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Abstract. In this paper the numerical solution of the one dimensional
heat conduction equation is investigated, by applying Dirichlet boundary
condition at the left hand side and Neumann boundary condition was
applied at the right hand side. To the discretization in space, we apply
the linear finite element method and for the time discretization the well-
known theta-method. The aim of the work is to derive an adequate nu-
merical solution for the homogenous initial condition by this approach.
We theoretically analyze the possible choice of the time-discretization
step-size and establish the interval where the discrete model is reliable
to the original physical phenomenon.

As the discrete model, we arrive at the task of the one-step iterative
method. We point out that there is a need to obtain both lower and
upper bounds of the time-step size to preserve the qualitative properties
of the real physical solution. The main results of the work is to determine
the interval for the time-step size to be used in this special finite element
method and analyze the main qualitative characterstics of the model.

1 Preliminaries

Minimum time step sizes for different diffusion problems have been analyzed
by many researchers [7]. Thomas and Zhou [4] have constructed an approach
to develop the minimum time step size, that can be used in the finite element
method of diffusion problems. However, these approach is rigorous. We point
out its imperfections and extend the analysis to the theta method as well, and
develop an upper limit for the maximum time step size. In this paper, for the
analysis of the one-dimensional classical diffusion problem, the heat conduction
equation is considered. Heat conduction or, in other terminology, the thermal
conduction is the self-generated transfer of thermal energy through the space,
from a place of higher temperature to a place of lower temperature, and thus
is at work to even out the temperature gradients. From mathematical point of
view this equation is the prototypical parabolic partial differential equation.
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The general form of this equation is

c
∂T

∂t
= k

∂2T

∂x2
, x ∈ (0, 1], t > 0,

T (0, t) = τ ;
∂T

∂x
(1, t) = 0, t ≥ 0, (1)

T (x, 0) = u0(x), x ∈ (0, 1],

where c represents the specific heat capacity, that is the measure of the thermal
energy required to increase the temperature of a matter by a certain temperature
level, T is the temperature of the analyzed domain, t and x denotes the time and
space variables, respectively, k is the coefficient of the thermal conductivity, that
is the property of a material that indicates its ability to conduct thermal energy.
Moreover, τ is the temperature at x = 0, a non-negative real number. The left-
hand side of this equation expresses the rate of the temperature change at a
point in space over time and the right-hand side indicates the spatial thermal
conduction in direction x. During the analysis of the problem the space was
divided into n − 1 elements. The heat capacity and the coefficient of thermal
conductivity are assumed to be constants. The boundary conditions are so-called
mixed boundary conditions. The physical meaning of this type of boundary
condition is that, at the end of the body the heat flux is zero, in other words the
thermal energy can not leave the system. The weak form of the problem (1) is

∫ 1

0

c
∂T

∂t
v(x)dx + kv(0)

∂T

∂x
(0, t) +

∫ 1

0

k
∂T

∂x

dv

dx
dx = 0 (2)

for all v ∈ H1
0 (0, 1), where H1

0 (0, 1) denotes the sub-space of Sobolev space
H1(0, 1) with v(0) = 0. Hence, we seek such a function T (x, t), which belongs
to H1(0, 1) for all fixed t, morover, there exists ∂T

∂t , and it satisfies (2) for all
v ∈ H1

0 (0, 1).
We seek the spatially discretized temperature Td in the form:

Td(x, t) =
n∑

i=0

φi(t)Ni(x), (3)

where Ni(x) are given shape functions, (Fig. 1) and φi are unknown, and n is
the ordinal number of nodes. The unknown temperature index starts from 1,
because, due to the boundary condition at the first node the temperature is
known, namely, φ0(t) = τ .

Substituting (3) into (2), we get the weak semidiscretized equation

n∑
i=0

φ
′
i(t)

∫ 1

0

cNi(x)Nj(x)dx+

+
n∑

i=0

φi(t)
∫ 1

0

kN
′
i (x)N

′
j(x)dx = 0, j = 1, 2 . . . n. (4)
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Fig. 1. Linear shape functions

Let K, M ∈ R(n+1)×n denote the so-called mass and stiffness matrices, respec-
tively, defined by:

(K)ij =
∫ 1

0

kN
′
i (x)N

′
j(x)dx, (5)

(M)ij =
∫ 1

0

cNi(x)Nj(x)dx. (6)

Then (4) can be expressed as:

M Φ
′
+ K Φ = 0, (7)

where Φ ∈ Rn+1 is a vector function with the components φi. For the time
discretization of the system of ODE (7) we apply the well-known theta-method,
which results in the equation

M
Φm+1 − Φm

Δt
+ K

(
ΘΦm+1 + (1 − Θ)Φm

)
= 0. (8)

Clearly, this is a system of linear algebraic equations w.r.t. the unknown vector
Φm+1 being the approximation of the temperature at the new time-level. Here
the parameter Θ is related to the applied numerical method and it is an arbitrary
parameter on the interval [0, 1]. It is worth to emphasize that for Θ = 0.5 the
method yields the Crank-Nicolson implicit method which has higher accuracy
for the time discretization [6].

In order to preserve the qualitative characteristics of the solution, the connec-
tions between the equations and the real problem must be analyzed. To obtain
a lower bound for the time-step size, equation (6)-(8) should be analyzed. As it
is well known, the temperature (in Kelvin) is a non-negative function in physics.
In this article the following sufficient condition will be shown for the time-step
size of the finite element theta-method to retain the physical characteristics of
the solution:

h2c

6Θk
< Δt ≤ h2c

3(1 − Θ)k
, (9)

where h is the length of the spatial approximation. This sufficient condition is
well known for problems with pure Dirichlet boundary conditions but not for
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the problems with mixed boundary conditions (Newton and Dirichlet), see e.g.,
[5] [3].

2 Analysis of FEM Equation

After performing the integral in (5) and (6) for the linear shape functions, the
mass and the stiffness matrices have the following form

K = k
1
h

⎡
⎢⎢⎢⎣

−1 2 −1 . . . 0
...

. . . . . . . . .
...

0 . . . −1 2 −1
0 . . . 0 −1 1

⎤
⎥⎥⎥⎦ , M = c

h

6

⎡
⎢⎢⎢⎣

1 4 1 . . . 0
...

. . . . . . . . .
...

0 . . . 1 4 1
0 . . . 0 1 2

⎤
⎥⎥⎥⎦ (10)

respectively. Using (10), the system (8) can be rewritten as:

aΦm+1
0 + bΦm+1

1 + aΦm+1
2 + eΦm

0 + fΦm
1 + eΦm

2 = 0 (2.2(1))

aΦm+1
1 + bΦm+1

2 + aΦm+1
3 + eΦm

1 + fΦm
2 + eΦm

3 = 0 (2.2(2))
. . .

aΦm+1
n−2 + bΦm+1

n−1 + aΦm+1
n + eΦm

n−2 + fΦm
n−1 + eΦm

n = 0 (2.2(n-1))

aΦm+1
n−1 +

b

2
Φm+1

n + eΦm
n−1 +

f

2
Φm

n = 0 (2.2(n))

where

a =
hc

6Δt
− Θk

h
, b = 2

(
hc

3Δt
+

Θk

h

)
, (11)

e = − hc

6Δt
− (1 − Θ) k

h
, f = 2

(
(1 − Θ) k

h
− hc

3Δt

)
. (12)

Clearly b > 0.
First we analyze the case when homogenous initial condition is given, i.e.,

u0(x) = 0. Then Φ0
i = 0, (i = 1, 2, ..., n). Since τ > 0, therefore, it is worth

to emphasizing that, if τ is greater than zero, there is a discontinuity in the
initial conditions at the point (0, 0). We investigate the condition under which
the first iteration, denoted by Φ=Φ1, results in non-negative approximation. The
equations (2.2(1))-(2.2(n)) can be rewritten as

aΦ0 + bΦ1 + aΦ2 = 0 (2.5(1))
aΦ1 + bΦ2 + aΦ3 = 0 (2.5(2))

. . .

aΦn−2 + bΦn−1 + aΦn = 0 (2.5(n-1))

aΦn−1 +
b

2
Φn = 0 (2.5(n))
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When a = 0, then the solution of this equation system is equal to zero. This
means that the numerical scheme doesn’t change the initial state which contra-
dicts to the physical process. Therefore, in the sequel we assume that a �= 0.

We seek the solution in the following form

Φi = ZiΦ0, i = 0, 1, ..., n. (13)

Obviously, Z0 = 1. Using (2.5(n)), Zn can be expressed as

Zn = −2a

b
Zn−1 = Xn−1Zn−1, (14)

where
Xn−1 = −2a

b
. (15)

In the next step, Zn−1 can be expressed from (2.5(n-1)). applying (7):

Zn−1 = − 1
b

a
+ Xn−1

Zn−2 = Xn−2Zn−2, (16)

where
Xn−2 = − 1

b

a
+ Xn−1

. (17)

For the i-th equation the following relation holds:

Zi = − 1
b

a
+ Xi

Zi−1 = Xi−1Zi−1, i = 1, 2, ..., n− 1, (18)

where
Xi−1 = − 1

b

a
+ Xi

, i = n − 1, n − 2, ..., 1. (19)

Hence we obtained the following statement.

Theorem 1. The solution of the system of linear algebraic equations (2.5) can
be defined by the following algorithm.

1. We put Z0 = 1;
2. We define Xn−1, Xn−2, ..., X0 by the formulas (8) and (12), respectively;
3. We define Z1, Z2, ..., Zn by the formulas (7) and (11), respectively;
4. By the formula (6) we define the values of Φi.

The relation Φi ≥ 0, holds only under the condition Zi ≥ 0. From (11) we can
see that it is equivalent to the non-negativity of Xi for all i = 0, 1, ..., n− 1.

Therefore, based on (12), we have the condition a < 0 since b > 0.
For the analysis of the non-negativity of the numerical solution, produced by

the above algorithm, we will use the following trivial statement.
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Lemma 2. Assume that c > 2 and let us define the recursion as follows ai+1 =
1

c − ai
. When a1 ∈ (0, 1) then ai ∈ (0, 1) for any indices.

This lemma implies that under the condition −b/a > 2 each element Xi is
non-negative, because the condition Xn−1 = −2a/b ∈ (0, 1) is automatically
satisfied.

The non-negativity of a yields the condtion

a =
hc

6Δt
− Θk

h
< 0. (20)

that is, we got the condition
h2c

6Θk
< Δt. (21)

Hence, the following statement is proven.

Theorem 3. Let us assume that the condition (14) holds. Then for the problem
(1) with homogenous initial condition the linear finite element method results in
a non-negative solution on the first time level.

Naturally we are interested in the non-negativity preservation property not only
at the first time level but on each ones. This means that rewritting the system
(2.2(1))-(2.2(n)) in the matrix-vector form

AΦm+1 = fm, (22)

we must garantee the inverse-positivity of the matrix A and the non-negativity
of right hand side fm. Since under the condition (14) the realtions b > 2|a|
and a < 0 are valid, therefore, A is a strictly diagonally dominant M-matrix
and hence its inverse is non-negative matrix [2]. The second condition can be
guaranteed for arbitrary Φm if and only if e and f are non-positives. Obviously
the condition e < 0 is always true, therefore the only condition, which should be
satisfied, is the requirement f ≤ 0, i.e.,

Δt ≤ h2c

3(1 − Θ)k
. (23)

Theorem 4. Let us assume that the time discretization parameter Δt satisfies
the condition (9). Then for the problem (1) with arbitrary non-negative initial
condition the linear finite element method results in a non-negative solution on
any time level.

3 Numerical Experiments

In the numerical experiments for the boundary condition at left hand side of
the space domain we put the value τ = 273. For the numerical experiments, a
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Fig. 2. The solution applying to high time step
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Fig. 3. The solution applying time step from the interval (16)

special type of Gauss elimination was used for the inversion of the sparse tri-
diagonal matrices [1]. The following figures are in three dimensions, the first
dimension is the length of a node, the second one is the temperature at the
nodes, and the third one is the estimated time since the model start. First, we
apply relatively high time-step, that causes the positivity of F . In (Fig. 2) one
can see the numerical method is quite unstable, hence there is an oscillation with
decreasing tendency in the results.

When we apply smaller time steps than, in (16), close to the first node, there
will be small negative peaks, that is an unrealisctic solution, since the absolute
temperature should be non-negative.
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For the sake of completeness In Fig. 3 we applied the time-step size from the
interval (16), and it can be seen that the oscillation disappears and we have got
more stable numerical method. It is easy to see, that, by use of appropriate time
steps, the solution becomes much smoother than in the Fig. 2.

4 Conclusions and Further Works

In this article the sufficient condition was given for the time-step size of the finite
element theta-method to preserve the physical characteristics of the solution. For
the homogenous initial condition we have shown that there exists only the lower
bound for the time-step size of the finite element theta method., in order to
preserve the non-negativity at the first time level. When we were interested in
the non-negativity preservation property not only at the first time level but on
the whole discretized time domain, then, by applying arbitrary initial condition,
we shown the existence the bounds from both directions, i.e., there are upper
and lower bounds for the time-step, as well.

Finally, we note that all results can be extended to the higher dimensional
parabolic heat equation. In this case in (1.8) the mass (M) and stiffnes (K)
matrices are block tridiagonal matrices, in the equations (2.2(1))-(2.2(n)) the
corresponding coefficients are matrices and the unkown are vectros in each row.
Therefore the conditions (2.14) and (2.16) can computed analogically. Detailed
analysis of this problem will be down in the future.
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