we consider the Dirichlet problem

(2.1)
$$a_{ij}(x)u_{ij} + a_i(x)u_i + a(x)u = f(x),$$

(2.2)
$$u = \varphi$$
 on Γ .

Here $x = (x_1, x_2)$, $u_i = \partial u/\partial x_i$, $u_{ij} = \partial^2 u/\partial x_i \partial x_j$ and we use the summation convention. We make the following assumption.

(A1) The coefficients of (2.1) belong to $C_{m+\alpha}(\bar{\Omega})$, where $m \ge 0$ is an integer, $0 < \alpha < 1$ and $\bar{\Omega}$ is the closure of Ω ; cf. [1] for the definition of $C_{m+\alpha}$.

A known result is as follows (cf. [1]). Let u be a solution of (2.1), (2.2) and let (A1) be satisfied. Furthermore, assume that Γ can be represented parametrically by $C_{m+2+\alpha}$ -functions and $\varphi \in C_{m+2+\alpha}(\Gamma)$. Then $u \in C_{m+2+\alpha}(\bar{\Omega})$.

^{*} Research supported by the N.S.E.R.C. of Canada under grant A9097.

44 A. Azzam

If Γ has a corner, this result may not hold. We now state another assumption.

(A2) Γ has a corner at 0 and elsewhere can be represented parametrically by C_{m+2+r} -functions of the arc length s (measured from the corner point), and $\varphi \in C_{m+2+r}(\Gamma \setminus \{0\}) \cap C_0(\Gamma)$.

Under assumptions (A1), (A2), for any solution of (2.1), (2.2) we have $u \in C_{m+2+\alpha}(\Omega_1) \cap C_0(\overline{\Omega})$ (cf. [1]), where Ω_1 is any compact subdomain of $\overline{\Omega}$ with positive distance from the corner. It was proved in [4] that in the neighbourhood of the corner, $u \in C_v$; here $v = \min(m+2+\alpha, \pi/\omega - \varepsilon)$ with arbitrarily small $\varepsilon > 0$,

(2.3)
$$\omega = \arctan \left\{ \left[a_{11}(0) a_{22}(0) - a_{12}^2(0) \right]^{1/2} / \left[a_{22}(0) \cot \gamma - a_{12}(0) \right] \right\}$$

and γ is the angle at the corner. Note that $\omega = \gamma$ if the leading part of (2.1) is the Laplacian. For the Poisson equation analogous results in Sobolev spaces related to $L^p(\Omega)$ for every p were proved in [7]. For more references in the case of boundaries with corners see [7] and the list given at the end of this paper.

3. The main result of the paper. The Dirichlet problem for the Poisson equation has been extensively studied; cf. [5]-[9], [13] and [14]. The following result is known.

Theorem 1. Let Ω_{2r_0} be a sector with center at the origin and radius $2r_0$. Assume that this sector has an angle $\omega=\pi/q,\ q\geqslant 2$ an integer. In Ω_{2r_0} consider the Dirichlet problem

$$(3.1) \Delta w = F,$$

(3.2)
$$w = \varphi$$
 on the boundary of Ω_{2r_0} .

If $F \in C_{m+\alpha}(\bar{\Omega}_{2r_0})$ and on each of the radii bounding the sector Ω_{2r_0} we have $\varphi \in C_{m+2+\alpha}$, then $w \in C_{m+2+\alpha}(\bar{\Omega}_{r_0})$ provided that at the corner the compatibility conditions imposed by (3.1) and (3.2) are satisfied.

We extend this result to the case of (2.1), (2.2), as follows.

THEOREM 2. Let u be a solution of (2.1), (2.2), and assume that (A1) and (A2) hold. If ω in (2.3) is such that $\pi/\omega=q$, and integer ≥ 2 , and at the corner the functions in (2.1) and (2.2) satisfy the compatibility conditions imposed by (2.1) and (2.2), then $u \in C_{m+2+\alpha}(\bar{\Omega})$.

From [4] it follows that it is sufficient to consider the case $q \le m+2$, and the case of a circular sector.

4. The case of a circular sector. We first consider the problem in a circular sector. In Section 5 we shall prove that the general case can be

reduced to the present one by a suitable transformation. We make the following assumptions.

(A3) Let the sector be

$$\Omega_{\sigma} = \{(r, \theta) | r \leq \sigma < 1, \beta \leq \theta \leq \beta + \omega\},$$

where (r, θ) are the polar coordinates of $x = (x_1, x_2)$ and $\beta > 0$ is arbitrarily small, and $\omega = \pi/q$, $2 \le q \le m+2$. Let w(x) be a bounded solution of (2.1) in Ω_{σ} , where the coefficients of (2.1) satisfy (A1) in Ω_{σ} and $a_{ij}(0) = \delta_{ij}$, the Kronecker delta. The boundary value ψ of w is continuous at the corner, and $\psi \in C_{m+2+\alpha}$ on the lines $\theta = \beta$ and $\theta = \beta + \omega$ ($0 < r \le \sigma$).

(A4) At the corner, $\psi(r, \theta)$ and f(x) satisfy

(4.1)
$$\psi^{(k)}(0,\theta) \equiv d^k \psi / dr^k |_{r=0} = 0, \quad k = 0, 1, ..., p+2,$$

$$(4.2) D^k f(0) = 0, k = 0, 1, ..., p,$$

where $D^k f$ is any partial derivative of f of order k, and $0 \le p \le m$.

We now state a result from [4] which we are going to use.

THEOREM 3. Let w be a bounded solution of (2.1) in Ω_{σ} and let assumption (A3) be satisfied. Then

- (a) $w \in C_v(\Omega_{r_0})$, where $v = \min(m+2+\alpha, \pi/\omega \varepsilon)$ and $\varepsilon > 0$ is arbitrarily small.
- (b) If for some $\lambda \leq p+2+\alpha$ we have $|w(x)| \leq M_1 r^{\lambda}$ in Ω_{2r_0} and if (A4) is satisfied, then in Ω_{r_0} we have

$$|D^k w| \leq M_2 r^{\lambda - k}, \quad k = 0, 1, ..., p + 2.$$

We shall now see that the regularity of $D^q w$ $(q \le m+2)$ can be improved by multiplying $D^q w$ by a suitable function. The details are as follows.

THEOREM 4. Let w be a bounded solution of (2.1) in Ω_{σ} and let assumptions (A3), (A4) be satisfied. Suppose that for some integer p, $0 \le p \le m$ we have $w \in C_{p+2-\varepsilon}(\Omega_{\sigma})$ and $|D^{p+2}w| \le M_3 r^{-\varepsilon}$, $0 \le \varepsilon < 1$. Then for any function $h \in C_{\delta}(\Omega_{\sigma})$, $\varepsilon \le \delta \le 1$, vanishing at the corner point, we have $hD^{p+2}w \in C_{\mu}(\Omega_{ro})$, where

$$\mu = \begin{cases} \delta - \varepsilon & \text{if } p < m, \\ \min(\alpha, \delta - \varepsilon) & \text{if } p = m. \end{cases}$$

Proof. Consider any two points $P(r_1, \theta_1)$ and $Q(r_2, \theta_2)$ in Ω_{r_0} and suppose that $0 \le r_2 \le r_1 \le r_0$. If $r_2 \le r_1/2$, then $\overline{PQ} \ge r_1/2$ and

$$(4.5) |h(P) D^{p+2} w(P) - h(Q) D^{p+2} w(Q)| / \overline{PQ}^{\mu} \leq 2M_3 M_4 r_1^{\delta-\epsilon} / (r_1/2)^{\mu} \leq M_5,$$

since $|h(x)| \le M_4 r^{\delta}$. We turn to the case $r_2 > r_1/2$. We first prove that $|D^{p+2}w(P) - D^{p+2}w(Q)|/\overline{PQ}^{\mu} \le M_6 r_1^{-\mu-\epsilon}$; from this we shall then readily

46 A. Azzam

derive an inequality of the form (4.5) [(4.12), below]. Consider the transformation

$$(4.6) x_i = 2r_1 y_i / r_0, i = 1, 2.$$

This transformation takes

$$\Omega_0 = \{(r, \theta) | r_1/2 \le r \le r_1, \beta \le \theta \le \beta + \omega\}$$

and

$$\Omega'_0 = \{(r, \theta) | r_1/4 \leqslant r \leqslant 2r_1, \beta \leqslant \theta \leqslant \beta + \omega\}$$

to

$$\Omega_1 = \{(\varrho, \theta) | r_0/4 \le \varrho \le r_0/2, \beta \le \theta \le \beta + \omega \}$$

and

$$\Omega_1' = \{(\varrho, \theta) | r_0/8 \le \varrho \le r_0, \beta \le \theta \le \beta + \omega\},$$

respectively, where $\varrho = r_0 r/2r_1$. In Ω_1 the function $v(y) = w(2r_1 y/r_0)$ satisfies the elliptic equation

$$(4.7) b_{ij}(y)v_{ij} + (2r_1/r_0)b_i(y)v_i + (2r_1/r_0)^2b(y)v = (2r_1/r_0)^2g(y),$$

where the coefficients of (4.7) are those of (2.1) after the transformation (4.6). On the two straight line segments Γ_1 of the boundary of Ω_1 , the function v(y) coincides with $\chi(\varrho, \theta) = \psi(2r_1\varrho/r_0, \theta)$. In Ω_1 and Ω_1 , Schauder's inequality yields

Now,

$$||v||_0^{\Omega_1^{\epsilon}} = ||w||_0^{\Omega_0^{\epsilon}} \leqslant M_7 r_1^{p+2-\epsilon},$$

(4.9)
$$||g||_{p+\mu}^{\Omega_1} = \sum_{0 \le k \le p} ||D_1^k g(y)||_0^{\Omega_1} + H_{\mu}^{\Omega_1}(D_1^p g),$$

where D_1^k is the derivative in the (y_1, y_2) -plane corresponding to D^k and $H_{\mu}^{\Omega_1}(D_1^p g)$ is the Hölder coefficient of $D_1^p g$ with exponent μ in Ω_1 . From (4.6) and the definition $g(y) = f(2r_1 y/r_0)$ we have

$$D_1^k g(y) = (2r_1/r_0)^k D^k f(x), \quad k = 0, 1, ..., p.$$

From (4.2) it also follows that in Ω'_0

$$|D^k f(x)| \leq M_8 r_1^{p-k+\mu}, \quad k=0, 1, ..., p.$$

Thus in Ω'_1 ,

$$|D_1^k g(y)| \leqslant M_9 r_1^{p+\mu}.$$

Using the definition of $H_{\mu}^{\Omega_1'}(D_1^p g)$ and a similar argument, we also obtain (4.10) $H_{\mu}^{\Omega_1'}(D_1^p g) \leq M_{10} r_1^{p+x}$.

Together,

$$||g||_{p+\mu}^{\Omega_1} \leq M_{11} r_1^{p+\alpha}.$$

In a similar way, by (4.3), we conclude that

$$\|\chi\|_{p+2+u}^{\Gamma_1'} \leq M_{12} r_1^{p+2+a}.$$

From (4.8), (4.9) and (4.11) we obtain $||v||_{p+2+\mu}^{\Omega_1} \le c_0 r_1^{p+2-\epsilon}$. We now return to the x-plane. Noting that in Ω_0 ,

$$(2r_1/r_0)^{p+2}|D^{p+2}w| = |D_1^{p+2}v| \le ||v||_{p+2+\mu}^{\Omega_1}$$

and

$$(2r_1/r_0)^{p+2+\mu}H_{\mu}^{\Omega_0}(D^{p+2}\dot{w})=H_{\mu}^{\Omega_1}(D_1^{p+2}v)\leqslant ||v||_{p+2+\mu}^{\Omega_1},$$

we see that in Ω_0

$$H^{\Omega_0}_{\mu}(D^{p+2}w)\leqslant M_6r_1^{-\varepsilon-\mu}.$$

Using these estimates as well as the fact that, in the present case, $r_2 > r_1/2$, we finally arrive at the desired inequality

$$(4.12) \qquad |h(P) D^{p+2} w(P) - h(Q) D^{p+2} w(Q)| / \overline{PQ}^{\mu}$$

$$\leq |h(P)| |D^{p+2} w(P) - D^{p+2} w(Q)| / \overline{PQ}^{\mu} +$$

$$+ |D^{p+2} w(Q)| (|h(P) - h(Q)| / \overline{PQ}^{\delta})^{\mu/\delta} (|h(P) + |h(Q)|)^{\epsilon/\delta}$$

$$\leq M_{A} r_{A}^{\delta} M_{B} r_{A}^{-\epsilon - \mu} + M_{A} r_{A}^{-\epsilon} M_{A} (r_{A}^{\delta} + r_{A}^{\delta})^{\epsilon/\delta} \leq M_{15}.$$

This completes the proof of Theorem 4.

We now prove Theorem 2 for a sector, in which case it takes the following form.

THEOREM 5. Let w be a solution of (2.1) in Ω_{σ} and suppose that (A3) holds. Let $\pi/\omega=q$ be an integer and $2 \le q \le m+2$. Assume that the compatibility conditions at the corner are satisfied. Then $w \in C_{m+2+\alpha}$.

Proof. Let $m \ge 0$. If q = 2, then from Theorem 3(a) it follows that $w \in C_{2-\epsilon}(\Omega_{r_0})$. Consider the function v = w - Y, where

$$(4.13) Y(x) = \psi_{\beta} + \sum_{k=1}^{2} (x_1 \cos \beta + x_2 \sin \beta)^k \psi_{\beta}^k / k! +$$

$$+ \sum_{k=1}^{2} \sum_{j=1}^{k} \left[\psi_{\beta+\omega}^k / j! (k-j)! \right] (x_1 \cos \beta + x_2 \sin \beta)^{k-j} (-x_1 \sin \beta + x_2 \cos \beta)^j.$$

48 A. Azzam

Here $\psi_{\beta} = \psi(0, \beta) = \psi(0, \beta + \omega)$ and $\psi_{\beta}^{k} = d^{k}\psi(r, \beta)/dr^{k}|_{r=0}$ and $\psi_{\omega+\beta}^{k}$ is defined in a similar way. In Ω_{σ} the function v satisfies

$$(4.14) Lv = f_1 \equiv f - LY$$

and on the lines $\theta = \beta$ and $\theta = \omega + \beta$ it coincides with $\psi_1(r, \theta)$. The function ψ_1 vanishes at the corner point, together with its first and second derivatives in the directions of $\theta = \beta$ and $\theta = \beta + \omega$. It also follows from (4.14) that the compatibility conditions at the corner point give $f_1(0, 0) = 0$. Thus condition (A4) is satisfied with p = 0. For the simplicity of writing we shall still use the functions w, f and ψ , assuming (A4) with p = 0 to be satisfied. From Theorem 3(b) it then follows that in Ω_{r_0} we have $|D^2w| \leq M_2 r^{-\epsilon}$. We now write (2.1) in the form

(4.15)
$$\Delta w = F(x) = f(x) - aw - a_i w_i - (a_{ij} - \delta_{ij}) w_{ij}.$$

To prove that $w \in C_{2+\varepsilon}(\Omega_{r_0})$, it is sufficient to show that $F \in C_{\alpha}$. Here C_{α} means $C_{\alpha}(\Omega_{r_0})$ and similarly we omit Ω_{r_0} until the end of this proof. The first three terms in F belong to C_{α} . Put $h(x) = a_{ij}(x) - \delta_{ij}$. Clearly $h \in C_{\alpha}$ and h(0) = 0. Using Theorem 4, we get $F \in C_{\alpha-\varepsilon}$. Thus $w \in C_{2+\alpha-\varepsilon}$, where $\varepsilon > 0$ is arbitrarily small. Before proceeding we note the following. If w has been shown to belong to $C_{p+2+\eta}$, $0 \le p \le m$, $0 \le \eta < 1$, then the function $z = w - T_{p+2}$ satisfies in Ω_{σ} the equation

$$(4.16) Lz = f_1 \equiv f - LT_{n+2}.$$

Here, T_{p+2} is the sum of the first terms of the Maclaurin expansion of w, up to and including terms of order p+2. The function z vanishes at the corner together with all its partial derivatives of order not exceeding p+2. Thus it follows that the boundary value ψ_1 of z on the lines $\theta = \beta$ and $\theta = \beta + \omega$ satisfies (4.1). It also follows from (4.1) that f_1 satisfies (4.2). Without loss of generality and for the sake of simplicity in writing, whenever w has been proved to belong to $C_{p+2+\eta}$ we shall assume that (A4) is satisfied and that $|D^k w| \leq M r^{p+2-k+\eta}$, $k=0,\ldots,p+2$. We now show that from $w \in C_{2+\alpha-\varepsilon}$ it follows that $w \in C_{2+\alpha}$. Take $h = a_{ij} - \delta_{ij} \in C_{\alpha}$. Since (A4) with p = 0 is satisfied and $|D^2w| \le A_1 r^{\alpha-\epsilon} \le A_2$, Theorem 4 with $\delta = \alpha$ and $\epsilon = 0$ gives $(a_{ij} - a_{ij})$ $-\delta_{ij}$) $w_{ij} \in C_a$. Using Theorem 1 we obtain $w \in C_{2+a}$. If m=0; then q=2. This case has been discussed. Let m > 0 and $q \ge 2$. Suppose that it has been shown that $w \in C_{p+2-\epsilon}$, where $0 \le p \le m$ and $\epsilon = 1-\alpha$ if q < p+2 while ϵ is arbitrarily small if q = p + 2. Since the coefficients of (2.1) belong to C_{m+a} , it follows that $f - aw - a_i w_i \in C_{p+\alpha}$. To show that $(a_{ij} - \delta_{ij}) w_{ij} \in C_{p+\mu}$ $(\mu \le \alpha)$, it is sufficient to prove that $(a_{ij} - \delta_{ij}) D^{p+2} w \in C_{\mu}$. As it was mentioned above, we may assume that $D^k w(0) = 0$, k = 0, 1, ..., p+1, and $|D^k w(x)| \le A_3 r^{p+2-k-\epsilon}$, k= 0, 1, ..., p+1. We also assume that (A4) with p replaced by p-1 is satisfied. Thus Theorem 3(b) gives $|D^{p+2}w(x)| \leq A_4 r^{-\varepsilon}$. Using Theorem 4 with $h = a_{ij} - \delta_{ij} \in C_1$ we finally conclude that $(a_{ij} - \delta_{ij}) D^{p+2} w \in C_a$. This completes the proof of Theorem 5.

We now prove Theorem 2 by showing that the general case may be reduced to the case just studied.

5. Proof of Theorem 2. To prove the theorem it is sufficient to show that $u \in C_{m+2+a}(N)$, where

$$N = \{(x_1, x_2) | (x_1, x_2) \in \overline{\Omega}, x_1^2 + x_2^2 \le \sigma_0^2 \}.$$

This follows from the known result that $u \in C_{m+2+\alpha}(\bar{\Omega} \setminus N)$. Without loss of generality, assume that the corner point is at the origin and the two curves bounding the corner are represented by $x_1 = g_2(x_2)$ and $x_2 = g_1(x_1)$, where $g_1(0) = g_2(0) = g_1'(0) = 0$ and $g_2'(0) = \cot \gamma$. We transform the equation

$$(5.1) a_{ii}(0)u_{ii} = 0$$

to canonical form. The new angle after the transformation is independent of the transformation used and is given by

$$(5.2) \qquad \omega = \arctan\left\{ \left[a_{11}(0) a_{22}(0) - a_{12}^2(0) \right]^{1/2} / \left[a_{22}(0) \cot \gamma - a_{12}(0) \right] \right\}.$$

This transformation is of class C_{∞} (cf. (3.5)-(3.6) in [4]) and transforms the domain N to a domain N_0 bounded by two straight-line segments Γ_1 and Γ_2 making angles β and $\beta + \omega$ with the horizontal line, and by a curve joining the two non-coinciding end points of these segments. In this domain the transformed function w is a solution of an equation of the form (2.1) with all the conditions of Theorem 5 being satisfied. Thus in a subdomain Ω_{r_0} of N_0 we have $w \in C_{m+2+\alpha}$. Noting that the transformation used is of class C_{∞} and its Jacobian at (0, 0) has the value $[a_{11}(0)a_{22}(0)-a_{12}^2(0)]^{-1}$ (cf. [4]), we conclude that in a subdomain $N \subset \overline{\Omega}$ we have $u \in C_{m+2+\alpha}$. This completes the proof of Theorem 2.

We conclude this section by a theorem which follows from [1], [4] and Theorem 2 of this paper.

THEOREM 6. Let $\Omega \subset R^2$ be a bounded domain whose boundary Γ consists of a finite number of curves $\Gamma_1, \ldots, \Gamma_k$, $k \geq 2$. Let $\Gamma_i \in C_{m+2+\alpha}$, $i=1,2,\ldots,k$, and suppose that Γ_i and Γ_{i+1} intersect at O_i making an angle γ_i , $0 < \gamma_i < 2\pi$. Assume that u satisfies (2.1) in Ω and on Γ coincides with $\varphi \in C_{m+2+\alpha}(\Gamma \setminus \bigcup O_i) \cap C_0(\Gamma)$. If (A1) is satisfied and the necessary compatibility conditions at the corners hold, then $u \in C_{m+2+\alpha}(\Omega_1)$, where Ω_1 is a compact subdomain of Ω with positive distance from those corners satisfying neither (i) nor (ii):

- (i) $\pi/\omega_i > m+2+\alpha$.
- (ii) π/ω_i is an integer.

In the neighbourhood of such an "excluded" corner we have $u \in C_{\pi/\omega_i - \varepsilon}$, where $\varepsilon > 0$ is arbitrarily small.

References

- [1] S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations, satisfying general boundary conditions, Comm. Pure Appl. Math. 12 (1959), p. 623-727.
- [2] A. Avantaggiati, M. Troisi, Spazi di Sobolev con peso e problemi ellittici in un angolo I, II, III, Ann. Mat. Pura Appl. 95 (1973), p. 361-408; 97 (1973), p. 207-252; 99 (1974), p. 1-64.
- [3] A. Azzam, Schauder estimations of the solution of Dirichlet's problem of second order elliptic equations in sectionally smooth domains, Vestnik Moskov. Univ. ser. 1, Mat. 5 (1981), p. 29-33.
- [4] -, Smoothness properties of solutions of the Dirichlet problem for elliptic equations in regions with corners on the boundary, Ann. Polon. Math. 40 (1980), p. 81-93.
- [5] G. Dziuk, Das Verhalten von Lösungen semilinearer elliptischer Systeme an Ecken eines Gebietes, Math. Z. 159 (1978), p. 89-100.
- [6] V. V. Fusaev, On the Dirichlet problem for regions with corners, Dokl. Akad. Nauk SSSR 131 (1960), p. 37-39.
- [7] P. Grisvard, Behavior of solutions of an elliptic boundary value problem in a polygonal or polyhedral domain. In: B. Hubbard, Numerical solutions of partial differential equations, Vol. III, Academic Press, New York 1976, p. 207-274.
- [8] M. Hanna, and K. Smith, Some remarks on the Dirichlet problem in piecewise smooth domains, Comm. Pure Appl. Math. 20 (1967), p. 577-593.
- [9] K. Ibuki, Dirichlet problem for elliptic equations of the second order in a singular domain of R², J. Math. Kyoto Univ. 14 (1) (1974), p. 55-71.
- [10] V. A. Kondratev, Boundary value problems for elliptic equations in domains with conical or angular points, Tran. Moscow Mat. Soc. 16 (1967), p. 227-313.
- [11] -, The smoothness of a solution of Dirichlet's problem for second order elliptic equations in a region with a piecewise smooth boundary, Differ. Utavn. 10 (1970), p. 1831-1843.
- [12] S. L. Sobolev, Applications of functional analysis in mathematical physics, Providence, Amer. Math. Soc. (1963).
- [13] E. A. Volkov, On the differentiability properties of solutions of boundary value problems for the Laplace and Poisson equations on a rectangle, Trudy Mat. Inst. Steklov 77 (1965), p. 89–112.
- [14] -, Differential properties of solutions of boundary value problems for the Laplace equation on polygons, ibidem 77 (1965), p. 113-142.

Reçu par la Rédaction le 31.3.1979