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ON THE DISCRIMINANT OF A HYPERELLIPTIC CURVE

P. LOCKHART

Abstract. The minimal discriminant of a hyperelliptic curve is defined and
used to generalize much of the arithmetic theory of elliptic curves. Over number
fields this leads to a higher genus version of Szpiro's Conjecture. Analytically,
the discriminant is shown to be related to Siegel modular forms of higher degree.

Let K be a field and C a hyperelliptic curve of genus g defined over K
(thus g > 0 and there exists a map C —> P1 of degree two). When g — 1,
so that C is an elliptic curve, there is an extensive theory, both analytic and
algebraic, of the minimal discriminant ideal £>c/k (see [13])» In this paper
we study the minimal discriminant for hyperelliptic curves of arbitrary genus
g > 1. Thus we obtain a natural generalization of those parts of the theory of
elliptic curves which do not involve the group structure.

To be precise, we will actually consider pointed hyperelliptic curves, which
we define in the following way. Let C and K be as above. For a divisor D, let
L(D) denote the vector space of global sections of the line bundle associated
to D (i.e. L(D) consists of those rational functions f on C which satisfy
(/) + D > 0). Let P £ C. F is a Weierstrasspoint if dimL(2F) > 1 (i.e. if
there exists a function whose only pole is a double one at P). When g = 1,
every point is a Weierstrass point. However, when g > 1 there are at most
2g + 2 Weierstrass points of C, and exactly this many when char(íT) ^ 2 (see
[1]). If P is a AT-rational Weierstrass point of C, we will say that the pair
(C, P) is hyperelliptic over K (or simply hyperelliptic, if K is understood).
Thus when g = 1, (C, P) being hyperelliptic means that C is an elliptic curve
with origin P.

The structure of the paper is as follows: In §1 we define the notion of a
hyperelliptic Weierstrass equation and the discriminant of such an equation.
The main result (Theorem 1.7) is that there is a natural discriminant attached
to a hyperelliptic Weierstrass equation which detects singularities in all charac-
teristics. Section 2 deals with hyperelliptic curves over local and global fields,
including minimal discriminants, reduction, and ¿'-minimal equations. In §3
we consider hyperelliptic curves over C and show that the discriminant can be
expressed in terms of Siegel modular forms. This is then used to give analytic
upper bounds on Qc/k ■ Finally, in §4 we examine a hyperelliptic generaliza-
tion of a conjecture of Szpiro concerning the arithmetic of the global minimal
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730 P. LOCKHART

discriminant ideal. We show that for two infinite families of curves C this
conjecture follows from the so-called ABC Conjecture (see [11, 16]).

1. Weierstrass equations and the discriminant

The main purpose of this section is to define the discriminant of a hyper-
elliptic Weierstrass equation over an arbitrary field K. Let g be a positive
integer.

Definition 1.1. A Weierstrass equation E/K of genus g is an equation of the
form
(1.1) E:y2 + q(x)y = p(x)

where p and q are polynomials with coefficients in K, deg(<?) < g, and p is
monic of degree 2 g + 1.
Proposition 1.2. Let (C, P) be hyperelliptic over K with genus g. Then there
exist nonconstant functions x, y e K(C) with x e L(2P), y e L((2g + l)P),
which satisfy a Weierstrass equation of genus g over K. Moreover, such an
equation is unique up to a change of coordinates of the form
(1.2) x = u2x + r,    y = u2g+ly + t(x)

where u £ K*, r e K and t is a polynomial over K of degree < g.
Proof. Since F is a ^-rational Weierstrass point, there exists a nonconstant
function x £ K(C) with a double pole at F. By the theorem of Riemann-Roch,
we have

dim L(2gP) = g + 1,    dim L((2g + 1 )P) = g + 2.
The functions I, x, x2, ... , xg form a basis for L(2gP). Let y e K(C)
be an element of L((2g + l)P) which does not lie in the subspace L(2gP).
Consider the 2>g + 4 functions

(1.3) l,x, ... ,x2g+l,y,xy, ... ,xgy,y2.

Each of these functions is an element of the vector space L((4g + 2)P), which
has dimension 3 g + 3 . Hence there must be a AMinear dependence relation
among them. Moreover, the functions (1.3) each have poles at F of different
orders, except for x2g+l and y2 which both have a pole at P of exact order
4g + 2. Thus the coefficients of x2g+l and y2 must both be nonzero. Mul-
tiplying the relation by a suitable constant and rescaling x and y, we may
assume that x2g+x and y2 both occur with coeficient 1. Thus x and y satisfy
a Weierstrass equation of genus g over K .

Now suppose x and y are another such pair of functions. Since C is
hyperelliptic, dim L(2P) = 2. Hence we must have x = ax + r for some
a £ K*, r £ K. Similarly, y = by + t(x) where b e K* and deg(i) < g.
Since this yields an equation with monic coefficients for x2g+l and y2, we
have b2 = a2g+l . Let u = ba~g . Then u £ K*, a = u2 and b = u2g+l. This
completes the proof.

Remark. When char(iT) / 2, one may complete the square on the left side of
(1.1), giving rise to a Weierstrass equation for (C, P) of the form y2 = f(x).
Equations of this form are unique up to changes of coordinates (1.2), with
t = 0.
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ON THE DISCRIMINANT OF A HYPERELLIPTIC CURVE 731

Let F and F be Weierstrass equations which are related by the change of
coordinates (1.2). Write

E:y2 + q(x)y = p(x),    Ê:y2 + q(x)y = p(x).
The relations between the coefficients of E and Ê are then given by

u2g+xq(x) = q(u2x + r) + 2t(x),

u4g+2p(x) = p(u2x + r) - t(x)q(u2x + r) - t(x)2.
Given a Weierstrass equation F, we consider the embedding of the affine

curve F in Fg+2 via (x, y) >-*• [1, x, x2, ... , xg+l, y]. Let fflE denote the
closure of the image of F under this map.  It is easily shown that 9JlE has
a unique point at infinity which is always nonsingular and whose complement
is isomorphic to F.  In the elliptic case, 9JlE may be defined simply as the
closure of E in P2 . If E is nonsingular, then WlE is a hyperelliptic curve of
genus g with Weierstrass equation E. Conversely, if (C, F) is hyperelliptic
with Weierstrass equation E, then the above map induces an isomorphism of
C onto %RE, which is therefore a nonsingular subvariety of Vg+2.  Thus a
Weierstrass equation F arises from some (C, P) if and only if F has no
singular points, and in this case the set of such E form an equivalence class of
Weierstrass equations related by the transformations (1.2).

We now consider the problem of determining when a given Weierstrass equa-
tion F is singular. Since we want to work with fields of arbitrary characteristic,
it is perhaps best to consider a generic Weierstrass equation and its specializa-
tions.
Definition 1.3. Let <K = Z[F0, F-, ... , P2g, Q0, Qx, ... , Qg] be the polyno-
mial ring over Z in 3g + 2 variables. Let

P{X) = x2g+l + J2 Pkxk,    Q(x) = £ Qkxk.
k=0 k=0

Given a field K and a Weierstrass equation E, we obtain a homomorphism
nE : ÍH -» K by sending the indeterminates Pk and Qk to the corresponding
coefficients of E. For r e ÜK we write rE = nEir). Thus PE(x) = p(x),
Qe(x) = q(x).

Let F and G be any two polynomials, and let Res(F, G) denote their
resultant. The following facts follow easily from the definitions (see [6, Chapter
V, §10]):

(Rl)   Res(F, G) is a polynomial over Z in the coefficients of F and G.
(R2)   Res(F, G) = 0 if and only if F and G have a common root.
(R3)   Res(F, GH) = Res(F, G) Res(F, H).
(R4) If deg(GH) < deg(F) then Res(F + GH, G) = Res(F, G).
(R5) If c is a constant, Res(cF, G) = cde^G^> Res(F, G).
(R6) If F is monic, then Res(F, F') = Disc(F), the discriminant of F .
(R7) If F, G £ SR[x] and the leading coefficients of FE and GE are not

both zero, then Res(F, G)E = 0 if and only if Res(F£:, GE) = 0.
Lemma 1.4. Write

F(x) = 4P(x) + Q(x)2,
G(x) = P'(x)2 - P(x)Q'(x)2 + F'(x)Ö'(x)ß(x).
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Then a Weierstrass equation E/K is singular if and only if Res(F, G)E = 0.
Proof. Since F(x) is monic of degree 2g + 1 and deg(ß) < g, the leading
coefficient of F(x) is 4. Similarly, the leading coefficient of C7(x) is (2g+l)2.
These cannot both be zero in K. Thus using (R2) and (R7), we need only show
that F is singular if and only if FE and GE have a common root.

Suppose chax(K) ^ 2. The transformation y i-» y - \q(x) is of the form
(1.2) and yields the equation y2 = \FE(x). Thus F has a singular point if and
only if FE has a multiple root, i.e. FE and F¿ have a root in common. But
G — (F'/4)2 - (Q'/2)2F , so FE and FE have a common root precisely when
FE and G¿ do.

If char(K) — 2, then the singularity of E is equivalent to the existence of
a, ß £K with

ß2 + q(a)ß=p(a),     q(a) = 0,     q'(a)ß=p'(a)

which is the same as q(a) = 0 and q'(a)2p(a) - p'(a)2 = 0. Thus E is
singular if and only if q and p'2 - pq'2 have a common root. But FE = q2
and GE — p'2 - pq'2 + p'q'q , so this condition is again equivalent to FE and
GE having a root in common.

Lemma 1.5. Let F and G be as above. Then

Res(F,G) = 2*gDisc(\F)2.
Proof. Since deg((ß'/2)2F) = 4g - 1 < 4g = deg((F'/4)2), properties (R3)
through (R6) give us

Res(F, G) = Res(F, (F'/4)2 - (Q'/2)2F)
= Res(F, (F'/4)2) = Res(F, F'/4)2
= (4de^')Res(F/4, F'/4))2 = 28*Disc(±F)2.

Definition 1.6. The hyperelliptic discriminant for genus g is the polynomial

A = 24*Disc(P(x) + ¿0(x)2).

Theorem 1.7. A is an irreducible polynomial in 3g+2 variables with coefficients
in Z with the property that for all K and all Weierstrass equations E/K,

E is singular if and only ifAE = 0.
Proof. From (Rl) and Lemma 1.5, we see that A2 is an element of ÍH. Hence
by Gauss' Lemma, A e ÍH. Lemmas 1.4 and 1.5 imply that F is singular
precisely when A^ = 0. Since the discriminant of a polynomial with inde-
terminate coefficients is irreducible over the constant field, A is irreducible in
ÍH <g> Q. Moreover, A cannot be divisible by a prime p , since there exist non-
singular Weierstrass equations over the field of p elements. Therefore A is
irreducible.
Remark. A similar argument may be used to show that (up to sign) A is in fact
the unique polynomial with these properties.

When char(ZT) ̂  2, the change of coordinates y ^ y - \q(x) transforms
the Weierstrass equation (1.1) into E :y2 = f(x) where f(x) = p(x) + \q(x)2 .
Clearly E is singular if and only if Disc(/) = 0. Thus Disc(/>(x) + \q(x)2)
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acts as a discriminant for genus g except over fields of characteristic two. To
get A, we must multiply Disc(/?(x) + ^(x)2) by the correct power of 2, so that
it detects singularities over fields of characteristic 2 as well.

Definition 1.8. If F is a Weierstrass equation, AE will be called the discrimi-
nant of E.

Thus if (C, P) is hyperelliptic over K with Weierstrass equation E, we
have AE £ K*. In the case g = 1, the above computations reduce to the
standard formulas for the discriminant of an elliptic Weierstrass equation. In
this case, one can actually write down the polynomial A explicitly [13, Chapter
III].
Example 1.9. For the elliptic Weierstrass equation F : y2 = x3 + Ax + B, we
have the usual AE = -16(4A3 + 2752).

An important property of the discriminant of an elliptic Weierstrass equa-
tion is its homogeneity under changes of coordinates. We now show that the
hyperelliptic discriminant also has this property.

Proposition 1.10. Let E^Ê be a change of coordinates of the form (1.2). Then

AE = u4g(2g+x)AE.

Proof. Regarding ( 1.2) as a purely formal substitution, we apply it to the generic
Weierstrass equation given by F and Q.   From (1.4) we get u4g+2F(x) -
F(u2x + r). If we write F(x) = 4 fT (x - a¡) and F(x) = 4 F] (x - /?,-), we get
ßi = (a i - r)/u2 . Thus

Disc(F/4) = J] (ßi - ßj)2 = J] (ai~2aj\   = u~4g{2g+x)Disc(F/4).

Multiplying by 24g and applying nE gives the result.

Remark. The preceding results could, in principle, be extended to arbitrary
plane curves. In this case, elimination theory (used in place of Lemma 1.4)
gives rise to an ideal of polynomials in the coefficients of the defining equation,
rather than a single polynomial A. The computation of such "discriminants"
can be quite involved.

Let (C, P) be hyperelliptic over K with Weierstrass equation E. We now
choose a basis for the space of holomorphic one-forms H°(C, Qxc/K) which is
in some sense homogeneous under changes of coordinates E i-> F. This basis
is needed for the arguments of §3.

Definition 1.11. With (C, P) and E as above, Let

,, ,. x'~ldx
(1.5) œ' = 2y+-qjx-)'        l*'*'-

We write (co) = '(cox, ... , cog).

Proposition 1.12. The coi form a basis for H°(C, ß-/JC), and under a change
of coordinates of the form (1.2) we have (co) = A(ca), where A e GL^(Ä^) with
detA = u~g .
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734 P. LOCKHART

Proof. Differentiating y2 + q(x)y = p(x) yields
dx dy

cox

¿j-tg-X^-jfo

2y + q(x)     p'(x)-q'(x)y'
Since C is nonsingular, cox can have no affine poles. Away from the zeroes of
2y + q(x), x is a uniformizer, so cox is nonzero. When 2y + q(x) = 0, we
have p'(x) - q'(x)y ^ 0 and y is a uniformizer. Thus cox has no affine roots.
Since the canonical class of C has degree 2g - 2, we must have div(<yi) =
(2g-2)P.

Now div(x) > -2F, so div(<y,) > (2g - 2i)P > 0. Therefore the eu, are
holomorphic. There are g = dim H°(C, &XC/K) of them, hence they must form
a basis, as they are clearly linearly independent.

Let E >-* Ê be a change of coordinates given by (1.2). Then

(w2x + r)'~lu2dx
r,\. —_;_í_

'     2u2s+iy + 2t(x) + q(u2x + ry

Using equations (1.4), we get

ul~2g(u2x + ry-ldx     p/i-l\,
2y + <?(x) ¿tV;-l/

Thus (co) = A(co), where A is a lower triangular matrix with diagonal elements
u2i-2g-\ )   i  < j < g    Thus  detA _ un   with  „ _ Y^f=l (2/ -2g-l) = -g2 .
Remark. When char(A^) ^ 2, we may choose E so that q = 0. In this case
one has the customary co¡ = \x'~xdx/y.

2. The minimal discriminant
In this section we study the minimal discriminant of a hyperelliptic curve over

a local or global field. The results are for the most part natural generalizations
of those concerning elliptic curves (see for example [13]).

Let AT be a local field with discrete valuation v , and let K be its separable
closure. Let R be the valuation ring of v , p the maximal ideal of R, and k
the residue field R/p . We assume k is perfect with algebraic closure k . Let R
denote the integral closure of R in K. We write x for the image of x under
the canonical reduction map R —> k .

Let iC, P) be hyperelliptic over K, with Weierstrass equation E. Using a
suitable change of coordinates to clear denominators, we may assume that all
the coefficients of E are in R. Such an equation will be called integral. Note
that if E is an integral Weierstrass equation, AE e R. Hence f(A£) takes on a
discrete set of nonnegative integral values as E runs through the set of integral
Weierstrass equations for iC, P).

Definition 2.1. A Weierstrass equation E for (C, P) is said to be minimal if
E is integral and ^(Af) is minimal among all integral Weierstrass equations for
(C, P). The ideal pv^) wjh be called the minimal discriminant of (C, P).

Let E be any integral Weierstrass equation for (C, P) and suppose the
change of coordinates E >-> Ê given by

(2.1) x = u2x + r,    y = u2g+ly + tix)
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yields a minimal Weierstrass equation F . By Proposition 1.10 we have v(AE) =
kv(u) + v(AE), where À - 4g(2g + 1). Thus v(u) > 0, so u e R (and in
particular, u £ R* if and only if F was already minimal).
Remark. It can also be shown that in the above situation we have r e R and
t(x) £ R[x]. We leave the details to the reader.

Now, let (C, P) be hyperelliptic over K with minimal Weierstrass equation
E. Let Ë denote the equation obtained by reducing the coefficients of E mod-
ulo p . This defines a plane curve C, called the reduction of C. More precisely,
C is the variety defined by reduction of the coefficients of the Weierstrass model
9JlE of §1. Since the coefficients of F are integral, 9JÎ£ may be viewed as a
scheme over Spec(F). Then C is just the special fibre of this scheme. The
unique point at infinity of C is nonsingular, and thus by the properties of the
discriminant, C is singular if and only if v(AE) > 0.

Now suppose F is a singular Weierstrass equation over k (e.g. the reduction
of a hyperelliptic curve over K ) with singular point Q. If char(fc) ^ 2, we
can change coordinates to get a Weierstrass equation of the form y2 = f(x).
Thus Q = (a, 0), with a a multiple root of /.
Definition 2.2. The order dcy of the point Q is the multiplicity of the root a
of /. If Q is a regular point, we set dg = 1 •

A point of order 2 is called a node, and a point of order 3 a cusp. In the
elliptic case, these are the only types of singularities that can occur (we always
have dQ < 2g + I) and the singular point is always unique. When g > 1,
however, more complicated things can happen. For example, when g = 2
there are seven possibilities, e.g. a node and a cusp, two nodes, a single point
of order 4, etc. The order of a singular point can also be defined when the
characteristic is equal to two (see [7]).

We close our discussion of the local field case with the following useful result.
Lemma 2.3. Assume char(üf) ^ 2. Let (C, P) be hyperelliptic over K of genus
g with integral Weierstrass equation E : y2 - f(x). Write

2g+l

f(x) = n (* - q<) ' aie r-
i=i

Suppose that Ë does not have a singularity of degree 2g + 1 (i.e. the à, are
not all equal in k). Then any change of coordinates which yields a minimal
Weierstrass equation must satisfy v(u) < v(2). In particular, if char(A:) ^ 2
then E is already minimal.
Proof. Let L be the splitting field of f(x) over K, and w the valuation
on L which extends v. Suppose the change of coordinates x >-► m2x + r ;
y i-+ u2g+1y + t(x) (with u £ K*, r e K, and t £ K[x] ) yields a minimal
Weierstrass equation. This equation has the form

7      ,  ,       f(u2x + r)     1   .  ,,
v2 + q(x)y = J\4g+2   ' - 4<7W2

where q(x) - 2t(x)/u2g+l. Being minimal, this equation must be integral.
Hence 4f(u2x + r)/u4g+1 has coefficients in R, and therefore so does

42g+lf(u2x/4 + r)
u4g+2
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736 P. LOCKHART

This polynomial is monic with integral roots 4u~2(a¡-r) £ L. If v(u) > v(2),
then w(a¡ - r) > 0. But this means that r is integral and à, = r for all i,
contradicting the assumption that the à are not all equal. Therefore v(u) <
v(2).

Now suppose K is a number field with ring of integers R. Let A/£ denote
the set of finite places of K. For each v £ M^ , let Kv denote the completion
of K at v , Rv the valuation ring in Kv , and pv the maximal ideal of Rv ,
viewed also as a prime ideal of R. Let (C, P) be hyperelliptic of genus g
over K, and set X = 4g(2g + 1).

Definition 2.4. Let E be a Weierstrass equation for (C, P) over K. If v e M%
we say F is integral (resp. minimal) at v if F is integral (resp. minimal) when
viewed as a Weierstrass equation over Kv . A Weierstrass equation over K is
integral (resp. minimal) if it is integral (resp. minimal) at v for all v e M% .

Thus a Weierstrass equation over K is integral precisely when all of its coef-
ficients lie in R. It is easy to see that (C, P) always has an integral Weierstrass
equation, but it may not be possible to find a minimal one.

Definition 2.5. For each v e M%, let A^ be the discriminant of a mini-
mal Weierstrass equation for (C, F) over Kv . The minimal discriminant of
(C, P) over K is the ideal

vc/k = n tf(Ao)-

In other words, the (global) minimal discriminant is the product of all the local
minimal discriminants.

Remark. In the elliptic case, the minimal discriminant Dc/k is independent of
the choice of origin P. This is due to the fact that any two such points F and
P' are related by a ^-rational isomorphism (e.g. a translation). When g > 1,
this is not necessarily the case, so that for a given hyperelliptic curve C there
may be several minimal discriminants 5)c/k • depending on the choice of P.
On the other hand, there can be at most 2g + 2 such choices, so that we may
consider P fixed without loss of generality.

Now, let F be an integral Weierstrass equation for (C, P) over K, and for
each v let

(2.2) x h-» u\x + rv ,    yi->ulg+ly + tv(x)

be a change of coordinates which yields a minimal equation over Kv , where
uv £ K*, rv £ Kv , and tv £ Kv[x]. Thus by Proposition 1.10, v(AE) =
Xv(uv) + v(Av). Let aE denote the integral ideal UP«     ■ Then

(2.3) (AE) = aEVC/K.

Note that aE depends only on F and not on the choices (2.2) since for all v ,
v(aE) = (v(AE)-v(®C/K))/X.

Lemma 2.6. Let E >-> Ê be a change of coordinates of the form (2.1). Then
aE = (u)aE.
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Proof. For each v £ M\ we have

v(aE) = (v(AE)-v(®c/K))/X
= (Xv(u) + v(AE) - v(®C/k)/X
= v(u) + v(aE).

and the result follows easily.

Thus the aE all represent the same element of the ideal class group €k of
K.
Definition 2.7. The Weierstrass class mC/K of (C, P) is the ideal class in <tK
of any aE.

Proposition 2.8. Let o e voC/k be an integral ideal of K. Then there exists an
integral Weierstrass equation E for (C, P) such that (AE) = aXlZ>c/K ■
Proof. Let E be any integral Weierstrass equation for (C, P). From (2.3) we
have (AE) = aET)c/K ■ Now o and aE are both in the class voC/k • so there
exists an u e K* with aE = (u)a. Thus

(2.4) (u~xAE) = a^c/K-

For each v e M%, let uv £ K*, rv e Kv, and tv(x) e A^,[x] be chosen so
that the change of coordinates (2.2) yields a minimal equation at v. Thus
v(AE) = Xv(uv) + v(Av). Combining this with (2.4) we find that v(u/uv) —
v(u) - v(uv) = -v(a) < 0, since a is an integral ideal. Hence the further
change of coordinates x >-> (u/uv)2x, y i-> (u/uv)2g+xy yields an equation E'v
which is integral at v . The coordinate change relating F and E'v is given by

(2.5) x i-> u2x + rv ,    y i-> u2g+ly + tv(x).

Let A'v denote the discriminant of E'v. Equations (2.4) and (2.5) then give
v(A'v) = -Xv(u) + v(AE) = v(ax®c/K) •

Let S be the set of places where u is not a local unit. By the approximation
theorem (see [12, Chapter 1]) we can choose r e K, t(x) £ K[x] so that
for each v e S, r is close to rv and the coefficients of t(x) are close to
the corresponding coefficients of tv(x); and for each v $ S, r e Rv and
t(x) £ Rv[x]. Let F' be the Weierstrass equation obtained from F via the
change of coordinates

(2.6) x H-+ u2x + r,    y i-> u2g+xy + t(x).

For each v £ M% , E' is integral at v and v(AE<) = v(A'v) = v(oí1)c/k) ■ For
v £ S this follows by continuity, and for v £ S it is obvious. Thus E' is the
desired equation.

Remark. When K has class number 1 (e.g. K — Q ), Proposition 2.8 shows that
(C, P) always has a minimal Weierstrass equation. If F is such an equation,
then AE £ R is called the global minimal discriminant of (C, P). The global
minimal discriminant is unique up to multiplication by the Ath power of a unit.
In particular, when K = Q it is unique.

In general, (C, P) may not possess a minimal Weierstrass equation, but we
can consider the next best thing.
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Definition 2.9. Let S be a finite set of places of K which contains the infinite
places. Let (C, P) be hyperelliptic over K with Weierstrass equation F. F
is called S-minimal if F is minimal at v for all v £ S.
Corollary 2.10. Given a number field K, there exists a fixed set of places So such
that for all (C, P) hyperelliptic over K, there is an So-minimal Weierstrass
equation for (C, P).
Proof. For each class in the ideal class group <LK , choose a fixed integral ideal.
Let So consist of all primes which divide any of these ideals. Given g and
(C, P), let o be the ideal which was chosen for the class Wc/k ■ By Proposition
2.8 there is a Weierstrass equation F with (AE) = ax1)c/K ■ which is clearly
minimal at v for all v $ So ■

The next result says that not only can we choose our equations to be S-
minimal, but by altering them only slightly (i.e. scaling) we can even control
somewhat the behavior at the places in S. We will need this sharper statement
in §4.
Corollary 2.11. Let So be as in Corollary 2.10, let S be a finite set of places
containing So, and let E bean S-minimal Weierstrass equation for (C, P).
Then there exists a change of coordinates
(2.7) x^->u2x,    y>->u2g+xy
with u an S-unit (i.e. v(u) = 0 for all v $. S) yielding a new S-minimal
equation E' suchthat v(AE')-v(iDC/k) is bounded by a constant which depends
only on the field K. In other words,
(2.8) v(AE,)-v(Vc/K)<l.
Proof. From Corollary 2.10 we know that (C, P) has an So-minimal equation
F with (AE) = aXlSC/K • where a depends only on K. Thus v(Ae)-v(^C/k) <
I for all v £ M% . Now E and Ê are related by a change of coordinates (2.1).
Since F and F are both S-minimal, u must be an S-unit and the coefficients
of r and i(x) must be ¿»-integral (i.e. they have nonnegative valuation outside
S ). The change of coordinates Ê .-> E' given by
,-, ™ -2 t(x - u~2r)
(2.9) x = x-u 2r,    y = y-     u2g+l

does not affect the discriminant (it is a translation), and preserves the S-
integrality of the coefficients. Hence the resulting equation F' is S-minimal
and satisfies (2.8). The composition of (2.9) with (2.1) is precisely (2.7).

3. The discriminant as a modular form
Let C be an elliptic curve over C. A Weierstrass equation F then gives

rise to a lattice A^CC and a uniformization C = C/A^ . If we write A# =
CT'Z + o~2Z with xE = o2/ax in the complex upper half-plane f), then
(3.1) Ae = (2ti)X2gx-x2A(xe)
where A(t) is the usual Jacobi delta function (see [13, Chapter VI]). Now
let V(AE) denote the covolume of AE (i.e. the volume of C/A£ ). Then
V(AE) = \ax\2lm(xE),and (3.1) gives
(3.2) |A£| • V(AEf = (2n)n lm(x Ef\A(x E)\.
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Since A(t) is a modular form of weight 12, the function Im(T)6|A(i)| is invari-
ant under the modular group SL2(Z), and the quantity in (3.2) depends only on
the curve (C, P). Thus the discriminant (corrected by the volume of the torus
C/Af ) is given by the value of a certain fixed continuous function (arising from
a modular form) at the point on the moduli space Sj/ SL2(Z) corresponding to
(C,P).

In [3], Goldfeld shows that for a certain class of Weierstrass equations, upper
bounds for A^ can be obtained from lower bounds on the fundamental periods.
Similarly, one can consider bounds on the discriminant in terms of the covolume
of the period lattice. Since A(t) is a cusp form, the right-hand side of (2.7) is
absolutely bounded on ft, and we get AE -c V(AE)~6.

In this section we generalize these results to hyperelliptic curves (C, P) of
genus g > 1 defined over C. The Siegel modular form corresponding to A(t)
in (3.1) is constructed using products of special values of theta functions. This
can be viewed as a generalization of the Jacobi Product Formula

A£ = l6nx2ax-x26oo(0, xEfeXo(0, xEfdoX(0, xEf
where the 9¡j are the classical one-dimensional theta functions.

We first recall some basic facts about Siegel modular forms (see, for example
[5]). Let $)g = {x £ Mg(C) | 'x = x, lm(x) positive definite} be the Siegel up-
per half-space of degree g. For z e Cg (viewed as a column vector), x e Sjg ,
and m = [b] with a, b e ¿Zg , we have the theta function with characteristic
m given by

6m(z, x) = ^2 exp{/jr'(« + a)x(n + a) + 2ni'(n + a)(z + b)} .
«ez*

Let Tat denote the congruence subgroup of level N for the symplectic mod-
ular group of degree g. Thus

rN = {ye Sp2?(Z) \y = I2g (mod N)}.

The group Fx = Sp2^(Z) acts on Sjg and on \l?g in the following way. Let
a = ( AcBD) £ T, , x £ Sjg , and we ^Z2* . Then

ax = iAx + B)iCx + D)~l,

(3'3) om-(D     -C)m + l(di^C'DAom-\-B     A )m + 2 ydiagiA'B))-

where diag(Ai) denotes the column vector composed of the diagonal entries of
M.

Let (pmix) denote the function 0ot(O,t)8. The transformation law for the
theta function (see [5, Chapter V]) gives

(3.4) <Pam(ox) = det(Ct + D)4<pm(x),       a e Sp2i(Z).

We note that if m = m' modulo 1, then tpm = <pm*. Equations (3.3) and (3.4)
show that (pm is a modular form of weight four for T2.

Given a Riemann surface C of genus g, let {A¡, B¡ \ 1 < i < g} be a
symplectic basis for HX(C, Z), i.e. a basis such that for I < i, j < g,

A¡ -Aj = 0,     Bi -Bj = 0,     A¡ • Bj = S¡j
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where • is the (oriented) intersection product on C. Let {co¡ | 1 < i < g) be
a basis for H°(C ,Ql). The period matrices a , a' are defined by

Oij = COi, o'ij = COj.
JAj JBj

We have deter ^ 0 and x = o~xo' £ Sjg . We let A denote the lattice oZg +
o"Lg.

Now, let (C, P) be hyperelliptic over C. Let F be a Weierstrass equation
for C of the form y2 = f(x). C can thus be viewed as a branched covering
of P1. Let B be the set of branch points. Write f(x) = ]J2gxx (x - a¡).
Then B = {ax, a2, ... , a2g+x, oo} . Attached to any ordering of B there is a
canonical choice of symplectic basis for HX(C, Z) (see [10, Chapter Ilia, §5]).
Using this, and the basis for H°(C, Q1) given by (1.5), we get aE , a'E, xE,
and AE as above. Note that AE depends only on F and not on the ordering
of B.

For any subset S of {1, 2, ... , 2g + 1} , the theta characteristic ns e \'¿
is defined as follows. Let

"2Í-1

■72/

'(0   •••    0   i   0   •••    0)
'(i  ...   \ o o •••  o;
'(o •••  o \ o •••  o;2

2      2'(i   •••    11   o   ...   0)

1 < I < g+1,

1<1'<¿?,

where the nonzero entry in the top row occurs in the ith position. Then we put
t]s = Y,kes nk where the sum is taken modulo 1 (see [10, Chapter Ilia]).

Definition 3.1. Let T be the collection of subsets of {1, 2, ... , 2g +1} of car-
dinality g+l. Write U = {1, 3,... ,2g+l} and let o denote the symmetric
difference operator. We then define

(P(X)=  Yl <Pr,ToU(t).
rex

Thus <p is a Siegel modular form for T2 which depends only on g. When
g = 1, we have cp(x) = 28A(t) .

Proposition 3.2. Let (C, P) be hyperelliptic of genus g over C with Weierstrass
equation E : y2 = f(x). Fix an ordering of the set of branch points B =
{ax, ... , a2g+x, oo} and let aE, xE be as above. Let r = (2g+¡), « = (^.).
Then
(3.5) AnE = 24gn7t4gr(detoE)-4r<p(xE).

Proof. We need the following result due to Thomae (see [10, Chapter Ilia, §8]).

Theorem. Let S C{1,2, ... ,2g + 1} with \So U\ = g + 1. Then

(3.6) ^(T£) = (deta£)47r-4s     JJ    (a¡ - aj)2     JJ     (a,- - af)2.
i<j i<j

ijesoir i,j</s°u

If T £ 1 then ToU is a set S of the form required in the theorem, and the
correspondence T <-► S is clearly bijective. Taking the product over all T e T,
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we get (note r = |X| )
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/

(3.7)        <p(xE) = (detoE)4rn-4grl[[
rex

¡J (ai-aj)2   J]   (ai-aj)2
\   1<JV'.yer KJ

iJiT

The number of times the term (a, - a,-)2 appears in the right-hand side of (3.7)
is

\{T | i, j eT or i,j i T}\ = \{T \i,j£ T}\ + \{T \i,fi T}\
2g
g-

+ 2g-l
g+l

2g \.    = «.
g + ij

Thus (3.7) becomes

(xE) = (detcTE)4rn-4grYl(ai-aj)2n.
KJ

The discriminant of E is given by

AE = 24g Disc(/) = 24g Yl (ai - af)1,

and substituting this into the previous equation yields (3.5).

Remark. Proposition 3.2 shows that a certain power of the discriminant can be
obtained from a modular form. It would be interesting to know if this exponent
could be removed or at least reduced. By using 6^ in place of y>m , one may
take the fourth root of both sides of (3.5). This is carried out in the genus
2 case in [4]. To reduce the exponent further seems to require more subtle
combinatorial arguments.

Proposition 3.3. Let V(AE) denote the covolume of AE in £g . The positive
quantity \AE\ • V(AE)4+2lg is an invariant of (C, P), i.e. it does not depend on
E. Furthermore, the relation (3.2) has the hyperelliptic generalization

(3.8) \AE\ • V(AE)4+2'g = 24*7t8*+4(|Ç>(t£)| • det(Im(T£))2r)'/\

Proof. By Proposition 1.12, a change of coordinates F >-> F results in a change
of basis for H°(C, Q1) given by (co) = A(cb) with det(A) = u~g2. Therefore
AE — AAE . Hence

V(AE) = |det(^)|2F(AÊ) = \u\'2g2ViAE).

From Proposition 1.10 we have AE = uSg2+4gAE, thus |A£| • ViAE)4+2/g =
\AE\-ViAE)4+2/g.

Viewing AE as a lattice in R2* , we get

F(A£)=detfTRe^¡   f^fív   "' \lm(aE)   Im(<7£)

= |deter£|2det(Im(T£)).

Equation (3.8) then follows directly from (3.5)

= 2' det
Se
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We now show that the continuous function \<p(x)\ det(Im x)2r is bounded on
Sjg . We need the following facts about the Siegel-reduced domain $g (see [5,
Chapter V]).

(51) $g is a closed subset of S)g and îjg = \Jaer o$g .
(52) 6m(0, x) is bounded on $g for all m e ^Z2* .
(53) Suppose m = [ab] e \Z2g with ag  £ Z.   Then for any e > 0, the

function 9m(0, x) det(lm(x))e is bounded on $g.

Lemma 3.4. Let SErt = {r]Tou | F e X}, er e Tx. Then am = {anToU \ T £ X}
contains at least one characteristic [ ab ] with ag $. Z.
Proof. Taking F to be of the form U o{2i-l ,2i] for 1 < / < g, we see that
971 contains all characteristics of the form

»(o    ••   i   ...   o)        ^ inthe /thPlace)-

Taking F to be of the form U o {2i,2i+I, ... , 2g + 1} for 1 < i < g, we
see that 9Jt contains

'(0   •••    \   •••    0)'(0   •••    0   •••    0) ( \ in the i\h place).

Finally, letting F = U, we see that 0 e 9TÎ. Write a = (^B) and let

J_l_(diag(CtD)\
2 Vdiag^^)^

From (3.3) we get

(api)g = Jg- \Cgi,     (oq¡)g = Jg + \Dgi,     (a0)g = Jg.
We claim that these cannot all be integers. Otherwise, we would have

Cgi = Dgi = 0   (mod 2),        1 < i < g,
and the bottom row of er would be even.   But this contradicts the fact that
det cr = ± 1.

Proposition 3.5.  |^(T)|det(Im(T))2r is bounded on Sjg.
Proof. We have

(p(x)= Yl (pm(x),
meOT

so that for any a e T- ,

|fî)((TT)|det(Im(fTT))2''=    ]   [   |r?m(iTT)|det(Im((TT))2
mçm

=  Il l^-.w(T)|det(Im(T))2
meWÎ

=     n    |^(T)|det(Im(i))2

using (3.4) and the fact that det(Im(cn:)) = det(Im(t))| det(Cr + D)\~2. From
(S2), (S3), and Lemma 3.4, we see that |ç)(T)|det(ImT)2r is bounded on o$g
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for each er e T» . By (SI), the o$g cover Sjg , but since (p is a modular form
of level two, we need only consider the finitely many er e r2\r» = Sp2g(Z/2Z).
Thus |ç7(T)|det(Im(T))2r is bounded on the entire upper half-space fjg .

Combining Propositions 3.3 and 3.5 we obtain

Corollary 3.6. Let (C, P) be hyperelliptic over C with Weierstrass equation E.
Then

\AE\ « V(AE)-4~2lg

where the implied constant depends only on g.

4. Arithmetic conjectures
Let K be a number field, and let (C, F) be hyperelliptic of genus g over

K. In this section we examine two conjectures concerning the arithmetic of the
minimal discriminant ideal T>c/k • As usual, let M\ and Af|? denote the set
of finite and infinite places of K, respectively. Recall that for each v e M%
we have a hyperelliptic curve Cv obtained by extension of base-field to the
completion Kv . The reduction Cv of Cv is thus a (possibly singular) curve
over the residue field Iq, of v.

Let S be a finite set of places containing Mf . Let qv denote the cardinality
of the residue field K , and N = NK¡q denote the absolute norm from K to
Q. Thus if o is a fractional ideal of K, we have

Na=  '  [ qvvv(a)

u6M°

For elliptic curves, L. Szpiro has made the following conjecture concerning
the arithmetic of the minimal discriminant (see [15]).

Szpiro's Conjecture. Let C be an elliptic curve over K. Then

(4.1) NVc,K«[Utf)
\v$S        )

where
0,      Cv is nonsingular,

nv = <  6,      Cv has a node,
12,    Cv has a cusp,

and the implied constant depends only on K, S, and e.

Remark. Szpiro's Conjecture is usually stated as NT>c/k < N6+e, where N
denotes the absolute norm of the conductor of C/K. For char(A^) > 3 the
valuation of the conductor is 0, 1, or 2, depending on whether the reduction
type is good, nodal, or cuspidal. For char(^) < 3 the valuation is at any rate
bounded (the bound depending on K), hence the conjecture is equivalent to
(4.1) (see [8]).

We now generalize Szpiro's Conjecture to hyperelliptic curves. Let (C, P)
be hyperelliptic of genus g over K.
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Conjecture 4.1. There exist nonnegative exponents nv , v £ S depending only
on the reduction type of Cv , such that

(4.2) NS>c/k « ( u &

where the constant depends only on K, g, S, and e. Moreover, if Cv is
nonsingular we may take nv = 0.

The last condition insures that only finitely many of the nv are nonzero.
More precisely, we have

Conjecture 4.2. The numbers nv are given by

(4.3) nv = ]T n(dQ)
Q€CV

where drj is the order of the point Q (see §2) and n(d) depends only on g, d.
Furthermore, n(l) = 0 (i.e. the sum is taken over the singularities of Cv).

Remark. When g = 1 the above reduces to Szpiro's Conjecture, where we take
n(d) = 6(d-l), l<d<3.
Question. What is the correct form of n(d) ? By analogy with the elliptic case,
we tentatively suggest n(d) = (4g + 2)(d - 1).

Before we examine these conjectures, we require some additional notation.
Let R denote the integers of K. For each v £ M% we let Rv be the valuation
ring of v in Kv , pv the maximal ideal of Rv , and nv a generator of pv . We
have qv = Npv. Let MK = M% U Afjf be the set of places of K. For v e MK
we let | • \v denote the absolute value at v , normalized so that rLeM* \x\v = 1
for all x £ K. In particular, we have |x|„ = q^v^ for x e Kv . If | • | is any
absolute value, we write \xx, ... , x„\ = maxi<;<„ |x,|. Let S be a finite set of
places containing Af|° . Let Rs denote the ring of S-integers of K, and R*s
the group of S-units.

Let xx, ... , xne K. For any set V of places we define

Hv(xx, ... , xn) = j [ |xi, ... , xn\v.
vev

We make the following abbreviations: HK = Hmk , Ho = H^ , and //oo =
Hm°° ■ Thus HK — HoHoo and Hk is just the usual relative multiplicative
height (see [13, Chapter VIII §5]). Let x, e K and let (xx,... , xn) denote the
fractional ideal generated by the x,. Then

(4.4) #(*,,...,*„)=  n qr{v{x^-vM) = Ho(xx,...,xn)-x.
v€M°

Note also that
(4.5)

\Nxx, ... , ]Vx„| = max |x,-|„ < \xx, ... , xn\v = Hoo(xx, ... , x„).
l<i<n-veM™ v€M%?

ITC
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Finally, for x £ Rs we define

Sk(x)=  J] qv
vfS
v\x

where v\x means v(x) > 0.
We are now in a position to state the ABC Conjecture of D. Masser and

J. Oesterlé (see [16]).

ABC Conjecture. Suppose a, b, c £ Rs with a + b + c = 0. Then

HK(a,b,c)<£SK(abc)x+£

where the constant depends only on K, S, and e.

It is known (see [9, 11, 14]) that the ABC Conjecture implies Szpiro's Con-
jecture. Moreover, Frey [2] has shown that Szpiro's Conjecture implies the ABC
conjecture (with the exponent 1 + e replaced by | + e ). Frey's argument was
generalized to the hyperelliptic case in [7].

It is natural to wonder whether the ABC Conjecture implies Conjectures 4.1
and 4.2 for hyperelliptic curves of arbitrary genus. The remainder of this section
is devoted to the proof of the following result in this direction.

Proposition 4.3. Let C be given by an S-minimal Weierstrass equation of the
form y2 = f(x). The ABC Conjecture implies Conjectures 4.1 and 4.2 in the
following cases :

(a) f(x) has only three nonzero coefficients. We have

(0, d=\,
(4.6) n(d)<\ 4g + 2, 2<d<2g,

\2g(4g + 2),    d = 2g+l.
(b) f(x) splits completely into linear factors over K[x]. We have

(4.7) n(d) <-{ d(d - l)(6g - 2d + I),    d<2g,
2g2(4g + 2), d = 2g+l.

Remark. The two cases considered above are rather special. The first allows us
to compute the disciminant easily and to apply the ABC Conjecture directly.
If more than three coefficients are present, the discriminant becomes rather
unwieldy. In the second case, we apply ABC to certain combinations of the roots
of f(x), which are thus required to lie in the ground field. It should perhaps
be noted that the result in part (a) compares favorably with the conjectural
n(d)<(4g + 2)(d-l).

For the proof of Proposition 4.3(a) we will need the following lemma. This
generalizes an argument due to Hindry and Silverman (see [11 and 14]) con-
cerning the equation z - x3 + y2 over the rational integers.

Lemma 4.4. Let a, b £ R. Let m and n be positive integers with m>2 and
« > 3. Suppose x, y, z e R with
(4.8) z = axn + bym.
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Let F = (xn, ym) and suppose there exists a positive integer X such that

(4.9) v(F)<mnX,       v e M%.
Then assuming the ABC Conjecture, we have for any e > 0,

(4.10) \Nx", Nym, Nz\ « Í J^C* II Í¿/(B_1))
\v\F v\yz i

1+e

v\F
l+e

mnX TT    mn/(mn-m-n) \(4.11) \Nxn , Nym , Nz\ « \T\ q™nX ]} Qv
\v\F v\z

v\F

where the constants depend only on K, a, b, and s.
Proof. Let S = Mf . The ABC Conjecture applied to (4.8) yields

HK(axn , bym, z)l'E « SK(abxyz).

Since HK(ax", bym, z) » HK(xn, ym, z) and SK(abxyz) < Sjç(xyz), we
get
(4.12) HK(x\ym,z)x-£^SK(xyz).

Let M = \Nxn, Nym , Nz\. From (4.4) and (4.5) we have
Ho(xn ,ym,z) = N(F)-X,    #«,(*" , ym , z) > M.

Combining these with (4.12) yields Ml~e < 7V(F)SA:(xyz). Now, consider the
inequalities
(4.13) SK(xyz) -Y[qvv{x) < N(x)SK(yz),

v\F

(4.14) SK(xyz) -\[qvv(xy) < N(xy)SK(z),
v\F

which are easily verified by comparing the exponents of qv on both sides. Using
(4.13), we get

M'-£ « N(x)N(F)SK(yz) -l[q¿vlx)
v\F

«M^SK(yz).l[qvv^-v^.
v\F

Thus,

\v\F

]-v{x)+1 U «A
v\yz      /
v\F

Now v(x) > j¡v(F), since F = (x" , ym). From (4.9) we have

v(F)-v(x)+l <    sup    (/+1-   -)=m(n-l)X

which gives (4.10).
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Similarly, using (4.14) we get
Mx-° « N(xy)N(F)SK(z)Y[q-v{xy)

v\F

« Ml/m+i/"SK(z) • Y[qvv(F)-v[x)-v(y)

v\F

747

Thus

M l-£ v(F)-v{x)-v(y)+\ H*
mn/(mn—m—n)

v\z
v\F

and

v(F)-v(x)-v(y) +1 <    sup    (/+1
0<l<mnX \

<    sup
0<l<mnX L

<

1+/Í1

(mnX-l)ll

1_     1
m     «,

1_
m     «

= (m« - m - n)X

yielding (4.11).
Remark. Lemma 4.4 can easily be extended to S-integers. Let a, b, x, y, z e
Rs satisfy (4.8). If we replace (4.9) by the conditions

v(F)<mnX,       vfS,
«(F)« 1, veSilM%,

where the implied constant depends only on K, then we get (4.10) and (4.11)
just as before, except that the constants may now depend on S.

Proof (of Proposition 4.3). Suppose we are given C with an S-minimal Weier-
strass equation E: y2 = f(x), where f(x) has only three nonzero coeffi-
cients. These conditions are invariant under a change of coordinates x i-> w2x ;
y h-> u2g+ly with u e F£. Since enlarging S only helps our cause, we may
assume by Corollary 2.11 that

(4.15) v(Ae/<DC/k) « 1,        veS.
It will also be convenient to assume that S contains all ramified places, and all
places dividing rational primes p < 2g + 1.

Since C is nonsingular, f(x) cannot be divisible by x2 . We thus distinguish
three cases:

(1] E : y2 = xn + Axk + B, B¿0,    n = 2g+l,
(2) E:y2 = x(xn + Axk + B), B¿0,    n = 2g,

(3) E:y2 = x" + Ax + B, AB^O,    n = 2g+l,
Let m = « - k . Since E is S-minimal, we must have

(4.16) min(u(^"),?j(F"I))<2m«,        v$S,

2<k<n-l,
I < k < n- I,

k = l.
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else the discriminant at v could be reduced by the substitution x .-► 7t2x ;
y i-> 7T2?+1y . Similarly, from (4.15) we deduce that
(4.17) min(v(An), v(Bm)) <: 1,        veS,

where, as usual, the constant depends only on K.
Let r = (n, k). Define «0 = n/r, ko = k/r, mo = m/r, and let

D = «o"°5mo + (-l)n°-xkokomomoA"o.

Computing the discriminant using resultants (see §1), we get
' rnBk~lDr,    case(l),

A£ = I r"Bk+1Dr,    case (2),
D, case (3).

To handle the first two cases, we set F = (An°, Bm°). Then (4.16) and (4.17)
give

v(F) <2rm0n0,       v$S,
t)(F)«l, v£S.

Let M = \NAn°, NBm°, ND\. By the remark following Lemma 4.4, we may
use the lemma with X = 2r to obtain the bound
(4.18) 7W1-ec[]^m<"!0  ] [ q"o/{n°~x).

Now,
NAE « NBk±xNDr <C M{k±l)/mo+r = /l/(»±i)/»-o (

where the minus sign is used in case (1) and the plus sign in case (2). Using
this in (4.18), we get
(4.19) NAxfe <^l[q2n{n±X)    J]    ^o(«±D/-o(»o-D_

v\F v\AEv\F

Here we have used the fact that BD divides A£ . In both cases the exponent
2«(« ± 1) is equal to 2g(4g + 2), and

no{n±l)   <2(n±l)<4g + 2.

v\F v\BD
v\F

m0(n0- 1)

Since the places outside of S which divide 1>c/k are the same as those dividing
A£, we get

NT>c/k<NAe^(   I]   C)

where

(4.20) nv = I

.viS
V\®C/K

4g + 2, v\F,
2g(4g + 2),    v\F.

Now consider the reduction of the curves in cases (1) and (2) at a place
v ^ S. If v £ F, then we have v(A) > 0 and v(B) > 0, hence the reduced
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equation has a unique singular point of degree 2g + 1. If v £ F , then the
reduced equation cannot have a singular point of degree 2g + 1. It follows that
the estimate for nv in (4.20) is actually better than that given by (4.6). This
completes cases (1) and (2).

In case (3), we have F = (An , Bm) and X = 2. Lemma 4.4 gives
(4.21) Ml~e <Hq2mn IJ qT,[mn~m-n)

v\F v\D
v\F

where M = \NAn, NBm, ND\. We have /VA£ = ND < M and m = n - 1.
Thus

/vAjr£«n<7,2n("-i) n qvn2-n)/{ni-3n+x).
v\F v\AE

v]F

The first exponent is 2«(« - 1) = 2g(4g + 2), and we have

7^ri<2n = 4g + 2,        n>3,
so again (4.6) is valid. The reason case (3) needs to be handled separately is
that the places dividing B do not appear in the discriminant as they do in cases
(1) and (2). This completes the proof of Proposition 4.3(a).

For part (¿>), we are given an S-minimal equation E : y2 - f(x) with
n

(4.22) f(x) = Y[(x-ai),        ai£Rs,
i=i

where « = 2g + 1 as before. Let a¡j = a¡ - a¡ for all 1 < i, j < n . Then the
discriminant of E is simply

(4.23) A£ = 24*n4-i<j
Let F = (a¡j), the fractional ideal generated by the a¡j . We will need an

upper bound on the size of v(F) for all v e M%. First, suppose v (F) > 2
for some v $ S. Then v(a¡j) > 2 for all 1 < i, j < n. Hence all the
a, are congruent mod p2. Let a be any one of the a,. The substitution
x i-> 7t2x + a, y i-> n"y then yields a u-integral equation with smaller
v(AE), contradicting the S-minimality of F. Therefore v(F) < 1. We see
that v(F) = 1 only when the reduction of F has a singularity of degree n.
Otherwise, since F is an S-integral ideal, we have v(F) = 0.

By Corollary 2.11, we may assume (as in the proof of part (a) above) that

(4.24) D(Âf/%)«l,        V£S.
This means that the a, cannot all be very close to each other, hence the minimal
v(a¡j) is bounded by a constant depending only on K. In other words,

(4.25) v(F)<l,       v£S.

Now, we have a¡j + ajk + ak¡ = 0, so the ABC Conjecture gives

(4.26) HK(aij, ajk , aki) « Sjt(a,7a^afc;)1+£.
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Let us write 7Vai2 in the form

Nan = ^íi^L.x    N(al2,a23)
(4 21) N(ax2, a23)     N(aX2, a23, a34)

W(öl2 , • ■ • , an-2,n-i)     M,„ „        x* ~TFt-T^—\   x N(an, ••• > a«-i,«)-N(ax2, ... , a„_i,„)

(This idea was sugested by J. Oesterlé.) To estimate the terms in this expression,
we require the following:

Lemma 4.5. Let xx, ... , xn, x £ K. Then

N(xi, ... ,xn)
N(xx,...,xn,x)^HK{X">X)-

Proof. From (4.4) and (4.5) we get
Nx„

Hfc(xn • x) = Hoc(x„ , x) - Ho(xn , x) > N(x„, x) '

Thus we are reduced to showing that

(4.28) N(xx, ... , x„)N(x„, x) < Nxn • N(xx, ... ,x„,x).

We will prove the stronger statement that for any v e M% , the exponent of qv
on the left side of (4.28) is less than that on the right. Let b - v(x), b¡ = v(x¡).
We need to show that

(4.29) min(¿>. ,b2,...,bn) + min(¿>„ , b) < min(bx, b2, ... , bn, b) + b„.

But this is always true for any integers bx, b2, ... , bn , b e Z. Indeed, if b¡ < b
for some i, then

min(¿>. ,b2, ... ,bn) = min(bx ,b2, ... ,bn,b),    min(¿>„, b) <bn,

and if b < b¡ for all /, then

min(¿>. ,b2, ... ,b„)<bn,    min(bn , b) = b = min(¿>,, b2, ... , b„, b).

In either case we have (4.29) and the lemma is proved.

Applying Lemma 4.5 to (4.27), and using the fact that {a<2, a23, ...a„_i ,„}
generates F, we get

Nal2 <HK(aX2, a23, a3i)-- ■HK(a„-2i„-X, a„_i,„ , a„,„_2) • A^(F).

Here we have used the relation Hg.(a, b) = HK(a, b, -a - b). Now (4.26)
gives

n-2

(4.30) Na\2e « N(F) • J] SK(aiJ+xai+x,i+2ai+2>i).
i=i

Moreover, we may apply any permutation of the indices in (4.30) to obtain sim-
ilar estimates for the norms of the a¡j. Multiplying over all such permutations
yields

Y[Naf-m^)<<N{Ff. JT SK{aija]kaki)^
i<j i<j<k
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which gives

l[Naf-e)<N(F)«»-V. fl SK(aiJaikaki)6.
i<j i<j<k

Thus from (4.23) and (4.25) we get
N(AE)l-£< J]C

v$S

with
nv = n(n ~Ki) > °l)v(F) + 6TÍ1'    ü<fl«fl^

¿-J, \ 0,    otherwise.Kj<k

Let T denote the number of triples (i, j, k) for which 1 < i < j < k < «
and v(aijüjkaki) > 0. Then

«(«-1) + 6F,    F has a singularity of degree «,
(4.31) nv

( 6T, otherwise.
where the tilde denotes reduction mod pu .

Consider the complete graph G with vertices a,■, I < i < n. Label the
edge joining a, and aj with the number a?.. T then counts the number
of triangles in G containing an edge labelled 0. The set of such edges of G
form a collection of disjoint complete graphs, one for each multiple root of /.
More precisely, a o"-fold root of / corresponds to a Kd all of whose edges are
labelled 0. T thus breaks up into a sum over multiple roots of /, which are
just the singularities of Cv . We have T - ]Caec„ T(da) where T(d) is the
number of triangles in G with an edge in a fixed Kd . In particular, F( 1 ) = 0.
A simple computation gives

T(d)=Q(n-2)-2(^j = l-d(d-l)(3n-2d-2).

Thus
nv = 5Z "(rf«)

aeC„

with
...      f d(d-l)(3n-2d-2),    d<n,

"("   =1     t       ,y2 j{ n(n - ly, d = n.
Setting « = 2g + 1 gives (4.7) and the proof of Proposition 4.3 is complete.
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