

King’s Research Portal

DOI:
10.1109/TIFS.2020.2976559

Document Version
Peer reviewed version

Link to publication record in King's Research Portal

Citation for published version (APA):
Cono D'Elia, D., Coppa, E., Palmaro, F., & Cavallaro, L. (2020). On the Dissection of Evasive Malware. IEEE
Transactions on Information Forensics and Security, 15, 2750-2765. [9018111].
https://doi.org/10.1109/TIFS.2020.2976559

Citing this paper
Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may
differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination,
volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are
again advised to check the publisher's website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

•Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
•You may not further distribute the material or use it for any profit-making activity or commercial gain
•You may freely distribute the URL identifying the publication in the Research Portal

Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 09. Aug. 2022

https://doi.org/10.1109/TIFS.2020.2976559
https://kclpure.kcl.ac.uk/portal/en/publications/on-the-dissection-of-evasive-malware(91312905-4340-419b-888d-c5c9c7e05dc9).html
https://kclpure.kcl.ac.uk/portal/en/persons/lorenzo-cavallaro(03bc6371-26c0-4b53-8987-e38fa17b0441).html
https://kclpure.kcl.ac.uk/portal/en/publications/on-the-dissection-of-evasive-malware(91312905-4340-419b-888d-c5c9c7e05dc9).html
https://kclpure.kcl.ac.uk/portal/en/journals/ieee-transactions-on-information-forensics-and-security(cf63df9d-090d-4eee-9b84-1b204a64b7a5).html
https://kclpure.kcl.ac.uk/portal/en/journals/ieee-transactions-on-information-forensics-and-security(cf63df9d-090d-4eee-9b84-1b204a64b7a5).html
https://doi.org/10.1109/TIFS.2020.2976559

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. Y, XXX 2020 1

On the Dissection of Evasive Malware
Daniele Cono D’Elia, Emilio Coppa, Federico Palmaro, Lorenzo Cavallaro

Abstract—Complex malware samples feature measures to im-
pede automatic and manual analyses, making their investigation
cumbersome. While automatic characterization of malware ben-
efits from recently proposed designs for passive monitoring, the
subsequent dissection process still sees human analysts struggling
with adversarial behaviors, many of which also closely resemble
those studied for automatic systems. This gap affects the day-to-
day analysis of complex samples and researchers have not yet
attempted to bridge it. We make a first step down this road by
proposing a design that can reconcile transparency requirements
with manipulation capabilities required for dissection.

Our open-source prototype BluePill (i) offers a customizable
execution environment that remains stealthy when analysts
intervene to alter instructions and data or run third-party
tools, (ii) is extensible to counteract newly encountered anti-
analysis measures using insights from the dissection, and (iii) can
accommodate program analyses that aid analysts, as we explore
for taint analysis. On a set of highly evasive samples BluePill
resulted as stealthy as commercial sandboxes while offering new
intervention and customization capabilities for dissection.

Index Terms—Malware analysis, evasion, dissection, red pill,
dynamic binary instrumentation, reverse engineering, sandbox.

I. INTRODUCTION

The interest of security professionals in designing systems

and techniques to analyze and characterize malware behavior

is at odds with the intention of malware writers, who con-

stantly look for new ways to slip through the cracks of au-

tomatic solutions and employ assorted anti-analysis measures

to hinder manual dissection. Dynamic techniques in particular

extract information from the actions taken in a single execution

only. For this reason an armored sample can look for the

presence of a dynamic analysis system (such as a sandbox

or a debugger) and when one is found it may disguise itself

as benign, or try to circumvent or even break such system.

Prominent adversarial techniques for dynamic analysis in-

clude: environment evasion, to detect the presence of automatic

systems and manual tools (e.g., by looking for known artifacts

or introduced time overheads); time stalling strategies, to make

an analysis use up its time budget before any harm is carried

out; anti-reversing techniques, such as anti-tampering, anti-

hooking, and anti-debugging sequences [1].

The common analysis workflow for a complex sample

involves a high-level characterization of its behavior using

automatic analysis systems sufficiently robust to evasions, such

as a state-of-the-art sandbox. For a sample deemed worth

Manuscript received August 14, 2019. Revised February 11, 2020. Accepted
February 11, 2020.

D.C. D’Elia and E. Coppa are with Sapienza University of Rome. F.
Palmaro is with Prisma. L. Cavallaro is with King’s College London. This
paper has supplementary downloadable material available at http://ieeexplore.
ieee.org, provided by the authors. The material includes Appendix §A and
§B. Contact delia@diag.uniroma1.it for further questions about this work.

investigating a manual in-depth code analysis then follows,

so to understand its functional capabilities and structure [2].

For automatic systems researchers have proposed over time

increasingly transparent execution monitoring designs, making

them more robust to fingerprinting attempts. Automatic sys-

tems nowadays provide valuable indicators for the next steps of

the analysis, although their output is occasionally inconclusive.

Let alone samples featuring new evasions [3], this may occur

also with targeted malware that looks for hardware or software

characteristics of the specific organization or industry it is

destined for [4], and with trigger-based malware that stays

dormant unless a specific trigger occurs [5].

Adversarial behavior for the subsequent manual stage has on

the contrary received less attention from academia. Analysts

today still spend a good deal of their time facing detection

techniques for their workspaces (e.g., virtualization defects,

tools) and the techniques they use (e.g., overheads, debugging

artifacts) that resemble those studied for automatic systems.

In addition to evasions specific to the manual stage, analysts

regularly dismantle techniques that automatic systems used in

the first stage already countered or were immune from. As

the analysis of complex samples remains a largely manual

process, shielding analysts from evasions may bring obvious

benefits in the use of their time, provided they can still access

fine-grained execution control abilities for dissection.

Contributions: We propose a human-centered dynamic

analysis system that can meet the day-to-day workflow of

analysts, smoothing the automatic-to-manual transition and

enhancing dissection capabilities for the manual stage. Ad-

ditionally its design favors the interaction between human and

machine analyses, an aspect that the state of the art lacks. Our

system brings introspection and customization abilities on top

of a stealthy execution environment. Its original features are:

• be robust to prominent adversarial techniques for auto-

matic and manual analyses (§IV-A, IV-C, VI-B), and cus-

tomizable using insights from dissection (§IV-E, VI-B);

• fine-grained execution control capabilities, including a

user-space debugger with stealthy live patching (§IV-B),

and cloaking of tools popular among analysts (§IV-A);

• let analysts orchestrate program analyses that can aid

dissection, as we explore for taint analysis (§IV-D, VI-C);

• be extensible by users in the face of new evasions (§VI-C)

or behaviors that deserve close investigation (§VI-B).

To back these capabilities, we choose to pursue transparency

by actively hiding run-time artifacts, including those that ana-

lysts introduce during dissection such as code patches. In the

envisioned design an observe-check-replace layer intercepts

evasive attempts to hide imperfections, and acts as foundations

for upper layers that assist analysts with more high-level

capabilities. The design is holistic: it offers an environment

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TIFS.2020.2976559

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://ieeexplore.ieee.org
http://ieeexplore.ieee.org
delia@diag.uniroma1.it

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. Y, XXX 2020 2

for fine-grained introspection (possibly enhanced by program

analysis capabilities) that later acts as an automatic stealthy

execution system to validate findings from dissection.

We embody our ideas in a prototype implementation

BluePill that fares well in stealthiness compared to commercial

sandboxing products specialized in evasive malware, making

a solid ground where to start dissection from. We build on

dynamic binary instrumentation to hook low-level and high-

level behavior of the execution, making hooks extensible by

the user without incurring semantic gaps in the process.

We report impressions from a preliminary user study where

ethical hackers dissected complex samples with BluePill and

with other publicly available solutions. We share our code with

the community at https://github.com/season-lab/bluepill/.

II. OVERVIEW

In the following we examine the transparency and flexibility

issues in the different stages of malware analysis that motivate

our work. We then illustrate the envisioned design, discussing

its use cases and why ease of extensibility is crucial for it.

A. Scenario

The quest for transparency in execution monitoring tech-

niques has driven the initial automatic characterization phase

away from the environments that analysts use right after to dis-

sect prominent samples. The automatic stage commonly takes

place in one or more sandbox systems that observe and record

execution facts for a sample in a controlled environment.

While early designs resorted to an in-guest component

to actively alter the execution of a sample for the sake of

monitoring (e.g., via API hooking [6] to intercept interactions

with the OS), recent systems operate passively from outside

virtualized [7] or emulated [8] guests. This choice results in a

reduced attack surface for red pill sequences that try to detect

analysis systems1. Out-of-guest designs trade transparency for

higher monitoring complexity from the incurred semantic gap,

which is the problem of interpreting guest memory contents

into a high-level semantic state of the running OS [9].

The subsequent manual analysis instead typically takes

place on workstations running VMware or VirtualBox images

with different software setups and powerful enough to hold

multiple save points (live snapshots for trial-and-error analy-

sis when debugging). Although custom loaders and drivers

may partially cloak VMs [10], operating inside the guest

implies that analysts may have to manually dismantle stalling

strategies, evasions via time measurements, and virtualization

red pills (e.g., CPU idiosyncrasies) that the previous stage

addressed automatically. This may require a laborious process

of instruction and function call interception and input/output

patching for each sample. Analysts obviously have to face

also techniques specific to dissection, like anti-tampering and

anti-debugging sequences that break their workflow.

Some non-academic works (e.g., [11]) have proposed de-

bugging interfaces for virtualization technologies used also in

automatic systems, but to the best of our knowledge those have

not gained much popularity among analysts so far. Possible

reasons may include complexity/limited capabilities in context

manipulation due to the semantic gap, lack of interoperability

with customary analysis and monitoring tools, and deploy

requirements (we shall return to this in §II-C and §VI-B).

The attentive reader would argue that virtualization artifacts

leave bare-metal analysis as the only sound approach to date

for observing a sample [12] (albeit real-world embodiments

may still be fingerprinted [13]). Let us consider also trigger-

based or targeted malware: for those an automatic analysis

may only reveal suspicious activities at best. Analysts may

try different pre-configured VM images, but eventually build

an ad-hoc one based on the insights gained from manual

dissection. Previous research suggests program analyses like

symbolic execution [14], [15] and taint analysis [4] to aid

dissection, but their integration in state-of-the-art analysis

systems usually conflicts with their transparency requirements.

These considerations motivated us to pursue a holistic

approach to the design of a dynamic malware analysis sys-

tem that could reconcile the transparency requirements for

automatic analyses with the levels of flexibility required by

human agents when they take over. This can happen after a

successful automatic characterization, or even from the start

with targeted or highly evasive samples.

B. Approach

We seek for a system that lets users analyze and control

instruction and data flows, both first-hand when debugging

and with third-party analyses and in-guest monitoring tools,

while providing a transparent environment to the code being

executed. To advance the state of the art we envision an

environment that is:

i) easy to deploy: it should integrate well with existing

infrastructure (like tools and VMs) for manual analysis;

ii) interactive: in contrast to the fixed working of current

systems, the user during the dissection can adjust the

configuration in use in light of new findings;

iii) customizable: the user can (re)define hooks for events

such as library and system calls without requiring deep

knowledge of neither the system nor OS internals;

iv) extensible: to cope with new anti-analysis patterns, it

should be intuitive enough for the user to encode coun-

termeasures.

Providing these features, particularly the first three, in a

passive design seemed difficult, especially when operating

from outside a virtualized analyzed system. We shall return

to this in §II-C and §III-B. We thus explored how an active

design against adversarial techniques can support such features

with transparency in mind. An active approach may let us

manipulate the perception of the environment for a running

sample, providing it with the illusion it has reached a victim

also during its dissection. To this end we propose an observe-

check-replace paradigm in the design:

• Observe: monitor classes of operations performed on the

environment possibly to trigger an anti-analysis behavior.

1The terms red pill and blue pill are popular science fiction memes that
refer to the truth of reality compared to a machine-generated dream world.
Originally used for CPU emulators detection [16], the expression “red pill” in
malware research nowadays may apply to general artifact detection techniques.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TIFS.2020.2976559

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

https://github.com/season-lab/bluepill/

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. Y, XXX 2020 3

Dynamic binary instrumentation (DBI) layer

BluePill

Target platform

simulation layer

DBI artifacts anti-

evasion layer

Introspection

layer

Malware analysis system

Observe-check-replace layer

Fig. 1. Bird’s eye-view of the architecture.

Customizable sandbox

Configuration file

DBI

BluePill

(a)

GUI client

GUI server

(b)

Debugger

Customizable sandbox

GUI client

(c)

Debugger

DBI

BluePill

D
e
b
u
g
g
e
r

s
e
rv

e
r

GUI server

DBI

BluePill

D
e
b
u
g
g
e
r

s
e
rv

e
r

Taint analysis engine

Use case 1

Use case 2

Use case 3

Fig. 2. Use cases for the architecture: customizable sandbox (a), introspection
(b), and program analysis (c) scenario.

• Check: test whether the outcome differs from what ex-

pected in a reference environment chosen by the analyst.

• Replace: when it is necessary to fix a divergence, forge

the output(s) that would be visible to the sample.

These core primitives are designed to allow the upper layers

of the analysis stack to register callbacks that are invoked when

a sample executes instances of the monitored operations.

The proposed paradigm supports two categories of opera-

tions: stateless and stateful. For the former case the outcome

of an observation is independent of previous observations

of that operation. This is for instance the case with the

CheckRemoteDebuggerPresent Windows API. For the

latter case the system needs to track subsequent invocations

using an internal state. As an example, GetAdaptersInfo

queries the OS for network adapters and fails if the buffer

argument supplied to hold the result of the API call is too

small: on failure it passes back the required buffer size to the

caller that in turn uses it to set up another call to retrieve the

produced information.

Discussion: Anti-analysis techniques can be more com-

plex than single checks, and rely on an aggregate outcome of

combined, possibly parallel execution signatures. For instance,

IsDebuggerPresent returns whether a process is running

in the context of a debugger, and it may seem obvious that it

should always return false. However, a sample may then alter

the BeingDebugged flag of the Process Entry Block (PEB)

and repeat the call, which from now on shall return true. Such

aspects have to be taken carefully into account in the design

of an active monitoring system.

C. Architecture

We now elaborate on how to support observe-check-replace

operations and the high-level system features from §II-B.

Modifying the address space of a sample directly (e.g., via

DLL injection or from a debugger) would introduce a large

number of artifacts and limit the flexibility of the approach. For

instance, as modifications would be visible to the sample the

system should trap every access to altered regions. The pos-

sibility of self-modifying code and anti-disassembly tricks [1]

would then require single-step execution to capture low-level

red pills, or direct system calls that adversaries may make

from assembly code instead of using OS user-mode wrappers.

Virtual machine introspection (VMI) techniques offer

system-wide analysis capabilities with good transparency.

VMI technology builds on reverse engineering work on OS

internals to mitigate the semantic gap that occurs when trying

to access high-level concepts of the guest [1]. While VMI has

led to better designs for passive monitoring systems, the degree

of sophistication required to alter aspects of the execution can

be a daunting prospect not only for users but also for runtime

architects. As an example, while system call interposition is

simple to achieve, rewiring a library call to a user-defined

function or altering its input/output arguments with newly

allocated data structures can be tricky at best. The system also

has to treat results provided to a sample and its derived flows

(e.g., remote threads, child processes) differently from those

for the rest of the system to avoid instabilities and crashes [17].

Dynamic binary instrumentation (DBI) techniques naturally

inject extra functionality in a running program [18], which

will observe the same addresses (instructions and data) and

values (registers and memory) of a native execution [19]. DBI

engines abstract away many OS and architectural details to

the user, who can write callbacks in high-level languages and

access intuitive mechanisms to inspect function inputs and

outputs, CPU state, and instructions being executed. Also, they

let users invoke external functions (e.g., OS queries, API calls,

memory allocations) from the address space of the analyzed

program, easing introspection and manipulation activities. DBI

thus seems a reasonable choice for the goals we pursue.

We propose a DBI-based design where other layers build

on top of the observe-check-replace layer of §II-B. A target

platform simulation layer controls how monitored sources

can reveal information about the execution environment to a

sample. Depending on the strain being observed, the analyst

should be able to alter specific aspects of the hardware, OS,

and software environment to meet its expectations: to this aim

the layer provides a tailoring interface to the upper layers.

The layer also serves the purpose of hiding the presence of

third-party tools used by the analyst in the inspection.

We then devise an introspection layer with fine-grained

execution monitoring and altering capabilities. The layer ex-

poses debugging capabilities that are a staple for manual

dissection. Breakpoints are transparent to the running code,

as DBI engines can embed them as part of the trace fetching

mechanism [20]. We advance the state of the art with a

stealthy live patching mechanism that lets analysts alter a

sample’s instructions when debugging without having to worry

about anti-tampering schemes like checksums. The layer also

supports higher-level monitoring at function-call level; as the

DBI engine follows code executed in libraries, it does not incur

the limitations of binary rewriting or the complexity of VMI.

To conceal artifacts of the underlying execution and in-

strumentation technology, we complement the two layers

with a DBI artifacts anti-evasion layer. While DBI meets

transparency requirements for benevolent software, researchers

have discovered red pills for it (e.g., [21], [22], [23]). We

discuss the countermeasures we adopt in §IV-C.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TIFS.2020.2976559

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. Y, XXX 2020 4

Figure 1 presents the overall architecture. We detail the

three layers in §IV, discussing popular ways for a sample to

detect analysis systems, how time-based techniques can hinder

dynamic analysis, and how our framework copes with such

aspects, providing details from our BluePill implementation.

D. Use Cases

As anticipated in §I, our design can back environments

that complement and build on each other to assist analysts

in multiple steps of their workflow. Figure 2 shows three use

cases that we implemented (§IV) and tested (§VI) in BluePill.

a) Customizable sandbox: Instead of being a competitor,

this mode can complement state-of-the-art automatic systems.

It lets analysts validate findings from manual inspection when

dealing with targeted malware or complex evasions: they can

devise provisional countermeasures and see if they let a sample

reveal its true colors. Analysts may experience a tedious trial-

and-error process of building different images only to match

shallow checks on software (e.g., Windows MUI packs for

Multilingual User Interface) or hardware characteristics (e.g.,

card readers) that can keep them busy sometimes even beyond

a day [24]. BluePill can be instructed to fake results for

common observation patterns. This mode also cloaks third-

party monitoring tools that are normally banned in automatic

systems, with the advantage of not having to reimplement

programs that analysts have used for years.

b) Introspection: The goal is to provide an environment

where analysts can dissect complex samples flagged by auto-

matic systems or for which the ignition conditions are yet to be

determined. We shield analysts from anti-analysis techniques

specific to this phase (e.g., debugger red pills, code checksums,

detection of popular analysis tools), and from general evasions

based on time and red pills for virtualization that would affect

also their workstations (§II-A). Compared to current open and

commercial systems, the novelty is that the user can (i) inspect

and alter execution under the same stealthy features offered for

the automatic stage and (ii) tailor environment characteristics

on the fly using insights from the dissection.

c) Program analysis: We enhance the previous mode

with the ability to define and run complex program anal-

yses over a sample. Previous research hinted at analyses

like symbolic execution and taint analysis to ease malware

reverse engineering, but their intrusiveness and overheads are

a concern for transparency. The design of BluePill can mitigate

these issues by allowing analysts to surgically apply them

to specific execution portions (§IV-D) and by altering the

perception of their overheads (§IV-A). In §VI-C we show uses

of taint analysis to dismantle previously unknown anti-analysis

measures and to dissect checks in targeted malware.

E. Extensibility

As the intended usage of our system targets human in-

teraction, the role and capabilities of users were pivotal in

its design. We envision a mechanism where observe-check-

replace hooks can dynamically be adapted based on in-

sights from inspection, resembling other security research [25]

where a human-in-the-loop paradigm overcomes limitations of

machine-based analyses. The user controls the behavior of the

system via an initial configuration file, but also dynamically

when debugging through a GUI that controls rogue values to

be returned for API calls and instructions of interest.

Embodiments of our approach shall not be restricted to pro-

viding stealthy ways to explore behaviors only in the presence

of known anti-analysis techniques, or they would be helplessly

crippled by new evasions. We thus expose DBI instrumentation

capabilities to the upper layers, allowing analysts to draw from

their experience and current insights from the analysis to tweak

existing hooks and, when needed, to add new ones in order to

face unsupported techniques or other relevant behaviors.

In §II-C we mentioned the shortcomings of other technolo-

gies for implementing such hooks in general. We find DBI

APIs sufficiently high-level and simple to be practical also for

users with limited experience with the system. Preliminary

results seem to back this belief: we present concrete examples

of humanly crafted countermeasures for prominent targeted

and evasive samples in §VI-C, and report on a different kind

of hooks for easing dissection in §VI-B.

III. COMPARISON TO PREVIOUS WORKS

We now review malware analysis research related to the

scope of this work, and discuss how our design compares to

systems from the literature and solutions used by professionals.

A. State of the Art

Automatic Analysis: As we mentioned in §II-A, solutions

based on hardware virtualization and full system emulation

have replaced early kernel and user-space monitoring designs

for automatic systems. Hardware virtualization enables several

forms of system monitoring with little performance over-

head, allowing for a quick characterization of many incoming

samples [7]. Full system emulation instead lets architects

instrument code with custom analyses during the execution, for

instance to monitor data flows crossing other components [26].

Both approaches make use of VMI (§II-C) to track the actions

of a sample (e.g., invoked system calls) and thus share the

benefits and the shortcomings of VMI techniques.

Unfortunately, dedicated adversaries may detect both ap-

proaches. Emulators are known for their defects [16] (patching

all of them in a practical manner is believed unattainable [27])

and timing differences [28]. Building a transparent VM mon-

itor for hardware-assisted virtualization is infeasible and im-

practical [29], as an adversary can leverage hardware, resource

(e.g., TLB pressure [30]), and timing (e.g., with privileged

instructions) discrepancies. [31], [32] investigate execution

divergences in different systems looking for environmental dif-

ferences that a sample could exploit. A normalization step then

discards spurious differences for a more accurate comparison

between profiles from different sandboxes [33], [34].

Yet malware may evade all available environments, advo-

cating for the construction of a reliable reference system.

BareCloud [12] proposes a bare-metal execution platform

more robust to fingerprinting as it only monitors network

traffic and analyzes disk contents after the execution. Transient

effects (e.g., a system call) on the environment cannot be

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TIFS.2020.2976559

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. Y, XXX 2020 5

recognized, as any form of in-guest monitoring would violate

transparency. The approach is well suited for detecting evasive

samples, but less appealing for analyzing their activities.

Manual Dissection: Debuggers are the Swiss Army knife

of analysts for carrying out in-depth studies of malware, thus

malware writers put significant effort in armoring their samples

with techniques to hinder them. Ferrie [35] describes about

80 debugger red pills involving CPU state and instructions,

structures like the PEB, Windows system and library calls,

and exceptional control flow. More complex detections in-

volve timing attacks and self-checksumming sequences that

executable protectors and packers offer as a commodity [36].

Analysts often use cloaking extensions like ScyllaHide and

TitanHide based on user and kernel-space hooking, but due

to limitations of the approach they cannot hide software

breakpoints and code patches, and occasionally break the

execution or the debugger itself. The cat-and-mouse game

with malware and packer authors also demands for continuous

updates, as these tools are regularly detected by recent versions

of executable protectors (we report our experience in §IV-C).

A few works dealt with transparent debugger designs.

rVMI [11] augments KVM with breakpoints and watchpoints,

using the Rekall forensic framework to select processes and

navigate kernel structures. It does not deal however with anti-

tampering schemes and timing attacks, and is affected by

virtualization red pills. MALT [27] uses the x86 System Man-

agement Mode to build an enclave where the debugger runs

alongside the OS on a bare-metal machine. MALT requires a

custom BIOS and communicates with the client via serial port;

it uses performance counters to implement single-stepping and

breakpoints, and rewrites time and MSR-related instructions to

mitigate side effects. Both techniques bring timely enhance-

ments in debugging capabilities for full-system analysis [11]

and for rootkits and other ring-0 malware [27]. For a more

general day-to-day usage however the technical shortcomings

reported in §II-A and §II-C may not be secondary: this view

was also reflected by the opinions of the users that we involved

in the dissection experiments of §VI-B.

Of a different flavor is the Cobra execution system [37]

for dissecting selected code streams in malware. Its runtime

exposes primitives to register overlay points: execution goes

unhindered until it reaches one, then a localized form of exe-

cution takes over. In this setting the runtime acts as an elegant

dynamic binary rewriter by breaking code in blocks, invoking

analysis routines at their boundaries, and rewriting control

transfers and other instructions in a block that can reveal its

presence. Unlike other execution technologies available at the

time, Cobra could thus withstand popular self-modifying and

self-checksumming sequences, and played an important role

in the WiLDCAT malware analysis framework [1].

Application of Program Analyses: Program analyses may

help in understanding the dynamics of a complex sample.

A few works focused on automatic extraction of the target

configuration, favoring subsequent in-depth inspections. [38]

proposes multi-path exploration to extract a more complete

view of a sample when its actions are triggered by specific

circumstances (e.g., upon receiving a command from the

network or when a certain file is present). [39] uses symbolic

Anti-analysis resistance BluePill VTemu VThw Bare-metal Manual

Environment artifacts
Timing attacks
Stalling strategies
Targeted checks
Debugger detection

TABLE I
ANTI-ANALYSIS RESISTANCE OF CURRENT TECHNOLOGIES.

Capabilities offered to users BluePill VTemu VThw Bare-metal

Ring-0 analysis
Inter-process analysis
Third-party monitoring
Function call interposition
User-provided analyses
Invisible breakpoints
Invisible patching of sample

TABLE II
FEATURES THAT CAN AID ANALYSTS IN MALWARE DISSECTION.

execution to identify trigger-based behavior in malware with

a main focus on time, keyboard, and network inputs as trigger

types. The main shortcomings of both works lie in their limited

efficiency and scalability [4], especially for complex samples.

GoldenEye [4] uses speculative execution to address fin-

gerprinting attempts by targeted malware. It dynamically con-

structs multiple environment spaces during a single execution

based on queries to APIs that are labeled beforehand. The

execution unit is the basic block: when the end of the block

is reached in all alternative environments, it trades space for

speed with heuristics that curtail the parallel space, keeping

only those settings most likely lead to interesting behaviors.

All these techniques are vulnerable to evasions targeting

artifacts of underlying technologies (QEMU for [38], DBI for

[39], [4]) and exceptional control flow. To the best of our

knowledge, their use is not very common among professionals.

In addition to scalability concerns, one reason could be that,

as they are fully autonomous systems, they may end up going

down a blind alley when dealing with unsupported or un-

precedented behaviors. Configuration extraction for complex

malware thus remains a compelling open problem.

B. Discussion

Table I summarizes how current approaches are affected

by anti-analysis measures. Circles are filled by one, two, or

three thirds to indicate when a goal is reached to a small,

good, or full extent, respectively. To make a fair comparison,

for each technology we depict an ideal system that combines

features implemented in different works. For emulation-based

virtualization we consider PyREBox [40] with the detection

of time stalling sequences from [41]. For hardware-assisted

virtualization we augment DRAKVUF [7] for Xen with the

debugger of rVMI [11] for KVM. For bare-metal solutions

we add the capabilities of MALT [27] to BareCloud [12]. For

manual analysis we consider a workstation with IDA Pro and

ScyllaHide, TitanHide, or Apate [42] for debugger red pills,

and the VM Cloak plugin from [43] for virtualization defects.

Bare-metal solutions are vulnerable only to stalling

strategies and targeted malware. VMI-based systems using

hardware-assisted virtualization fare quite well for classic eva-

sions; emulation-based ones can defuse time-stalling schemes,

but can hardly handle targeted samples automatically for the

reasons discussed in §III-A. An optimal implementation of our

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TIFS.2020.2976559

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. Y, XXX 2020 6

Name Technology Main protections Dissection capabilities Integration with other systems Public Year

Cobra [37] DBI Counter self-modifying and
self-checksumming code

Adding instrumentation to a sample WiLDCAT framework (proprietary) no 2006

Ether [44] VMI over VThw (Xen) Hide trap flag, patch rdtsc,
fake MSRs for sysenter

Coarse/fine-grained execution tracing, un-
packing detection through heuristics

- yes 2008

MAVMM [45] VMI over VThw (custom) VM monitor with smaller de-
tection surface

Non-interactive analysis data recording - yes 2009

BareBox [46] Bare-metal + kernel agent No virtualization artifacts Snapshot restore, syscall hooking (driver) - no 2011
SPECTRE [47] Bare-metal (SMM) Minimal intrusiveness Periodic triggering of analysis modules - no 2013
DRAKVUF [7] VMI over VThw (Xen) Mitigate evasions targeting

VM monitor
Non-interactive system-wide analysis,
syscall hooking

- yes 2014

MALT [27] Bare-metal (SMM) Minimal intrusiveness Debugging, snapshot restore Remote GDB (left for future work) no 2015
HOPS [48] Bare-metal (SMM, PCIe) Minimal intrusiveness Periodic snapshots, heuristics to locate

variables and determine stack traces
Built-in forensics tools no 2016

LO-PHI [49] Bare-metal (multi-sensor) Minimal intrusiveness RAM and disk capture, scriptable analy-
ses (currently post-mortem only)

Built-in forensics tools yes 2016

Apate [42] Manual (debugger plugin) Counter debugger red pills Debugging WinDbg yes 2017
PyREBox [40] VMI over VTemu (QEMU) Inherits from VMI Debugging, scriptable low-level callbacks Built-in forensics tools yes 2017
rVMI [11] VMI over VThw (KVM) Inherits from VMI Debugging Remote GDB, built-in forensics tools yes 2017
VM Cloak [43] Manual (debugger plugin) Counter hypervisor red pills Debugging WinDbg yes 2017
Nighthawk [50] Bare-metal (ME subsystem) Minimal trusted code base Monitoring RAM/SMRAM for integrity <does not apply> no 2019

TABLE III
DYNAMIC ANALYSIS SYSTEMS FROM ACADEMIC AND INDUSTRIAL RESEARCH THAT CAN AID IN MALWARE DISSECTION. PROTECTIONS WHEN

REPORTED IN ITALIC COME FROM THE CHOSEN UNDERLYING TECHNOLOGY INSTEAD OF FROM ACTIVE MEASURES TAKEN BY THE SYSTEM.

approach may perform as well as or sometimes even better

than existing VMI-based systems. As we detail in §IV-A the

platform simulation layer (§II-C) can hide artifacts, control the

time behavior of a malware, and expose tailoring primitives for

targeted checks. We address DBI-based debugging in §IV-B.

Table II compares analysis capabilities supported by

BluePill and current VMI and bare metal-based designs.

BluePill falls short for ring-0 analysis as DBI is confined to

user space; DBI can follow however system-wide flows like

remote threads and child processes. As VMI-based designs

operate in the VM monitor, allowing third-party analysis tools

to run in the guest to ease dissection is not a possibility (they

should be reimplemented outside it, if feasible). This is even

more the case with bare-metal approaches where the design

itself typically bans in-guest components such as tools [12].

BluePill enables more advanced interposition schemes for

system and library calls thanks to DBI (§II-B). Similar consid-

erations can be made for user analyses. While some forms of

VMI scripting to register callbacks and reason over events are

possible, their introspective power is limited by the underlying

forensic framework (while BluePill can make OS queries and

API calls directly) and the nature of the operation, as low-

level tasks (e.g., controlling instruction sequences) may require

modifications to QEMU, and not be practical at all under

hardware virtualization. Recently in the bare-metal realm LO-

PHI [49] explores analyses of memory and disk snapshots

transferred to an external machine, but present performance

concerns confine this to happen only upon execution end [49].

Finally, both hypervisor and bare metal-based debugging

interfaces offer invisible breakpoints but leave user changes to

the code of a sample visible. For hypervisors the page splitting

used for invisible breakpoints [51] may in principle be adapted

to this end, but the complexity [52] in synchronizing code and

data views with arbitrary changes would increase, and this may

be one reason behind such present limitation.

Table III summarizes the dissection capabilities and the pro-

tections against evasions of several dynamic analysis systems

from the literature. We selected systems meeting one or more

of the following criteria: the system (a) runs fixed analyses

customizable by an expert user, (b) offers shielded interactive

capabilities, or (c) minimizes the vulnerable surface. We can

see that the features and the goals of BluePill are not fully met

by such works or any straightforward combination of them.

For commercial products we can attempt a qualitative

comparison. Specialized vendors offer custom virtualization

solutions that combine ideas also seen in academic literature

(trapping kernel and user-space calls, special instructions, and

accesses to areas like the PEB) with robust implementations,

supposedly stealth for their proprietary nature. They often ship

valuable plugins (e.g., for forensic analysis) and automation

infrastructure to encode recurrent actions via scripts. When

it comes to aiding dissection, to the best of our knowl-

edge not much is offered, and no solution pursues similar

goals or the holistic approach of BluePill. Some systems

support mouse/keyboard interaction with the sandbox, leaving

to analysts the responsibility not to spook a sample by, e.g.,

launching a tool. Fewer mention analyses in IDA Pro or

Volatily of post-mortem dumps or possibly online during

execution, but even in the latter case we found no evidence of

technical improvement over the features of open VMI systems

(Table II).

IV. FRAMEWORK

Our BluePill implementation targets 32-bit and 64-bit Win-

dows malware. As DBI engine we use Pin [19], which is

largely popular in security research as it offers intuitive APIs

to place instrumentation at different granularity levels [18].

The manipulations we perform are not specific to Pin2, thus

we believe the approach is portable to other DBI systems.

The section is organized as follows. We first detail the

upper layer that controls what the sample sees and asks of the

system, including its time behavior. Next we discuss how we

provide introspection capabilities for an execution, and how

we shield the latter from artifacts that characterize the very

same underlying DBI execution mechanism. We then detail

how the system presented this far can accommodate program

analyses to aid dissection, and conclude by discussing how

users can extend BluePill with insights from the analysis.

2With the exception of its native debugging interface, which for engines
that miss one could be devised following the implementation strategy of [53].

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TIFS.2020.2976559

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. Y, XXX 2020 7

A. Target Platform Simulation Layer

To discuss the implementation of this upper layer we will

refer to how we alter the environment perceived by a sample

when running in VirtualBox with a Windows image equipped

with common, conspicuous analysis tools. Choosing a different

hypervisor should not require any major changes, as artifacts

known for instance for VMware and KVM can be hidden in

the same ways. BluePill can also be used in bare-metal setups.

As for analysis tools we consider programs serving different

purposes, such as IDA Pro, LordPE, ProcessHacker, Scylla,

the SysInternals suite, WireShark, and others3.

Instead of a cloaked VM where custom drivers and loaders

hide a subset of known VM artifacts (§II-A) we target a vanilla

hypervisor setup, installing also hypervisor guest additions

as they provide handy features normally banned in analysis

scenarios. The mechanism we use to hide its artifacts can also

be used to tailor features of the environment (we detail them

in §IV-E) and meet the expectations of targeted samples.

We build on the observation that samples most notably

fingerprint the following aspects of an execution environment:

• Virtualization. In addition to red pills for instruction-level

differences [16], revealing aspects include contents of

system firmware tables (SMBIOS strings, ACPI tables),

contents and position in memory of specific structures

(e.g., Interrupt Descriptor Table, Task State Segment), and

I/O ports (e.g., historically used to detect VMware).

• Hardware characteristics. Some feature can reveal either

a target victim or a virtual machine: CPU model, core

count, MAC address family, number of adapters, presence

of smart card readers, disk size, serial numbers, etc.

• Windows installation. Samples can inspect context infor-

mation like time zone, language, uptime, install date and

so on, especially targeted one. Hypervisors also introduce

characteristic registry entries, processes, and drivers.

• Applications. The presence of a specific software pro-

gram might represent a necessary condition to trigger a

payload, an adversary that needs to be disarmed (e.g., a

firewall or antivirus product), or more simply a sufficient

condition for evasion (e.g., an analysis tool).

• User artifacts. Fresh Windows installations are suspicious

for a sample, which may look into installed applications,

navigation history, recently used files, etc.

While using images with a realistic wear-and-tear state [54]

is recommended for user artifacts, the other aspects require

that portions of an execution be monitored and altered when

needed. We place hooks on the following execution items:

• Special instructions: cpuid, int, rdtsc and others can

reveal hardware features, elapsed time, and debuggers.

• Library calls: we monitor APIs that deal with files,

registry keys, GUI events, hardware features, drivers, pro-

cesses, pipes, DLLs, network, mutexes, and time sources.

• System calls: samples can use them to achieve (via Nt

user-mode wrappers exported by Windows in ntdll.dll or

via direct ASM calls using for instance sysenter or

int 2e) the interactions described above for libraries

more covertly.

• Windows Management Instrumentation: WMI queries can

reveal OS setup, installed applications, and devices.

• Process environment. Aspects of the execution environ-

ment like the PEB can reveal processor and system infor-

mation upon inspection (e.g., CPU cores, local debugger).

We refer the reader to the supplementary material (§A)

and the source code for their details. For the sake of a more

accurate and effective instrumentation, we place probes at the

lowest possible level of the software stack: in this way we

handle in a single place multiple library functions that in turn

invoke the same system call or helper, as well as direct system

calls that malware authors use to hinder manual code analysis.

To identify which operations should be monitored, we

started from a basic set of instrumentations and gradually

extended it by running BluePill against programs designed to

fingerprint analysis environments (including, but not limited

to, Al-Khaser, Pafish, SEMS, and VMDE), and analyzing a

large body of techniques from white papers and resources from

ethical hackers (e.g., [55], [56], [35], [57]). The techniques we

discovered fall in 8 categories: artifacts when executing in a

debugger, file operations, GUI features, hardware fingerprint-

ing, running processes, registry contents, timing differences

and time stalling techniques, and WMI queries.

Some system calls belong to multiple categories: for in-

stance, samples can use NtQuerySystemInformation to

reveal information regarding processes, perform raw firmware

queries, and detect system drivers. Moreover, distinct patterns

can oftentimes be dealt with using the same machinery: for

instance, cloaking certain registry keys or active GUI windows

is useful to hide conspicuous aspects of analysis tools (e.g.,

IDA Pro, ProcMon) as well as of VirtualBox. Overall, we

were able to detect and counter more than 100 instances of

anti-analysis patterns in our experiments.

Fast Forward Time: The time behavior of a process is

another aspect that we attempt to oversee. Windows offers

many time sources and timer functions that a sample can use to

let automatic analyses time out before carrying any harm, and

to hinder debugging sessions if the analyst does not dismantle

them manually. Samples may not just perform multiple sleep

calls, but also check the time elapsed across them to detect

mitigation strategies based on time fast forwarding.

To counter these techniques, patching time-related calls in a

sample independently could result in exposing an inconsistent

state to it, i.e., the different time sources would not be

synced. One may instead intercept time-related operations at

hypervisor level, and artificially accelerate the guest’s clock.

Such a strategy should however distinguish between operations

happening because of the sample from those naturally occur-

ring in Windows libraries and internals, as accelerating time

indiscriminately could easily lead to system instabilities [17].

We adopt a scheme that manipulates the timer behavior

of a process: although it may not be trivial to implement in

general [17], the DBI abstraction facilitates it as it confines

the effects to the process under analysis.

Our strategy comprises two parts. For each time-stalling

call, we fast forward the execution by accumulating the

3More can just be added by enumerating their artifacts in the current hooks.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TIFS.2020.2976559

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. Y, XXX 2020 8

requested time quantity in an internal data structure, while

the execution is actually suspended for a short amount of time

only (say a few ms). When we observe multiple calls to some

delay primitive4 with the same time quantity or call site of a

previous invocation, we accumulate the requested quantity and

let the execution continue: this is useful to defeat adversarial

sleep loops, where a sample achieves long pause intervals by

using one or more short sleep operations repeated in cycle(s).

Eventually we use the accumulator to fake results for time

queries that a sample may perform, e.g., once timers expire.

We observe that samples can use different timing primitives in

tandem (e.g., rdtsc and GetTickCount) across sequences

of sleep operations to check for consistency too. We fake

the results for each second query by adding to the value

produced for the first invocation a quantity made of the

time accumulated for any timer operation, plus a value either

constant or proportional to the time elapsed in the VM.

This scheme can counter red pills that measure execution

time for instructions that take longer to execute in a hyper-

visor [30], and we use it also to hide the overhead of DBI

and of generic analyses built on top of BluePill such as the

taint tracking of Figure 2(c). While this strategy proves to be

effective on the samples we study, it does not claim to be gen-

eral, and like most dynamic analyses is ill-suited against time

queries operated via an external time source [29] or indirect

techniques5. Still, we believe it represents a building block

towards a more robust strategy, and its design can hopefully

be extended (e.g., considering surrounding instructions [58])

to counter new schemes that may appear in the future.

B. Introspection Layer

We now move to detailing the upper layer for introspection.

For instruction-level introspection we use PinADX [20] to

present debuggers like IDA Pro with a view of the program

state as if the transformations and JIT compilation orchestrated

by DBI were not present. Compared to traditional debugging

solutions, breakpoints are transparent to the code being exe-

cuted (§II-C, [20]), defeating red pills for software breakpoints

and more general checksumming sequences (found, e.g., in

recent strains of the ZeuS trojan). Another advantage is that

performance is affected only around breakpoints and when

single-stepping [20], while full speed execution is ensured for

most of the application: this can be valuable in the presence

of unpacking sequences and other heavy-duty operations.

We then devise a new mechanism for stealthy patching

in user-space debugging that could be useful in domains

other than malware analysis. We allow users to make code

changes of arbitrary length when debugging: we redo the JIT

compilation of the affected instructions adding trampolines

that go unnoticed by memory reads from the sample, as DBI

makes them point to the original (non-jitted) addresses [59].

The mechanism can thus defeat anti-tampering patterns and

shield analysts in the common practice of altering instructions

in a sample to force its internal logic. Optionally, we can hide

the pages containing the patches with the technique of [18],

which shepherds memory accesses to sensitive regions with

a shadow page table maintained by the analysis: in this case

we raise an exception to simulate unmapped memory. We use

it also in another layer (§IV-C) to provide a consistent view

of memory by hiding the artifacts (e.g., sections) of the DBI

engine. We refer the reader to [18] for implementation details.

Instruction-level introspection and patching are accessible

via the popular GDB remote server protocol from IDA Pro and

compatible debuggers. As for high-level introspection abilities,

we implement a mechanism to track system calls and library

functions that are of interest to analysts. We solve symbols

and addresses in a library when Pin loads its image, while for

system calls we extract from ntdll.dll names and ordinals

for the current Windows version.

C. DBI Artifacts Anti-Evasion Layer

DBI engines are transparent to benevolent code [59], but as

we observed in §II-C a meticulous adversary can reveal them

in several subtle ways. This aspect is crucial when designing

DBI-based malware analyses. [18] studies DBI evasions and

shows how to counter them with a library of mitigations more

comprehensive and efficient than prior attempts [60]. We build

on this anti-evasion library to get protection against many

evasion attacks for Pin including, but not limited to, leaking

the real instruction pointer, probing the consistency of memory

permissions and contents, and exposing engine internals.

When developing BluePill we contributed to [18] by dis-

mantling a remarkable technique observed in recent releases of

VMProtect and in a few samples from the dataset discussed in

the supplementary material. To the best of our knowledge, this

evasion was new in the DBI detection landscape. When code

causes a single-step exception by setting the CPU trap flag to

1 with a popfd instruction, Pin triggers an internal exception

and crashes. An adversary program can register a handler for

this scenario and also check where it is being called: simply

passing the exception from Pin to the application would expose

Pin. We thus handle the original exception in Pin, and forge a

new one at the next instruction: Pin does not intercept it, and

when the program’s internal handler does, it is fine with it.

We then address two surfaces left uncovered by [18] with

countermeasures tailored to the malware domain: namely, we

tackle time-based detections and artifacts when debugging.

The fast forwarding mechanism of §IV-A can handle both

low-level time attacks on instructions and branches in DBI [23]

and attacks found in malware that measure the overhead of a

generic dynamic analysis. In early tests our technique proved

to be more robust than the one of [60], which traps reads from

the KUSER_SHARED_DATA kernel structure shared on a user

page and rewrites values using an ad-hoc divisor supplied for

each sample by the user. Apparently [60] could not keep up

with the possibly more complex timing detection patterns from

recent malware and executable protectors that we tried, and

also accounts for fewer time sources than ours.

4We hook user-space functions and instructions for internal time sources,
including high-resolution ones. Hardware timers for drivers are out of scope.

5While their use in malware is undocumented, low-level indirect measure-
ments (e.g., with a counter thread [61] or by racing in two threads nop with
virtualization-sensitive cpuid [29]) could cripple BluePill and any existing
systems. In our context they may draw however the analyst’s attention, who
can then patch the problematic sequence.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TIFS.2020.2976559

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. Y, XXX 2020 9

The combination of [18] and our time mitigations makes

BluePill withstand currently documented DBI evasions. For

instance, a recent work [23] reports on several old and newly

discovered weaknesses of Pin: in our tests BluePill overcame

all the patterns that can apply to Windows. As for malware

in the wild and DBI evasions we can make two observations.

Some techniques typically meant for “other” adversaries can

inadvertently reveal DBI: this is the case of the PAGE_GUARD

page protection modifier that malware writers and packers

use as anti-unpacking technique, but is also well-known to

challenge DBI engines [18]. In our experiments we also

found evidence of malware featuring DBI-specific evasions,

for instance in samples protected with PELock that attempt to

leak the real instruction pointer using FPU instructions.

As for debugging artifacts, this aspect has received rather

little attention in the DBI literature. PinADX might struggle

with exception handling patterns from the malware realm,

failing to pass a caught exception to the sample being de-

bugged. We wrote an extension that instructs Pin to pass the

exception to the sample as the analyst detaches the debugger

for a moment, and waits for its reattaching before resuming

execution in the sample’s handler. We then cloak artifacts

that appear under PinADX such as the BeingDebugged

flag in the PEB being set to 1. We test our implementation

against over 100 red pills for debuggers from popular works

of Ferrie [35], Leitch [57], and Branco et al. [55], [56]. We

also observed that while samples armored with recent releases

of VMProtect and Themida detect tools like ScyllaHide, the

technique behind our debugger currently goes unnoticed.

D. Integration with Program Analyses

We now discuss how the implementation presented this far

can back program analysis capabilities over evasive samples.

[18] reports that about 95 works in recent years used DBI

primitives to back popular security research. Among this

wealth of automatic techniques there are program analyses

that could be valuable also in manual dissection: consider,

e.g., symbolic execution [62], taint analysis [63], or forced

multi-path execution [64]. As a case study, we explore how

taint analysis can help experts pinpoint and dismantle tar-

geted checks and new evasions as part of a human-centered

feedback-loop mechanism, where the analysis can be applied

surgically instead of blindly as in automatic approaches.

Taint analysis can determine which computations are af-

fected by predefined input sources [63]. Some works have

explored it in the malware domain, for instance to detect

flows of user-entered data leaving a browser’s scope [65]

or to intercept keystrokes meant for another process [8].

The approach we follow is different as in BluePill data is

selectively tainted at the analyst’s command.

We use a fork of libdft [66], which offers byte-level tagging

granularity and efficiently tracks data flows across general-

purpose registers and memory. We updated its code to work

with new Pin releases and Windows prototypes and structures.

We let the user choose when to treat as taint source specific

(even individual) library/system calls or memory regions (e.g.,

the PEB); sources can be configured or disabled in the GUI

anytime during debugging, thus not only before execution

starts. Selectivity helps also when using distinct taint seeds

to distinguish sources, as the large encoding space otherwise

required to separately account for many sources upfront could

result in a large footprint for the shadow memory of the taint

engine, degrading performance and possibly undermining the

feasibility of the approach. We found 8 seeds to be enough in

our experiments, with a space occupancy of 1 byte per address

maintained in the shadow memory of libdft.

E. Customizing and Extending the System

Observe-check-replace hooks are a crucial component in

our design, and one of our goals is to let users tweak

existing hooks or add new ones to meet the expectations of a

sample. As mentioned in §IV-A we arrange hooks by 8 artifact

categories. To offer a consistent view of the system across

complex sequences of checks, hooks within the same category

share a list of features that should be masked (e.g., artifacts)

or materialized (e.g., additional languages) in queries about

the system. We alter the perception of files, registry entries,

running processes, IPC objects (e.g., mutexes), loaded libraries

and drivers, hardware and firmware strings, Windows settings

(e.g., languages), and GUI elements, as well as information

accessible via WMI (e.g., BIOS serial, MAC address, CPU

temperature and fan statistics, installed firewalls and anti-virus

products). Users can tailor such lists in the configuration file

or dynamically when debugging using the GUI (Figure 2).

Entries are typically strings that can be added and removed6.

The simplicity of DBI primitives allows for quick prototyp-

ing of hooks to counter targeted checks or newly discovered

anti-analysis techniques. For system and API calls, the user

can write C++ code that is executed when entering or returning

from the function, and register it by specifying the name

of the function and the arguments needed for inspection or

manipulation (we provide some examples in §VI-C). Also as

we said hooks can access Windows headers and functions

directly to inspect and alter the state. We are currently working

on a mechanism to load hooks dynamically via a DLL so that

debugging sessions are not interrupted by changes that need

recompilation. From a methodological perspective we would

like instead to explore the design of a domain specific language

for rewriting API results in active monitoring frameworks.

V. DISCUSSION

BluePill shall not be considered a sandbox, nor an automatic

system for analyzing evasive malware. Our goal is to bridge

the automatic and manual analysis processes: we offer an

environment where dissection can (i) happen without incur-

ring the anti-analysis hassle that characterize either or both

stages, and (ii) benefit from capabilities missing in previous

approaches, e.g., stealthy instruction patching, cloaking of

tools, and surgical use of program analyses (§III-B, IV-D). We

target a gap between literature and malware analysis practice,

for when in the daily practice the automatic analysis of a

6Updates are needed when a sample introduces objects mimicking artifacts
of an active monitoring system to test its robustness. We encountered such
adversarial strategies only with PEB-related debugger red pills.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TIFS.2020.2976559

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. Y, XXX 2020 10

complex evasive sample (a well-studied problem per se) is

not sufficient and human analysts proceed with its dissection

(e.g., for new outstanding threats).

In our process-level active monitoring approach (§II-B) DBI

lets us devise an execution environment stealthy but also

easy to extend. Analysts can tweak it to detect and react to

previously unsupported anti-analysis or targeted checks (we

provide examples in §VI-C), dodging many low-level details

involving the underpinnings of the Windows kernel. Rewriting

more behaviors than the ones currently supported by BluePill

is possibly confined to an implementation job. The price we

pay for this flexibility is that we cannot analyze ring-0 flows.

The usage of DBI as basic building block has the advantage

of better interposition capabilities (crucial for achieving the

dissection features listed in Table II) and not having to

deal with semantic gaps (§II-A). However it introduces an

abstraction layer that could be easier to detect with respect to

VMI. In §VI we show that the countermeasures we adopt were

sufficient in our experiments for BluePill to go unnoticed by

prominent armored malware, and that our users could easily

extend the system to deal with evasive and targeted samples

that commercial vendors struggled with. We will monitor

developments in VMI technology, hoping they will allow us

to explore a porting (at least partial) of the approach to it.

Our design is vulnerable to unknown techniques. With bare-

metal analysis as the only sound way to go [12], automat-

ically characterizing evasive behaviors is a compelling open

problem: even designs in principle stealthy like Ether [44]

were later evaded using defects of the underlying technologies

or other artifacts. Manual dissection often intervenes when

automatic analyses are inconclusive: we speculate that evasive

behaviors are unlikely to go unnoticed in this stage, and

BluePill may provide users with means to face them.

Traps and Pitfalls: In dynamic analysis systems it is

crucial to intercept interactions between a sample and the OS.

Process tracking-based mechanisms are affected by known pit-

falls originating, e.g., from incorrect replicas of OS semantics

or race conditions in state inspection [67]. A benefit of DBI is

that interposition takes place in the same process of the code

under analysis, enabling direct queries to the OS to reason on

the execution state. We took into account the recommendations

from [67] in the design and implementation of BluePill to

minimize the risk of inconsistent executions.

One must also consider that a sample may carry out its

flows using multiple processes (e.g., by injecting code to run

a remote thread, by loading a DLL as a standalone program

with rundll32, etc). DBI engines are equipped to deal with

them: we use the Child Process API of Pin to follow execution

from child/exec-ed processes and remote threads and control

it with DBI. Another subtlety lies in analyzing 32-bit samples

on 64-bit Windows. The WoW64 subsystem offers an OS

compatibility layer across the two architectures, and a 32-bit

sample can use it to exercise further anti-analysis techniques.

For instance, Windows maintains also a 64-bit PEB that 64-bit

processes can query. But as also the 32-bit sample can access

it, the system has to cloak it just like the 32-bit PEB.

VI. EVALUATION

We now illustrate a preliminary experimental investigation

of our system on a set of outstanding samples. We explore

how BluePill can aid analysts in dissecting complex armored

malware and in dealing with unsupported anti-analysis and

targeting techniques. To this end we collect the opinions of a

team of 6 ethical hackers trained in binary analysis and reverse

engineering, memory forensics, and virtualization technology.

While they are currently CS students, they regularly participate

in exclusive reverse engineering and hacking competitions

such as DEF CON. Being a minimal risk study, we applied for

expedited IRB review. We consider this an informal pre-study

that, may BluePill gain the interest of analysts, could pave the

way to a later extensive in-field study of usable security [68].

A. Preliminary Tests

The version of BluePill employed in the study was tested for

robustness against the top-1000 armored samples in the Virus-

Total Academic March 2018 dataset (~64K PE32 samples). To

identify samples that attempt evasions, we first inspected the

dataset using the official Yara rules for anti-debug and anti-VM

detection. Since Yara rules encode patterns that are checked

statically, we assigned them with different weights to privilege

rules that capture definitely evasive patterns over sequences

that might see also legitimate uses (e.g., FindFirstFile)

and result in false positives. For each sample we summed

the weights of the matched rules, then we sorted the samples

accordingly to pick the top 1000.

In these tests we seek evidence for how malware in the wild

can put pressure on BluePill by drawing from a plethora of

anti-analysis techniques. As the dataset comes with no ground

truth for evasions, we monitor suspect activities involving

creation of files, processes, and registry entries, network com-

munication attempts, and uses of the Windows Crypto API. If

for a sample little or no activity is detected, we opt to run it

in a commercial sandbox and resort to manual dissection in

case of discrepancies. While this strategy would be ill-suited

to claim general resistance to evasion—which is not a goal

of this work—we found it a reasonable compromise to gain

confidence in the robustness of the implementation.

We ran the samples in a VirtualBox VM with Windows

7 32-bit, 4 CPU cores, and 3 GB of RAM. The VM image

came with applications, documents, and usage history inspired

by common sandbox design guidelines [54]. For external

communications, we set up an INetSim+Burp server VM to

simulate a number of classic services, as organization rules

forbid us from giving the samples unrestricted Internet access.

Each sample executed for 10 wall-clock minutes with time

fast forwarding enabled: as DBI degrades execution speed,

we conservatively allowed for a larger time budget compared

to commercial sandboxes (3-5 minutes). An inspection of the

logs backed the expectation that evasive checks typically take

place in early stages of execution, i.e., before a sample leaves

notable effects on the system. When no suspect activities were

detected, the prevalent cause was a crash in the Pin engine.

We measured for each sample how many anti-analysis

techniques BluePill dismantled: a significant ~92% fraction of

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TIFS.2020.2976559

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. Y, XXX 2020 11

0
10
20
30
40
50
60
70
80

0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

0.95
1.0

d
is

ti
n

c
t
it
e

m
s
e

t
c
o

u
n

t

support value (%)

size=1
size=2
size=3
size=4
size=5
size=6
size=7
size=8

Fig. 3. Number of distinct sets of anti-analysis techniques of a given size
for different frequency values across samples.

the considered samples resort to at least 4 distinct techniques,

while 47% of them adopt at least 8 different detections (we

observed as many as 15). Note that the actual number of

evasive attempts might be higher: for instance, evasions for

other virtualization technologies like VMware, QEMU, or Xen

are not tracked by BluePill, but are often present in malware.

To look into the nature of countered evasions, we studied

the overlap in used techniques between different samples using

itemset analysis. Figure 3 considers for each sample the set

of distinct anti-analysis measures it implements, and studies

the distribution of the sizes of those sets. In particular, for

a given set size a curve shows how the number of distinct

sets of that size depends on the minimum frequency of those

sets across the samples (support value). For instance, there are

80 distinct sets of 4 measures that arise each in at least 5%

of the samples (upper-left point in the chart). Similarly, there

are 9 distinct sets of 7 measures that arise each in at least

40% of the samples. This shows that assorted combinations

of anti-analysis measures are rather frequent in the collection.

As we move to presenting the findings of our informal user

study, we remark that further details on the experiments above

can be found in §B from the supplementary material.

B. Analysis of Highly Adversarial Samples

With the help of an independent malware analyst7 we se-

lected 45 samples exercising complex anti-analysis behaviors:

• 15 samples collected by Joe Security in 2013-2019 fea-

turing exotic evasions that their products can handle [69];

• 15 samples selected from the VirusTotal dataset as those

exhibiting at least 10 distinct anti-analysis techniques;

• 5 samples shielded by recent versions of the VMProtect,

ASProtect, Themida, Enigma, and PELock protectors;

• 10 samples reviewed in 2018-2019 on blogs of firms

such as FireEye, Talos, and TrendMicro as particularly

noteworthy for hindering automatic and manual analyses.

Using BluePill and monitoring utilities like ProcMon

cloaked by it we collected for each sample high-level in-

dicators like dropped or accessed files, contacted entities,

manipulated registry entries, and created processes. Our results

were consistent with reports collected in Joe Sandbox, a

leading commercial solution for evasive malware, and in two

cases showed actions missed by it. We used IDA Pro over the

GDB interface of BluePill to understand within a debugger

the inner structure and capabilities of each sample.

The entire process required ~4 person weeks. We list the

categories (§IV-A) for their anti-analysis patterns in Table IV

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

DBG X X X X X X X X X X X X X X

FILE X X X X X X X

GUI X X X X X X X X X X

HW X X X X X X X X X X X X X X X X X X X

PROC X X X X X X X X X X X X X X X X

REG X X X X X X X X X X X

TIME X X X X X X X X X X X X X X X X X X X

WMI X X X X X

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

DBG X X X X X X X X X X X X X X X X X X

FILE X X X X X X X X X

GUI X X X X X X X X X X X X X X

HW X X X X X X X X X X X X X X X X X

PROC X

REG X X X X X X X X X X

TIME X X X X X X X X X X X X X X X X X

WMI X X X

TABLE IV
ANTI-ANALYSIS PATTERNS FROM SAMPLES (BY CATEGORY).

and report their hashes in Table V of the supplementary

material. To minimize the risk of bias in the selection process

that could favor BluePill, we asked the analyst to pick for the

study 12 samples that would best represent the nuisance of

adversarial techniques when dissecting complex malware.

We set up a laboratory for our users made of: (A) a Windows

7 VM as in a real-world scenario with common analysis tools

for a cloaked VirtualBox, (B) a similar VM with BluePill

for vanilla VirtualBox, (C) a Linux system with the QEMU-

based PyREBox system, and (D) a Xen-enabled Linux system

to run the DRAKVUF automatic analysis platform boosted

with pyvmidbg8. Due to licensing restrictions and not minor

financial aspects we leave out commercial products: yet the

reader may refer to §III-B for a qualitative comparison.

Tasks: After a 2-hour tutorial on the systems9 using

sample (42) as a demo, we asked the participants to give the

12 samples a spin in the systems and read the Joe Sandbox

reports. Showing them the reports mirrors the workflow of a

professional analyst that when about to dissect a sample first

runs it in the sandbox(es) available within the organization for

an initial characterization (§II-A).

We set up a feedback form and prepared analysis tasks

regarding a sample’s actions and structure, namely: code

revealed/exercised once multiple adversarial techniques are de-

fused; OS interactions and effects on the system that take place

using covert techniques and/or in later stages; and facts about

protection schemes in place. We defined 3 analysis setups:

one with (A), one with (B), and one where users could freely

use (C), (D), or both. We made a distribution of assignments

such that each user analyzed 6 distinct samples, using every

setup overall twice, while each sample was analyzed in each

setup exactly once. As the tasks were similarly difficult across

samples, no counterbalancing measures seemed to be needed.

Hurdles: What makes the samples bothersome to analyze

are the multi-colored ways10 in which they slow down and

break dissection. Adversarial patterns may be laid out in long

spread sequences so that analysts may miss some like in

(7), be interspersed in lengthy unpacking schemes (35), or

even be part of self-rewriting code (40) requiring a laborious

patching with breakpoints and single-stepping. Their anti-VM

techniques can reveal nearly all hypervisors behind analysts’

7With ten years’ experience as principal malware analyst in security firms.
8Currently the only maintained generic, open VMI debugging interface.
9Some participants had used PyREBox (4) and pyvmidbg (3) before.
10We report only one sample per technique among all those where present.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TIFS.2020.2976559

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. Y, XXX 2020 12

workstations (26), while time-based red pills expose debug-

ging activities if not countered (32). Samples may look for

many known dissection tools like debuggers and monitoring

utilities in covert ways (40), using multiple threads (41) or

even altering Windows to prevent their reloading after killing

them (39). The VM may be left in an unusable state by wiping

essential disk or registry elements (9) and disabling Windows

features (36), forcing analysts to use forensic tools over full

memory dumps and disks to grasp the effects of a deployed

payload. Furthermore they represent a tough proving ground

for the DBI artifacts anti-evasion layer of BluePill (§IV-C).

Dissection and Feedbacks: The participants were able to

dissect all samples using BluePill, 8 with setup (A) leaving

out (26, 35, 39, 40), and 9 with setup (C/D) failing (26, 40,

43). For (A) some adversarial techniques broke the analysis

flow; for (C/D) the users exhausted the time budget of 3 hours

per sample before completing all tasks.

We received largely positive comments on how BluePill

facilitated the dissection process. All the users agreed on how

it allowed them to better focus on understanding the actions

and the dynamically revealed structure of a sample, without

the worry of having to start over as in (A) from the last

save point (§II-A) every time an unaccounted or mishandled

adversarial behavior kicked in. This was rather evident for

samples shielded by packers, especially (35): debugger cloaks

like ScyllaHide and TitanHide did not help in (A) when quirky

temporal and VM evasions were in place. Some evasions

can also be hard to locate in the first place: for instance

in (35) are part of lengthy complex unpacking code, (40) is

extremely annoying for the analyst as self-modifying code is

used to encode them, while in (26) the analyst has to dive into

Windows internals.

VMI-based solutions fared better for anti-debugging tech-

niques than (A), but left the users vulnerable to hypervisor

detections that they had to counter manually. For (D) users

also had to patch checks on CPU cores, as to debug over

hardware-assisted virtualization libvmi requires that only one

core be exposed to the guest or Windows would incur a blue

screen of death. They reported that although debugging via

VMI is technically very interesting and powerful, on a first

attempt they would still use (A) over (C) or (D) for speed

and usability. Criticisms involved difficulties in following

and controlling threads alongside the OS scheduler activities,

limited assistance in inspecting memory layout of a process

and symbols, and coarse grain of the monitoring facilities, if

available. The users commended the scripting capabilities of

(C) especially if they were to be applied in ring-0 or forensic

analysis, but were unhappy with the slow working that adds

to QEMU’s one, and concerned about the conspicuous custom

opcodes used by its in-guest agent for monitoring.

Other positive comments on BluePill involved the interac-

tive altering of the exposed environment (e.g., CPU model

and cores) as the expectations of a sample became clear

without having to restart dissection, while two users believed

the stealth patching mechanism could be useful also in other

applications besides malware analysis.

A more interesting fact we witnessed were uses of the

system that we did not anticipate. Two participants—of their

own accord and without influencing one another—added hooks

unrelated to evasions, in order to dig on behaviors surfaced in

the Joe reports or to alter their effects. One user observed

PowerShell activities in the report of (43) and added a hook

that with a regular expression intercepts the launching of

scripts via registry entries and APC and yields to the debugger

like a semantic breakpoint. The other user was worried about

destructive actions from (9) and wrote a hook to rewire

calls to components like bcdedit (it alters OS boot) to a

dummy executable created for the occasion, and another hook

to prevent a sample from disabling certain system services

and rebooting the machine. The user also liked how these

hooks would be reusable when analyzing samples with similar

behaviors, e.g., (36).

We came to believe that eliminating anti-analysis techniques

creates a baseline to streamline and effectively assist analysts

in subsequent core tasks: we look forward to tackling this

research direction. In the two users’ opinion it would have

been significantly more difficult to encode such actions using

debugger scripting even in products like IDA Pro, while the

VMI mechanisms of PyREBox or DRAKVUF were not as

appealing as using DBI primitives, as the capabilities of VMI

are currently too low-level in terms of interfaces and also more

oriented to observing rather than altering behaviors.

C. Handling Unsupported Techniques

To explore how analysts may turn insights from inspection

into extensions to BluePill, we asked the 3 most engaged

participants to analyze 3 more samples. The first two are

targeted and would stay dormant even on bare-metal systems if

the Windows installation does not meet certain characteristics,

while the third features an unprecedented assortment of anti-

analysis techniques. The users were not given any prior knowl-

edge of the samples. The outcome of this experiment suggests

that stealthy introspection capabilities, occasionally combined

with taint tracking in the face of lengthy sequences, facilitate

valuable insights that may be easy to turn into extensions

thanks to the simplicity of DBI mechanisms.

Targeted Malware: The two targeted samples are bank-

ing trojans: NukeBot, which attacks French companies, and

Retefe, a strain famous for threatening mainly Swiss financial

institutions. According to Joe Security, both samples did not

initially reveal their behavior in full inside their state-of-the-

art sandboxing solution [70], [24]. We briefly report on the

findings of the three participants, and how they configured

and extended BluePill to analyze the samples in full.

The initial run of NukeBot in sandbox mode (§II-D)

revealed a number of files being dropped along with a

copy of the Firefox browser, which is then executed result-

ing in an error message in French. The logs contained an

IsDebuggerPresent call, multiple checks on free disk

space, and a large number of GetKeyboardLayout invoca-

tions within a DLL loaded after Firefox was launched. When

the team moved to debugging it, they discovered that NukeBot

uses a DLL side-loading attack affecting old versions of the

browser to load a malicious payload embedded in the custom

DLL. As the initial stage of the DLL is not obfuscated, they

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TIFS.2020.2976559

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. Y, XXX 2020 13

could easily see uses of the GetThreadUILanguage and

GetKeyboardLayout to check user interface and keyboard

language against French. As either check is sufficient, the

participants opted to add the following hook when returning

from GetKeyboardLayout:

// <windows.h> in W namespace, HKL type for input locale ID

VOID GetKeyboardLayoutHookExit(void* ret) {

W::HKL *tmp = (W::HKL*)ret;

ret = (W::HKL)0x040c040c; / French */

}

A new run in sandbox mode revealed the same extensive

credential stealing activities that Joe Security analysts saw only

upon updating their VM image with the new layout [70].

For the second case study, when analyzing Retefe in

sandbox mode BluePill recorded one cpuid occurrence,

a number of apparently benign registry queries, an

IsDebuggerPresent call, and a WMI query, followed by

a large number of short sleeps before terminating. The WMI

query SELECT * FROM WIN32_OPERATINGSYSTEM

raised suspicion among the team, who marked its output

as tainted and followed taint propagation. While the query

returns a data structure with 66 members, Retefe checks the

sole MUILanguages[] field to see whether en-US is the

only MUI pack (§II-D) installed in the system.

Joe Security reports [24] that within two days they created a

new VM with multiple MUI packs and managed to run Retefe

in full. Our users made simple modifications11 to the existing

WMI hook to rewrite the query result: after the changes Retefe

dropped the 7zip tool to extract its components from an archive

and connect to the TOR network as expected.

New Evasions: Furtim is a sample that in 2016 drew

the attention of analysts due to its staggering amount of anti-

analysis techniques, a clear sign of the vast expertise of its

author [71]. It could evade all known dynamic analysis solu-

tions with the sole exception of the bare metal-based sandbox

of Joe Security [3], [71]. Furtim performs over 400 adversarial

checks, including registry entries and service executable names

from even very rare security programs, and artifacts from

major virtualization and sandboxing environments [71].

Furtim terminates prematurely when in a VM or sandbox,

and when it detects popular analysis tools it retaliates to the

analyst by killing them only at a later stage to disrupt progress.

Its checks are rather articulate: for instance it uses cpuid to

check product brand strings against a blacklist, and later makes

a sanity check between CPU model and available cores. When

it looks up loaded drivers some entries lead to an immediate

termination and others to a later evasion. [3] details checks

related to network, DLLs, hardware and BIOS strings, window

titles, registry keys, and Direct3D.

When our users analyzed Furtim, BluePill lacked one

hook to withstand all the actions listed in [3]: system call

NtEnumerateKey takes a registry key handle opened via

NtOpenKey and writes in a buffer the value of the subkey at

the given index. Furtim uses it to look for VirtualBox artifacts

related to disks, CD-ROM drives, and Direct3D properties. We

kept the existence of [3] to us, and for the sake of analysis we

informed the team that had all evasions be countered Furtim

would drop an executable and add it to autostart programs.

They first ran it in sandbox mode to see what anti-analysis

techniques were identified, which included two cpuid red

pills, a call to NtQueryInformationProcess to expose

debuggers, and two to NtQuerySystemInformation to

fingerprint drivers and processes. They thus marked the output

of NtQuerySystemInformation as tainted and followed

taint propagation, which revealed that Furtim uses standard

wide-char string processing functions to parse the tainted data.

They then hooked such functions to print their arguments

and see which strings were processed during the execution.

Once suspicious strings containing VBOX started to appear,

they used our system call tracing feature to intercept possible

families of calls that were not already hooked, and inspected

the memory pointed to by their arguments to see whether such

a string could originate from there. This approach exposed

all the uses of NtEnumerateKey mentioned above, so they

implemented the following code to massage the results by

rerouting the query to a random key not present in the system:

void NtEnumerateKeyHookEntry(syscall_t *sc,

CONTEXT *ctx, SYSCALL_STANDARD std) {

KEY_INFORMATION_CLASS cl = (KEY_INFORMATION_CLASS)

sc->arg2;

if (cl == KeyBasicInformation) {

PKEY_BASIC_INFORMATION str = (PKEY_BASIC_INFORMATION)

sc->arg3;

if (wcsstr(str->Name, L"VBOX") != NULL) {

size_t nameLen = wcslen(str->Name);

memcpy(str->Name, RANDOM_KEY_WSTR(nameLen), nameLen); }

}

}

Unfortunately Furtim still terminated prematurely. We then

suggested to trace library calls with BluePill: by a closer in-

spection one additional check via EnumDisplaySettings

not described in [3] emerged. Furtim uses this API to retrieve

information on the graphic modes supported by a device,

and the participants rewrote the behavior exposed for device

\\.\DISPLAY1 as it revealed VirtualBox. We could not find

evidence of this evasion technique in previous literature.

VII. CONCLUSION

BluePill embodies a holistic approach to reconcile divergent

interests and requirements of automatic and manual malware

analysis, easing the dissection of complex samples with new

capabilities while preserving transparency. As a building block

immune from semantic gaps, DBI backs it in useful execution

monitoring and altering capabilities, facilitates user extensions

and customizations, and paves the way to exploring more

program analyses. We share our implementation hoping that

security researchers and professionals may benefit from it.

ACKNOWLEDGMENTS

We are deeply grateful to Simone Nicchi for his many

useful comments. We thank Alberto Marchetti–Spaccamela,

Giuseppe Laurenza, Mario Polino, and Pietro Borrello for their

help in different stages, our anonymous reviewers for their

suggestions, and VirusTotal and their staff for granting us a

free academic account. This work is supported in part by a

grant of the Italian Presidency of the Council of Ministers.

11We report the code in §A from the supplementary material.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TIFS.2020.2976559

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. Y, XXX 2020 14

REFERENCES

[1] M. Egele, T. Scholte, E. Kirda, and C. Kruegel, “A survey on automated
dynamic malware-analysis techniques and tools,” ACM Comput. Surv.,
vol. 44, no. 2, pp. 6:1–6:42, Mar. 2008.

[2] D. Plohmann, S. Eschweiler, and E. Gerhards-Padilla, “Patterns of
a cooperative malware analysis workflow,” in 2013 5th International

Conference on Cyber Conflict (CYCON 2013), June 2013, pp. 1–18.

[3] SentinelOne, “SFG: Furtim malware analysis,” Tech. Rep., 2016, https:
//www.sentinelone.com/blog/sfg-furtims-parent/ (Accessed: Feb 2020).

[4] Z. Xu, J. Zhang, G. Gu, and Z. Lin, “GoldenEye: Efficiently and
effectively unveiling malware’s targeted environment,” in Proc. of the

17th Int. Conf. on Research in Attacks, Intrusions and Defenses, ser.
RAID’14. Cham: Springer International Publishing, 2014, pp. 22–45.

[5] D. Andriesse and H. Bos, “Instruction-level steganography for covert
trigger-based malware,” in Detection of Intrusions and Malware, and

Vulnerability Assessment, S. Dietrich, Ed. Cham: Springer International
Publishing, 2014, pp. 41–50.

[6] C. Willems, T. Holz, and F. Freiling, “Toward automated dynamic
malware analysis using CWSandbox,” IEEE Security Privacy, vol. 5,
no. 2, pp. 32–39, March 2007.

[7] T. K. Lengyel, S. Maresca, B. D. Payne, G. D. Webster, S. Vogl, and
A. Kiayias, “Scalability, fidelity and stealth in the DRAKVUF dynamic
malware analysis system,” in Proc. of the 30th Annual Computer

Security Applications Conf., ser. ACSAC ’14. New York, NY, USA:
ACM, 2014, pp. 386–395.

[8] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda, “Panorama:
Capturing system-wide information flow for malware detection and anal-
ysis,” in Proc. of the 14th ACM Conf. on Computer and Communications

Security, ser. CCS ’07. ACM, 2007, pp. 116–127.

[9] B. Dolan-Gavitt, T. Leek, M. Zhivich, J. Giffin, and W. Lee, “Virtuoso:
Narrowing the semantic gap in virtual machine introspection,” in Proc.

of the 2011 IEEE Symposium on Security and Privacy, ser. SP ’11.
IEEE Computer Society, 2011, pp. 297–312.

[10] hfiref0x, “Vboxhardenedloader project,” 2018, https://github.com/
hfiref0x/VBoxHardenedLoader (Accessed: Feb 2020).

[11] J. Pfoh and S. Vogl, “rVMI: A new paradigm for full system analysis,”
Black Hat USA, 2017.

[12] D. Kirat, G. Vigna, and C. Kruegel, “BareCloud: Bare-metal analysis-
based evasive malware detection,” in Proc. of the 23rd USENIX Security

Symposium, ser. SEC’14. USENIX Association, 2014, pp. 287–301.

[13] A. Yokoyama, K. Ishii, R. Tanabe, Y. Papa, K. Yoshioka, T. Mat-
sumoto, T. Kasama, D. Inoue, M. Brengel, M. Backes, and C. Rossow,
“Sandprint: Fingerprinting malware sandboxes to provide intelligence
for sandbox evasion,” in Research in Attacks, Intrusions, and Defenses.
Cham: Springer International Publishing, 2016, pp. 165–187.

[14] R. Baldoni, E. Coppa, D. C. D’Elia, and C. Demetrescu, “Assisting
malware analysis with symbolic execution: A case study,” in Cyber

Security Cryptography and Machine Learning, S. Dolev and S. Lodha,
Eds. Springer International Publishing, 2017, pp. 171–188.

[15] L. Borzacchiello, E. Coppa, D. C. D’Elia, and C. Demetrescu, “Recon-
structing C2 servers for remote access trojans with symbolic execution,”
in Cyber Security Cryptography and Machine Learning, S. Dolev,
D. Hendler, S. Lodha, and M. Yung, Eds. Cham: Springer International
Publishing, 2019, pp. 121–140.

[16] R. Paleari, L. Martignoni, G. F. Roglia, and D. Bruschi, “A fistful
of red-pills: How to automatically generate procedures to detect cpu
emulators,” in Proc. of the 3rd USENIX Conf. on Offensive Technologies,
ser. WOOT’09. USENIX Association, 2009.

[17] F. Besler, C. Willems, and R. Hund, “Countering innovative
sandbox evasion techniques used by malware,” Tech. Rep., 2017,
https://www.first.org/resources/papers/conf2017/Countering-Innovative-
Sandbox-Evasion-Techniques-Used-by-Malware.pdf (Accessed: Feb
2020).

[18] D. C. D’Elia, E. Coppa, S. Nicchi, F. Palmaro, and L. Cavallaro, “SoK:
Using dynamic binary instrumentation for security (and how you may
get caught red handed),” in Proc. of the 2019 ACM Asia Conference on

Computer and Communications Security, ser. Asia CCS ’19. ACM,
2019, pp. 15–27.

[19] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: Building customized
program analysis tools with dynamic instrumentation,” in Proc. of the

2005 ACM SIGPLAN Conf. on Programming Language Design and

Implementation, ser. PLDI ’05. ACM, 2005, pp. 190–200.

[20] G. Lueck, H. Patil, and C. Pereira, “PinADX: An interface for customiz-
able debugging with dynamic instrumentation,” in Proc. of the Tenth

International Symposium on Code Generation and Optimization, ser.
CGO ’12. New York, NY, USA: ACM, 2012, pp. 114–123.

[21] F. Falcón and N. Riva, “Dynamic binary instrumentation frameworks: I
know you’re there spying on me,” Recon, 2012.

[22] K. Sun, X. Li, and Y. Ou, “Break out of the Truman show: Active
detection and escape of dynamic binary instrumentation,” Black Hat

Asia, 2016.

[23] J. Kirsch, Z. Zhechev, B. Bierbaumer, and T. Kittel, “PwIN – Pwning
Intel piN: Why DBI is unsuitable for security applications,” in Computer

Security. Springer International Publishing, 2018, pp. 363–382.

[24] Joe Security, “Retefe loaded with new MUILanguage sandbox
evasion,” Tech. Rep., 2017, https://www.joesecurity.org/blog/
7328916856247672770 (Accessed: Feb 2020).

[25] Y. Shoshitaishvili, M. Weissbacher, L. Dresel, C. Salls, R. Wang,
C. Kruegel, and G. Vigna, “Rise of the HaCRS: Augmenting au-
tonomous cyber reasoning systems with human assistance,” in Proc.

of the 2017 ACM SIGSAC Conf. on Computer and Communications

Security, ser. CCS ’17, 2017.

[26] Y. Kawakoya, M. Iwamura, E. Shioji, and T. Hariu, “API Chaser: Anti-
analysis resistant malware analyzer,” in Research in Attacks, Intrusions,

and Defenses. Springer Berlin Heidelberg, 2013, pp. 123–143.

[27] F. Zhang, K. Leach, A. Stavrou, and H. Wang, “Towards transparent
debugging,” IEEE Transactions on Dependable and Secure Computing,
vol. 15, no. 2, pp. 321–335, March 2018.

[28] T. Raffetseder, C. Kruegel, and E. Kirda, “Detecting system emulators,”
in Proc. of the 10th Int. Conf. on Information Security, ser. ISC’07.
Springer-Verlag, 2007, pp. 1–18.

[29] T. Garfinkel, K. Adams, A. Warfield, and J. Franklin, “Compatibility
is not transparency: VMM detection myths and realities,” in Proc. of

the 11th USENIX Workshop on Hot Topics in Operating Systems, ser.
HOTOS’07. USENIX Association, 2007.

[30] M. Brengel, M. Backes, and C. Rossow, “Detecting hardware-assisted
virtualization,” in Proc. of the 13th Int. Conf. on Detection of Intru-

sions and Malware, and Vulnerability Assessment, ser. DIMVA 2016.
Springer-Verlag New York, Inc., 2016, pp. 207–227.

[31] M. G. Kang, H. Yin, S. Hanna, S. McCamant, and D. Song, “Emulating
emulation-resistant malware,” in Proc. of the 1st ACM Workshop on

Virtual Machine Security, ser. VMSec ’09. ACM, 2009.

[32] D. Kirat and G. Vigna, “MalGene: Automatic extraction of malware
analysis evasion signature,” in Proc. of the 22Nd ACM SIGSAC Conf.

on Computer and Communications Security, ser. CCS ’15. ACM, 2015,
pp. 769–780.

[33] N. M. Johnson, J. Caballero, K. Z. Chen, S. McCamant, P. Poosankam,
D. Reynaud, and D. Song, “Differential slicing: Identifying causal
execution differences for security applications,” in Proc. of the 2011

IEEE Sym. on Security and Privacy. IEEE Computer Society, 2011,
pp. 347–362.

[34] M. Lindorfer, C. Kolbitsch, and P. Milani Comparetti, “Detecting
environment-sensitive malware,” in Proc. of the 14th Int. Conf. on Recent

Advances in Intrusion Detection, ser. RAID’11. Springer-Verlag, 2011,
pp. 338–357.

[35] P. Ferrie, “The ultimate anti-debugging reference,” Tech. Rep., 2011,
http://anti-reversing.com/Downloads/Anti-Reversing/The_Ultimate_
Anti-Reversing_Reference.pdf (Accessed: Feb 2020).

[36] X. Ugarte-Pedrero, D. Balzarotti, I. Santos, and P. G. Bringas, “SoK:
Deep packer inspection: A longitudinal study of the complexity of run-
time packers,” in Proc. of the 2015 IEEE Symposium on Security and

Privacy, ser. SP ’15. IEEE Computer Society, 2015, pp. 659–673.

[37] A. Vasudevan and R. Yerraballi, “Cobra: Fine-grained malware analysis
using stealth localized-executions,” in Proc. of the 2006 IEEE Sympo-

sium on Security and Privacy, ser. SP’06. IEEE Computer Society,
2006, pp. 264–279.

[38] A. Moser, C. Kruegel, and E. Kirda, “Exploring multiple execution paths
for malware analysis,” in Proc. of the 2007 IEEE Symposium on Security

and Privacy, ser. SP ’07. IEEE Computer Society, 2007, pp. 231–245.

[39] D. Brumley, C. Hartwig, Z. Liang, J. Newsome, D. Song, and H. Yin,
“Automatically identifying trigger-based behavior in malware,” in Botnet

Detection: Countering the Largest Security Threat, W. Lee, C. Wang,
and D. Dagon, Eds. Springer US, 2008, pp. 65–88.

[40] Cisco Talos, “Python scriptable reverse engineering sandbox,” 2017,
https://talosintelligence.com/pyrebox (Accessed: Feb 2020).

[41] C. Kolbitsch, E. Kirda, and C. Kruegel, “The power of procrastination:
Detection and mitigation of execution-stalling malicious code,” in Proc.

of the 18th ACM Conf. on Computer and Communications Security, ser.
CCS ’11. ACM, 2011, pp. 285–296.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TIFS.2020.2976559

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

https://www.sentinelone.com/blog/sfg-furtims-parent/
https://www.sentinelone.com/blog/sfg-furtims-parent/
https://github.com/hfiref0x/VBoxHardenedLoader
https://github.com/hfiref0x/VBoxHardenedLoader
https://www.first.org/resources/papers/conf2017/Countering-Innovative-Sandbox-Evasion-Techniques-Used-by-Malware.pdf
https://www.first.org/resources/papers/conf2017/Countering-Innovative-Sandbox-Evasion-Techniques-Used-by-Malware.pdf
https://www.joesecurity.org/blog/7328916856247672770
https://www.joesecurity.org/blog/7328916856247672770
http://anti-reversing.com/Downloads/Anti-Reversing/The_Ultimate_Anti-Reversing_Reference.pdf
http://anti-reversing.com/Downloads/Anti-Reversing/The_Ultimate_Anti-Reversing_Reference.pdf
https://talosintelligence.com/pyrebox

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. XX, NO. Y, XXX 2020 15

[42] H. Shi and J. Mirkovic, “Hiding debuggers from malware with apate,”
in Proceedings of the Symposium on Applied Computing, ser. SAC ’17.
ACM, 2017, pp. 1703–1710.

[43] H. Shi, J. Mirkovic, and A. Alwabel, “Handling anti-virtual machine
techniques in malicious software,” ACM Trans. Priv. Secur., vol. 21,
no. 1, pp. 2:1–2:31, 2017.

[44] A. Dinaburg, P. Royal, M. Sharif, and W. Lee, “Ether: Malware analysis
via hardware virtualization extensions,” in Proc. of the 15th ACM

Conference on Computer and Communications Security, ser. CCS ’08.
ACM, 2008, pp. 51–62.

[45] A. M. Nguyen, N. Schear, H. Jung, A. Godiyal, S. T. King, and H. D.
Nguyen, “MAVMM: Lightweight and purpose built VMM for malware
analysis,” in 2009 Annual Computer Security Applications Conference,
ser. ACSAC ’09. IEEE Computer Society, 2009, pp. 441–450.

[46] D. Kirat, G. Vigna, and C. Kruegel, “BareBox: Efficient malware
analysis on bare-metal,” in Proc. of the 27th Annual Computer Security

Applications Conference, ser. ACSAC ’11. ACM, 2011, pp. 403–412.

[47] F. Zhang, K. Leach, K. Sun, and A. Stavrou, “SPECTRE: A dependable
introspection framework via system management mode,” in Proc. of the

2013 43rd Annual IEEE/IFIP Int. Conf. on Dependable Systems and

Networks (DSN). IEEE Computer Society, 2013, pp. 1–12.

[48] K. Leach, C. Spensky, W. Weimer, and F. Zhang, “Towards transparent
introspection,” in 2016 IEEE 23rd International Conference on Software

Analysis, Evolution, and Reengineering (SANER), 2016, pp. 248–259.

[49] C. Spensky, H. Hu, and K. Leach, “LO-PHI: low-observable physical
host instrumentation for malware analysis,” in 23rd Annual Network and

Distributed System Security Symp. (NDSS). The Internet Society, 2016.

[50] L. Zhou, J. Xiao, K. Leach, W. Weimer, F. Zhang, and G. Wang,
“Nighthawk: Transparent system introspection from ring -3,” in Com-

puter Security – ESORICS 2019. Springer, 2019, pp. 217–238.

[51] Z. Deng, X. Zhang, and D. Xu, “Spider: Stealthy binary program
instrumentation and debugging via hardware virtualization,” in Proc.

of the 29th Annual Computer Security Applications Conference, ser.
ACSAC ’13. ACM, 2013, pp. 289–298.

[52] M. Tarral, “Building a flexible hypervisor-level debugger,” In-

somni’Hack, 2019.

[53] Hex-Rays, “IDA Pin tracer,” 2019, https://www.hex-rays.com/products/
ida/support/idadoc/1652.shtml (Accessed: Feb 2020).

[54] N. Miramirkhani, M. P. Appini, N. Nikiforakis, and M. Polychronakis,
“Spotless sandboxes: Evading malware analysis systems using wear-and-
tear artifacts,” in 2017 IEEE Symposium on Security and Privacy (SP),
2017.

[55] R. R. Branco, G. N. Barbosa, and P. D. Neto, “Scientific but not
academical overview of malware anti-debugging, anti-disassembly and
anti-vm technologies,” Black Hat, 2012.

[56] G. N. Barbosa and R. R. Branco, “Prevalent characteristics in modern
malware,” Black Hat USA, 2014.

[57] J. Leitch, “Anti-debugging with exceptions,” Tech. Rep., 2011, http://
www.autosectools.com/anti-debugging-with-exceptions.pdf (Accessed:
Feb 2020).

[58] Y. Oyama, “How does malware use rdtsc? A study on operations
executed by malware with cpu cycle measurement,” in Detection of

Intrusions and Malware, and Vulnerability Assessment. Cham: Springer
International Publishing, 2019, pp. 197–218.

[59] D. Bruening, Q. Zhao, and S. Amarasinghe, “Transparent dynamic
instrumentation,” in Proc. of the 8th ACM SIGPLAN/SIGOPS Conf. on

Virtual Execution Environments, ser. VEE ’12. ACM, 2012.

[60] M. Polino, A. Continella, S. Mariani, S. D’Alessio, L. Fontana, F. Gritti,
and S. Zanero, “Measuring and defeating anti-instrumentation-equipped
malware,” in Detection of Intrusions and Malware, and Vulnerability

Assessment. Cham: Springer Int. Publishing, 2017, pp. 73–96.

[61] M. Schwarz, C. Maurice, D. Gruss, and S. Mangard, “Fantastic timers
and where to find them: High-resolution microarchitectural attacks in
JavaScript,” in Financial Cryptography and Data Security. Cham:
Springer International Publishing, 2017, pp. 247–267.

[62] R. Baldoni, E. Coppa, D. C. D’Elia, C. Demetrescu, and I. Finocchi, “A
survey of symbolic execution techniques,” ACM Comput. Surv., vol. 51,
no. 3, 2018.

[63] E. J. Schwartz, T. Avgerinos, and D. Brumley, “All you ever wanted to
know about dynamic taint analysis and forward symbolic execution (but
might have been afraid to ask),” in 2010 IEEE Symposium on Security

and Privacy, ser. SP ’10. IEEE Computer Society, 2010, pp. 317–331.

[64] F. Peng, Z. Deng, X. Zhang, D. Xu, Z. Lin, and Z. Su, “X-force: Force-
executing binary programs for security applications,” in Proc. of the 23rd

USENIX Security Symposium, ser. SEC’14. USENIX Association, 2014.

[65] M. Egele, C. Kruegel, E. Kirda, H. Yin, and D. Song, “Dynamic spyware
analysis,” in Proc. of the 2007 USENIX Annual Technical Conf., ser.
ATC’07. USENIX Association, 2007, pp. 18:1–18:14.

[66] V. P. Kemerlis, G. Portokalidis, K. Jee, and A. D. Keromytis, “Libdft:
Practical dynamic data flow tracking for commodity systems,” in Proc.

of the 8th ACM SIGPLAN/SIGOPS Conference on Virtual Execution

Environments, ser. VEE ’12. ACM, 2012, pp. 121–132.
[67] T. Garfinkel, “Traps and pitfalls: Practical problems in system call

interposition based security tools,” in Proc. Network and Distr. Sys.

Security Symp., 2003.
[68] K. Yakdan, S. Dechand, E. Gerhards-Padilla, and M. Smith, “Helping

Johnny to analyze malware: A usability-optimized decompiler and
malware analysis user study,” in 2016 IEEE Symposium on Security

and Privacy (SP), May 2016, pp. 158–177.
[69] Joe Security, “Analysis reports of evasive malware,” Tech. Rep., 2018,

https://www.joesecurity.org/joe-sandbox-reports-evasive (Accessed: Feb
2020).

[70] ——, “Evasive malware hits French corporations,” Tech. Rep., 2018,
https://www.joesecurity.org/blog/5668638927855499504 (Accessed: Feb
2020).

[71] EnSilo, “Analyzing Furtim,” Tech. Rep., 2016, https://blog.ensilo.com/
analyzing-furtim-malware-that-avoids-mass-infection (Accessed: Feb
2020).

Daniele Cono D’Elia obtained his Ph.D. in Engi-
neering in Computer Science in 2016 from Sapienza
University of Rome. He is currently a post-doc with
Sapienza. His research involves software security
and programming language research, with a current
focus on malware, code reuse techniques, and code
obfuscation.

Emilio Coppa obtained his Ph.D. in Computer Sci-
ence in 2015 from Sapienza University of Rome. He
is currently a post-doc with Sapienza. His research
interests include software testing, vulnerability anal-
ysis, and reverse engineering techniques.

Federico Palmaro obtained his M.Sc. in Engineer-
ing in Computer Science in 2018 from Sapienza
University of Rome. He is currently with Prisma
researching evasive malware and related dynamic
analysis systems.

Lorenzo Cavallaro is currently a Professor and
Chair in Cybersecurity with King’s College London.
His research vision is to develop techniques that
automatically protect systems from vulnerabilities
and malicious behaviors. He is founder and leader
of the Systems Security Research Lab, working at
the intersection of program analysis and machine
learning for systems security.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TIFS.2020.2976559

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

https://www.hex-rays.com/products/ida/support/idadoc/1652.shtml
https://www.hex-rays.com/products/ida/support/idadoc/1652.shtml
http://www.autosectools.com/anti-debugging-with-exceptions.pdf
http://www.autosectools.com/anti-debugging-with-exceptions.pdf
https://www.joesecurity.org/joe-sandbox-reports-evasive
https://www.joesecurity.org/blog/5668638927855499504
https://blog.ensilo.com/analyzing-furtim-malware-that-avoids-mass-infection
https://blog.ensilo.com/analyzing-furtim-malware-that-avoids-mass-infection

