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ON THE DISPLACEMENT BOUNDARY-VALUE PROBLEM OF
LINEAR ELASTODYNAMICS*

By M. HAYES (University of East Anglia, Norwich)
AND

R. J. KNOPS (The University, Newcastle-upon-Tyne)

1. Introduction. We are concerned with the uniqueness of the solution for the dis-
placement boundary value problem of linear elastodynamics for a body occupying
a closed regular region of space B with smooth surface dB. Because of the linearity
of the equations it suffices to consider the system1

d~Uk dU{ .= m B■ (1)

Cijkl ^klij ) (2)

subject to the boundary and initial conditions

u(x, /) = 0, iG dB, 0 < t < , (3)

u(x, 0) = ~ (x, 0) = 0, x e B + dB. (4)
at

Here, cijki are the elastic constants, x is the position vector, uk(x, t) are the components
of the displacement u(x, t), p is the (positive) density of the elastic body, and time is
denoted by t. The displacement u is always assumed to exist and to be real and twice
continuously difTerentiable (i.e. u £ (f).

The particular uniqueness problem considered here is to find necessary and sufficient,
conditions on the cijkl so that the only twice continuously difTerentiable solution of
(l)-(4) is identically zero. After earlier work on isotropic bodies by Neumann [1] and
Gurtin and Sternberg [2], Gurtin and Toupin [3] recently have shown that if

cijkiAiAkBiBj > 0 for all A, B ^ 0 (5)

then Eqs. (l)-(4) have only the identically zero solution. Here we show that this result
remains true if

CukiAiAtBiBj < 0 for all A, B ^ 0. (6)

The method of proof is based upon the uniqueness of analytic functions under Cauchy
data.

2. Ellipticity. First we show that (6) is both necessary and sufficient in order that
the system (1) is elliptic.2

The condition that (1) be elliptic is that

F(<p2) = !c,;izX,Xi — p<p~8jk\ 7^ 0, (7)

*Received May 5, 1967; revised manuscript received June 16, 1967.
'Throughout this paper latin indices range over 1, 2, 3 and summation over repeated suffixes is

implied. All equations are referred to Cartesian coordinates x,-. Bold-face latin minuscules denote
vectors.

!For definitions of ellipticity, strong-ellipticity, etc. see, e.g., [4].
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for all real 1 and <p satisfying

On writing

it follows from (2) that

X, X, (f 0. (8)

&ik j (9)

aik = aki (10)

and thus the zeros <p2 of F(<p2) are all real. Hence, if F(<p2) ^ 0 for real <p, then the zeros
of F((p2) must all be negative. Thus, necessary and sufficient conditions that (7) hold are

|a| < 0, tr a2 — (tr a)2 >0, tr a < 0. (11)

However, (11) constitute necessary and sufficient conditions that a be negative definite.
(See, for instance, [5].) Hence, we conclude that (6) is necessary and sufficient in order
that (1) be an elliptic system.

3. Uniqueness. Any solution of class C2 to the second order linear elliptic system
(1) which has real analytic coefficients consists of real analytic functions in B for 0 <
t < oo [6, p. 136], We may thus establish the

Theorem. If c,w satisfy (6) and (2) then the system (1) subject to (2) and (4) has
at most the identically zero solution.

Proof. If (6) is satisfied then the system (1) is elliptic and its solutions are real
analytic functions of x and t. Since zero Cauchy data is prescribed on the (noncharac-
teristic) hypersurface t = 0, it follows that u vanishes identically in B for 0 < t < <»
[7, p. 48].

4. Discussion. When (6) is satisfied the displacement boundary-value problem is,
in general, over-determined. For, since solutions are analytic, Cauchy data on the hyper-
surface t = 0 determines the solution everywhere so that the boundary data (3) is
redundant. Thus, for arbitrarily prescribed boundary and initial data it would appear
that even through there is uniqueness of solution, a solution will rarely exist. This
may be contrasted with the work of Ericksen [8], [9], [10] who has shown that in general
existence fails when uniqueness fails.

Finally, we remark that condition (6) is necessary and sufficient for all plane waves
to travel with purely imaginary speeds. Condition (5), which states that the equilibrium
equations are semi-strongly-elliptic, implies that all plane waves travel with real or
zero speeds. Thus, the displacement boundary value problem is unique provided that
either all plane waves travel with purely imaginary speeds or all plane waves travel
with real speeds. We do not know whether there is uniqueness when some speeds are
real and some are imaginary, i.e. when cijklA ,/lj. is indefinite. However, we present
here an example to show that in this event it is possible to have a unique solution.
We take

Cuki = (~5n 5m + ^.2 Sk2 + Si3 Sk3) Sji (12)
so that

Cijkl Cklij •

Hence,
CwAiAfrB, = (-At + A22 + Al)(B\ + B\ + B\). (13)
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Moreover, by (12), equations (1) become:

d'Ui/dXi dXi + p d2U\/dt2 = 0, (14)

d~Ua/dXi dXi = p d~Ua/dt2, (a = 2, 3). (15)

All solutions of (14) are analytic. In a manner similar to that above, the prescribed
zero Cauchy data (4) on the (noncharacteristic) hypersurface t = 0 shows that u^
must be identically zero. The data (3) is redundant. From the uniqueness of the solution
to the wave-equation under the data (3) and (4) it follows also that u2 and u3 are ident-
ically zero. Hence, the solution to the present problem is unique.
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