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The decay laws of primordial turbulence and the heating rates by its dissipation are de­
rived in the expanding medium, and it is shown that the matter in the expanding universe 
cannot be heated and kept at temperatures higher than 105 oK which are necessary for the 
galaxy formation by thermal instability. Moreover the effects of its dissipation on hydrody­
namic instability are discussed. 

§ I. Introduction 

The growth of primordial density contrasts and their separation from the 
general expansion of the universe are the first step in the course of galaxy 
formation, which has been attempted to describe by various mechanisms. The 
epoch of the separation depends on the amount of density contrasts at some 
epoch, which must be more than several billion years ago. In the case of 
~ravitational instability there arises some lower limit for the initial density con­
trast which cannot be explained by the statistical origin.1

> It has been expected, 
on the other hand, that thermal instability may play an important role at an 
early stage of the growing of the density contrasts.2

),S) This mechanism can be 
effective, only if heating and cooling balance each other so as to keep matter 
at high temperature (at least higher than 106 °K) at the pregalactic stage. 
However, if no heating source of matter exists, the matter temperature Tm 
downs faster than the radiation temperature Tr after the epoch of the decoupling 
at Tr::::::4000°K. 4

> 

The rotational and peculiar motions of the galaxies in the present state 
suggest us a possibility that enormous turbulent motions have existed at the 
pregalactic stage. Weizsacker5

> and Gamow6
> insisted upon its importance in the 

problem of galaxy formation. To meet with this, the theory of turbulence in 
the expanding universe has been developed by one of the authors (H. N.).7>•*> 
On the basis of a more realistic picture for the hot universe motivated by the 
discovery of cosmic black-body radiation, Ozernoi and Chernin8

> have recently 

*> This paper is referred to as [N] in the following. 
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1512 K. Tomita, H. Nariai, H. Sat8, T. Matsuda and H. Takeda 

analyzed the significance of primordial turbulence. As a possible heating source, 

therefore, we can consider the dissipation of energies of large-scale turbulent 

motions which would have arisen at the epoch of the big-bang. 

In this paper we investigate the thermal history of the universe in the 

presence of this heating source. For this purpose, in § 2 we shall review fluid 

dynamics and the theory of subsonic turbulence in the expanding universe. In 

§ 3 we shall analyze the physical properties of eddies which vary in time. In 

§ 4 the decay laws of subsonic turbulence are derived and in § 5 the change of 

Tm with time is studied under the condition that the distortions in the black­

body radiation spectrum is not appreciable. For the dissipation of super-sonic 

turbulence which arises after the decoupling of matter and radiation, a simplified 

model is assumed for its estimation. Detailed derivations for equations in these 

sections are found in the Appendices. 

§ 2. Fluid dynamics and theory of turbulence in the expanding universe 

(a) Fluid dynamical equations 

The equations of motion of the viscous fluid consisting of coupled matter 

and radiation are summarized in this subsection. The condition that matter and 

radiation can be regarded as a fluid will be examined in the next section. 

Equations of motion of viscous fluid in the expanding universe have been 

derived in [N] at first. Here we present them in a generalized form, which is 

applicable even at the radiation dominant stage. First, we consider local fluid 

motions which do not disturb the space-time of the isotropic and homogeneous 

background universe and for which an effect of the spatial curvature of the 

background is negligible. Then the space-time can be expressed approximately 

by the line-element 
(2·1) 

Here a (t) is an expansion scale factor of the universe, and the four velocity is 

given by UP= dxP jds, while the physical fluid velocity is defined by vi==aui 

(ui::=. UijU 0
) .*> Next, we assume v 2 = 'Ei (vi)2<c2 and take the non-relativistic 

approximation. Then the generalized Navier-Stokes equation and the equation 

of continuity are obtained as shown in Appendix A. 

zi+ [ (u·Y) + ~ div (au)+ (aa5)·j(aa6
) ]u 

= -a-2ppja+ a-2v[p2u+ ~ y (div u)], (2·2) 

and 

. 3d d" ( ) ·; 2 a+ -a+ 1v au = p c . (2·3) 
a 

*> The Greek indices take the values 0, 1, 2, 3 and Latin indices 1, 2, 3. 
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On the Dissipation of Primordial Turbulence in the Expanding Universe 1513 

Here the notations should not be confused; Pm denotes matter mass density in­
cluding internal energy, Pr radiation mass density, Pm matter pressure, Pr radia­
tion pressure, e=Pm + Pr + pj c2 inertial mass density, p total pressure, v = f.J./e 
kinematic viscosity, and a dot a time derivative. 

Now let us assume the condition of quasi-incompressibility7
> div u = 0 and 

e = e (t), so that we can describe subsonic and vortical motions, and then we get 

(2·4) 

(2·5) 

assummg that Pm~Pr=Prc 2
/3 and Pm, Pr depends only on t as well as e. 

In particular the velocity of vortical motions in inviscid fluid is described 
by the theorem of circulation9

> 

(ed1
) § vidli = const , (2·6) 

where [i ( =axi) denotes a proper length. The integral of Eq. (2 · 6) leads to 

(2·7) 

In the case when matter and radiation have already decoupled, the motion 
of matter can be described by the above expressions without Pr and Pr· 

(b) Turbulent energy and its spectrum 

In order to study the statistical properties of a turbulent :fluid such that the 
velocity field is at random at any point in the space-time, let us consider the 
correlations of various quantities between two different points x and x'( = x + r). 
First, the velocity correlation is defined by 

Ri1 (r) = viv/ = a2uiu/ =R1i (- r). 

Here, the dashes denote the quantities at x'. Similarly the following correlation 
tensors are defined: 

P£1 ( r) = _!_ (_!!__pu/ - _!!__p' ui). 
e ari ar, 

Using these correlations we can analyze turbulent motions in a form parallel 
with an ordinary theory of homogeneous turbulence.10

> If we write the three 
dimensional Fourier transforms of Rib Ti1 and Pi1 as (f)ib Ti1 and IIi" respec­
tively, i.e. 

for example, quasi-incompressibility leads to the conditions 
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1514 K. Tomita, H. Nariai, H. Sato, T. Matsuda and H. Takeda 

klfh, (k) = kl!Jij (k) = 0 ' 
(2·8) 

Ilu (k) =0, 

and from the Navier-Stokes equation (2 · 4) we get 

f)(/)ij = rij + Ilij- 2 { vk2 + (ea4)'} (/)ij . 

8t a2 ea4 
(2·9) 

The contraction of the above equation with respect to suffices i, j and the in­

tegration over all direction around the origin in the k space enable us to derive 

8E (k) = T (k) + 2 { vk2 + (ea4).} E (k)' 

8t a2 ea4 
(2·10) 

where 

E (k) = ~ f (bu (k) dA (k), T(k) =- ~ f Tu(k)dA(k), 

and dA (k) denotes an areal element, i.e. dk = dkdA (k). Equation (2 ·10) shows 

how the kinetic energy E (k) in the eddies with k is lost through the inertial 

term T, by viscous dissipation, and by cosmic expansion. If kmax and kmin are 

the maximum and minimum wave numbers of the eddies, the total kinetic turbulent 

energy (vt?/2 is defined by 

(vt?/2= 1_ a2UiUi = fkmaxE(k)dk, 
2 Jkmin 

(2 ·11) 

and we obtain from Eq. (2·10) 

__ 1_ d(vt? = 10v +
2

(ea
4
)' 

(vt? dt (aJ.? ea
4 ' 

(2·12) 

where aJ. IS Taylor's micro-scale defined by 

In the case Pm>Pr, Eq. (2 ·12) is reduced to Eq. (53) m [N]. 

§ 3. Basic properties of the turbulent eddies in the expanding universe 

Fluid dynamical description for the motion of matter and radiation is possible 

when the size L exceeds the mean free path of interactions between the con­

stituting particles. At the early stage of cosmic expansion when the matter is 

fully ionized, the interaction by electron scattering is dominant and the mean free 

path is given by lre = m:pj Pm6 T· Here (J T ( = 6.65 X 10-25cm2
) stands for Thomson's 

cross section. If L>Zm matter and radiation are a mixed fluid with viscosity 

Vre = 4/15(m:pcj(J T) (Pr/ Pme) and the sound velocity of long wavelength J..>Zre is given 

by c8 -:::::::.. (4Pr/3eY12 because of Pr>Pm· If L<Zre' the matter behaves independently 
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On the Dissipation of Primordial Turbulence in the Expanding Universe 1515 

of the radiation, so that we have the viscosity Vion::::::::10-
16 Tm512/Pm (through the 

coulomb interaction between ionized particles) and the sound velocity cs:::::::::(kTm/m!P)112 

of short wavelength J...<lre· Once the ionized matter recombines, the interaction 

between matter and radiation ceases and the viscosity of the neutral matter becomes 

Vneu = 8 X 10-6T m 112
/ Pm and the sound velocity is also cs::::::::: (kT m/m!P)112

• 

Now let us consider a turbulent eddy with velocity v such that the size L 
is longer than lreo If L/t>v, the changes of the velocity field due to the non­

linear inertial term in the Navier-Stokes equation is not effective and the eddy 

motion is frozen in the expanding medium. If L/t< v, the eddy decays to smaller 

eddies in time and the eddies with Lr-.J ..j vt ( < vt) contribute mostly to the dis­

sipation into thermal energy. Relative orders of sizes lre, vt, VVret and ct have 

been shown separately in the figure 11
) in terms of masses M~, Min• Mvis and Mhon 

respectively, which are the masses included within the spheres with their sizes 

as the radii. Here M<Mhor represents the non-relativistic condition v<c. In 

that figure ZD = 10
8

'
1 has been taken as the red-shift at the de coupling epoch by 

assuming Tm/Tr = 1. If Tm/Tr>1, however, the decoupling may be delayed. 

Moreover it should be noticed that a characteristic peak appears at the 

epoch t = t* when Pr = Pm· If M> [the maximum of Min], the eddy does not 

decay forever. If otherwise, it decays when M<Min• and the smaller M is, the 

faster it decays. When Mr-../ Min, the time scale of the decay is comparable with 

the expansion time t. These enable us to assume that at the epoch t = t* the 

.fmo = 10-31 g/cm3 

MIM,. 
M!M,. 

I 
I 

I 
/ 

/ 
10'0 /M,e 

I 
I 

I 
I 

I I 
I I 

I I 
I I 

I I 
I /Mt I 

I 
1

1 z0 +1 

105 
I 

105 I 
I 

I 
I 

I 
I 

I 
I 

104 
z +I 104 103 

Z+l 
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Fig. 1. For the two models of the present matter density Pmo=lO-al g/cma and 10-29 g/cms, 
we show the variations of Mhor, Min, Mvis and Mz, which are defined as 4n-pm(ct)Bj3, 

4n-pm(vt) 3/3, 4n-pm(Vret)312/3 and 4n-pmlre3/3, respectively. Min is given for v=109cm/sec 
and 1010 em/sec at t=t* and v is assumed to change without decay, following Eq. (2·7). 
At the stage of z<zD, Mvis is smaller than Mt and the treatment of the dissipation by 
the viscosity becomes meaningless. 
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1516 K. Tomita, H. Nariai, H. SatO, T. Matsuda and H. Takeda 

eddies with L<_vt have already decayed and their energy dissipated into thermal 

energy, and that only the eddies with L"-'vt can decay mainly after that epoch. 

But the situation must be divided into two cases according to the universe models 

characterized by !2, which is the ratio of the present matter density to that of 

the flat model, i.e. 10-29 g/cm3
• In the case !2>0.05, the peak appears at the 

stage when matter and radiation closely couple together and the motions of eddies 

are subsonic, even if v is as large as c/10. In the case !2<0.05, the residual 

eddies at the peak consist only of matter and most of their motions are supersonic, 

because C8 is extremely small. 

§ 4. Decay laws of subsonic turbulence in the expanding universe 

In quasi-stationary situation in a laboratory, the decay of subsonic turbulence 

can be described by 

(A= const"-' 1) (4·1) 

Here lt 1s a typical length of energy-containing eddies which is related to ). by 

lt= (A/10) (aA)
2
vt/V (4·2) 

from the comparison with Eq. (2 ·12). Then we may define the R~ynolds number 

by 

(4·3) 

Moreover, according to the experiments of steady flows behind a grid, the decay 

of turbulence at the early stage follows a simple law such as10
) 

(4·4) 

which reflects quasi-stationarity of R = const. On the other hand, the above law 

has been derived theoretically by an application of the principle of similarity. 

Another theoretical laws have been derived from Loitsyanskii's law12
) which 

means the conservation of angular momenta of the largest eddies, that is to say, 

(4·5) 

where n is 10/7 (at the early stage) or 5/2 (at the later stage). 

Taking these results for the static medium into account, let us derive the 

decay law in the expanding medium. Since the velocity of vortical motions is 

proportional inversely to sa4 (cf. Eq. (2 · 7)), the change of sa4vt with time does 

not depend much on the expansion but on the decay of turbulence itself. There­

fore the decay law in the expanding medium is roughly given by 

(4·6) 

where n=1, 10/7 or 5/2 (cf. Eqs. (4·4), (4·5)). In fact these laws will be 

derived in Appendix B theoretically on the basis of the similarity principle or 

the Loitsyanskii's law. Inserting Eq. (4 · 6) into Eq. (2 ·12) and representing 
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On the Dissipation of Primordial Turbulence in the Expanding Universe 1517 

const. in Eq. (4 · 6) by quantities such as the micro-scale, etc., at an initial epoch 

ti, we get 

where 

{3= !!__ (a).)2 = !!...(~), 
10 vt A Vtt 

A2 = 
10 

(v / a 2
) {t- ti (1- {3i)}. 

n 

(4·7) 

For the motion of eddies such that their non-linear interactions dominate the 

effect of expansion, we have the condition {3<1. 

Furthermore, the rate of the net dissipation to thermal energy, Sa, 1s g1ven 

by the first term on the right-hand side in Eq. (2 ·12) 

_ 10v (vtY 
Sa- (a).)2 -2-. 

Substituting Eq. (4 · 7) in the above, we have 

ca = l_ ( (ca
4)i) 2 

n{3/" ( ve)~,
2 

/ti 
·2 ca4 (t/ti -1 + {3i)'TH1 

(4·8) 

Here we examine the fraction of the turbulent energy which is transformed into 
thermal energy by the dissipation. Its fraction is given by 

C= i~ cadt/ { (vt)l/2}, 

and we find that f;::::::::1 for small eddies such as {3i<,1 and f;::::::::1j2 for large eddies 

such as {3l = 1. 

In an application in the next section, the decay law in the case n = 1 will 

be used, because it seems to be simplest and most appropriate. For le and R 
we have Eqs. (4·2) and (4·3) also in the expanding medium by extending 

naturally Eq. (4 ·1) as 

(4 ·1') 

In the case n = 1, R decreases with time contrary to the case of the static medium, 
but it does not mean any inconsistency, because the idea of quasi-stationarity 
should be modified by the over-all expansion. 

In the case n = 1, the energy spectrum of turbulence has the following form, 
which is derived from the similarity principle (See Appendix B): 

E (k, t) = ( Vt)
2 ).F (~) ' ~=lk, (4·9) 

with 

~dF -F+ ~~2F+Q(~) =0. 
d~ 5 

(4·10) 
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1518 K. Tomita, H. Nariai, H. Sato, T. Matsuda and H. Takeda 

Here F, Q, ~ are dimensionless and Q is proportional to the inertial term T in 

Eq. (2 ·10). If we assume Heisenberg's eddy viscosity hypothesis10
) for Tor Q, 

Eq. (4 ·10) is reduced to Chandrasekhar's equation13
) and we find from his so­

lution that, if R> 1, the Kolmogoroff spectrum Eock- 5
1

8 appears in the middle 

region of k, while Eock-7 for k~oo in general. On the other hand, R""' (lt/ 

J vt)
2 
(vt/lt) '> 1 in the region lt""'Vtt before the decoupling of matter and radia­

tion (cf. § 3). Therefore we can expect the Kolmogoroff spectrum for the eddies 

with {3 '""-' 1 and the steeper spectrum for the smaller eddies. 

§ 5. Time variation of matter temperature T m 

In this section, we clarify how the matter is heated by the dissipation of 

the turbulent energy at the matter dominant stage. Since the radiation has a 

heat capacity much larger (by a factor """108
) than matter, Tr ( oca-1 (t)) depends 

scarcely on the heating, while Tm depends sensitively. However, if the ratio 

T m/Tr is large, the interaction between matter and radiation may distort the short 

wave-length part of the radiation spectrum, because the heat capacity of such a 

part is comparable with that of matter. 4
)'

14
) If we put the condition that the 

radiation spectrum does not deviate so much from Planck's spectrum, we have 

the following condition in Appendix C: 

(1<)(Tm/Tr)*<2, 136 for .!2=1, 10-1, respectively. (5·1) 

In the following, the low density models with .!2<0.05 are omitted from our 

consideration. 

Now at the stage when the matter is fully ionized, we have 

· 4 , (a2
)' mp 

Tm=-(Tr-1 m) /rr -Tm-- +-ea 
3 a 2 3k 

(5·2) 

from the first law of thermodynamics. Here rr=mec/((JpbTr4
) represents the 

characteristic time of the Compton scattering, b is the Stefan-Boltzmann constant. 

At the stage when the interaction is very effective, i.e. t/r r~ 1, Eq. (5 · 2) can 

be integrated approximately, as shown in Appendix D, provided that 

id ln (a6
ea) /d ln a! <t/r r, (5·3) 

and we obtain 

Tm-Tr- mprrea=(Tm-Tr- mprrea) (z+ 1 )
2

exp(-B(F~,-F)) (5·4) 
4k 4k i Z1, + 1 

with B=4/(3H0 (rr)o) =5.35x10-3.*> Here F(t) is defined in Appendix D. For 

the stage 1+z>I1-.Qjj.Q, BF-::::::..t/rr-::::::..2.1 X 1o-s.Q-112 (1+zY12 which is larger than 

10 at the stage such as 

(5·5) 

*> The suffix 0 denotes the present epoch. As the Hubble constant we take Ho=75 km/sec/Mpc. 
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On the Dissipation of Primordial Turbulence in the Expanding Universe 1519 

In such cases, the right-hand side of Eq. (5 · 4) can be neglected and it is re­

duced to 

(5·6) 

On the other hand, in the neighbourhood of the epoch t = t*, we have 

B(F(z*) -F(z* +Liz)) :::::::4.3 X 108!P (Liz/z*) 

for !J> 10-2
• So, even if T m/Tr is different from Eq. (5 · 6) at t*, T m/Tr arrives 

at that ratio promptly after the epoch t*. 

(a) The early stage when matter and radiation can be regarded as a mixed 

fluid. At this stage the dissipation rate given by Eq. ( 4 · 8) satisfies the condi­

tion (5 · 3) and hence Eq. (5 · 6) holds. For the ratio T m/Tr at the initial epoch 

ti=t*, we obtain from Eqs. (4·7), (4·8) and (5·6) 

(Tm/Tr)*=1+_i_(mpVt
2

) (rr/t)*, 
4{3i 6kTr * 

= 1 + 7.3 X 10-
2!2-3/3£-

1 (vt/c)*
2
' (5·7) 

which satisfies the condition of Eq. (5 ·1) for S£~1, so that any influence on 

the radiation spectrum is negligible. Equation (5 · 7) can also be rewritten as 

where Vth is a thermal velocity defined by tmpVt~ = 3kT m• After the initial epoch, 

we get from Eqs. (4·7) with n=1, (5·6) and (5·7) 

( 
t/t )

2 

Tm/Tr=1+ {(Tm/Tr)* -1}/3i
2 * a(t), 

t/t*-1+/3£ 
(5·8) 

where a (t) === (a/ct2
) / (ajst2)* is nearly equal to unity.*> As already stated in 

§ 3, it is mainly the eddies with {3£::::::: (lt/Vtt)£::::::::1 that dissipate after the initial 

epoch ti = t*. Accordingly let us set Si = 1, and then we find that the ratio 

T m/Tr remains constant and T m decreases with time. At the decoupling epoch 

zD= 103
, we obtain 

Tm= 2700{1 + 7.3 X 10-2!2-s (vt/c)*2
} 

from Eqs. (5 · 7) and (5 · 8) with Si = 1. This temperature does not exceed 105 °K. 

If ZD is taken to be smaller than 103 (cf. § 3), T m is also smaller than 105 °K. 

(b) After the decoupling epoch. At this stage the matter is neutral or, if 
otherwise, the mean free path of a photon is so long that radiation and matter 

cannot be regarded as a one fluid. Then, most of residual turbulent motions 

are highly supersonic, since the sound velocity C8 is very small. Although we 

*> If Pm>Pr and a/ao<{l, we may assume Eoca-3 and aoct213• Then a(t) =const"'-'1. 
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1520 K. Tomita, H. Nariai, H. Sato, T. Matsuda and H. Takeda 

have no reliable theory of supersonic turbulence, the influence on T m can be 

estimated according to a simplified model. 

Let us assume that the loss of turbulent energy except the one due to 

the expansion, ea= - (2a2
)-

1d (avt)2 
/ dt, is transformed into thermal energy. In 

the case (I) when that time scale is comparable with t, i.e. the rate is given 

by ea=r(vt)2/t (r=const rvl), we obtain (vt)2 = (aD/a)2 (t»/tYCvt)D2 and ed= 

r (aD/ aY (t»/t)r+ 1 
{ (vtY /t}D. In the case (II) when the turbulent energy is lost 

.onatime scale ta much smaller thant, i.e. the rate is given by ea=CvtY/ta, we 

have (vtY=exp(- (t-tD)/ta) (vt)D
2 and ca=exp(- (t-tD)/ta) (vt)D2/ta. 

If the matter remains neutral at this stage, it can be heated up to T m = 104 °K, 

above which temperature a collisional ionization begins. 15> If the matter is heated 

above 104 °K, the cooling due to the Compton scattering becomes effective because 

of t/rr>L In the case (I), the matter temperature Tm will converge to the 

value given by Eq. (5 · 6) and T m/Tr increases (or decreases) with time according 

to r>I (or r<I). However, since the turbulent energy will be soon consumed, 

T m falls below 104 °K or even below Tr by the cosmic expansion. 

Now let us explain the above situations numerically. At the decoupling 

epoch such as ZD = 108
, the residual turbulent energy is given by 

which is smaller than 1014 
Q-

7
/

2 ergs/g for (vt)*<c/10. Here Eq. (4 · 7) with 

/3i = 1 and n = 1 has been used. If all of this energy were transformed directly 

to thermal energy, Tm would rise to 3Xl07
Q-

7
1

2 ((vt)*/c/°K for SJ>0.05. This 

is not realistic, however. If that energy is transformed during a time scale of 

the order of tar-/t, the temperature rise is slowed down by the cooling as long 

as matter is ionized, and we get from Eq. (5 · 6) 

Since (t/rr)D-:::::.l05.jQ, only the part of the order of I0- 5 in (vt)D2/2 can be 

transformed into thermal energy and it is difficult that T m exceeds 105 °K. 

Moreover, in the case (II), T m may rise suddenly in terms of the sharp 

dissipation.*> However, the turbulent energy is consumed exponentially during 

the time interval .r--Jta<.t. Thereafter the matter is cooled by Compton scattering 

with no heating and Tm falls soon below 104 °K and further. 

Incidentally let us examine the turbulent motions which survive till the 

cooling by the Compton scattering becomes ineffective, i.e. 'fr>t. Even if the 

initial turbulent energy is as large as (vt)* = c/10, we have (vt)
2/2 = 10

10!2-2 
erg/g 

at an epoch as z=lO when t/rr.r--Jl. The matter can be heated by that energy 

to T m-:::::.30Q-2 °K at most. 

*> If ta,......,"'r• the condition (5·3) does not hold and Eq. (5·6) is not applicable. 
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On the Dissipation of Primordial Turbulence in the Expanding Universe 1521 

§ 6. Conclusion and discussion 

From the foregoing analysis it has been shown that the dissipation of pri­

mordial turbulence cannot heat and keep the matter to such a high temperature 

that thermal instability may contribute to the growth of density contrast. This 

conclusion has been derived from the facts that at the matter dominant stage 

there is no supply of the turbulent energy and that the excess thermal energy 

relative to the radiative energy is carried away rapidly through Compton scat­

tering. Although the foregoing discussions are limited to the stage Pm> Pr, the 

above conclusion may be correct. Our conclusion is consistent with Zel'dovich 

and Sunyaev's14
) assertion that, even in the presence of turbulent heating, the 

matter has not been kept in a fully ionized state throughout the cosmic expan­

sion. However, our conclusion is incompatible with the assumption of an enor­

mous heating by the turbulence.3
) 

As an another possible mechanism for the galaxy formation, we should notice 

the hydrodynamic instability introduced by Ozernoi and Chernin.8
) In this case, 

turbulent eddies with such a high velocity as v>c/30 are required at the stage 

Pr>Pm to find a mass range such that Min?M> Mvis at t=tD.11
) However, if 

the decrease of turbulent energy due to the decay is effective as well as that 

due to the expansion, the eddies with a further higher velocity must exist at 

that early stage for the formation of galaxies. Moreover, if we have Tm/Tr>l 

at t<tD (cf. Eq. (5 · 8)), the decoupling will be somewhat delayed after the 

epoch of z =lOs, since tD is specified by the collisional ionization temperature 

T m::::::::l04 °K rather than the photoionization temperature Tr:::::::::4 X lOs °K. Hence 

the mass range (Min""2.M> Mvis) at t=tD becomes narrower than that evaluated 

at z =lOs. Accordingly the hydrodynamic instability may arise in a situation in 

which the dissipation of primordial turbulence is ineffective. 

Appendix A 

Fluid dynamics in the expanding universe 

Fluid dynamical equations in the space-time with a given metric are derived 

from the energy-momentum conservation law, which is expressed as 

T a/3 -o ;p- • 

. Here T" 13 for viscous fluid is given by 

ya/3 = suau/3- ga13pjc2 + ra/3, 

(Al) 

(A2) 

and the viscous tensor ra13 is expressed as ra/3 = - jf.(Ja/3 by shear tensor (Ja/3 and 

the coefficient of viscosity If., where 0" a13==i (Ua; 13 + U13;a) - t (Ua;rU13 + U13;rUa) ur­

J?;(lha13, 8==U13;13 and ha13==Ua13 -UaU13• 

For the metric (2 ·1) we obtain .Eqs. (2 · 2) and (2 · 3) from Eqs. (AI) and 

(A2) in the non-relativistic approximation. 
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Appendix B 

Derivation of decay rates 

(a) Decay rate due to the similarity principle 

In a static medium all kinds of dimensions are expressed by two independent 

parameters. In the expanding medium we must take into account not only the 

two parameters but also such an independent parameter as the expansion rate 

or cosmic time t, from which a dimensionless quantity can be composed, for 

example, the Reynolds number. 

Taking (vt)2/2 and J.. as the two parameters, we have the following dimen­

sionless quantities 

~=J..k, 

where H and G are functions of ~ and R (or t) in general. If the turbulent 

motions satisfy a similarity law, we may put 

H=h(t)F(~), G=g(t) Q(~). (B1) 

Inserting Eq. (B1) into Eq. (2 ·11) we get 

fEma:x: 

h (t) Jemin F(~) d~ = 1/2. (B2) 

Here ~max' ~min show the range of sizes of eddies, and can be regarded as 0, oo, 

respectively, approximately, because they are far from the energy-containing part 

of the spectrum. Hence h (t) can be reduced to a constant. From Eqs. (B1) 

and (2 ·10) we obtain 

. l 
- [2 (avt)'/ (avt) + l/J..]F(~)- J:~dF(~) jd~ 

=a2g(t) (vt)'"Q(~) +2vj(a'J..)
2
·~

2
F(~), 

which is consistent only when 

(avt)'/ (avt) ocljJ..ocvj (a'J..)2oca2g (t) (vtY'· 

By the help of Eq. (2 ·12) we get 

J..
2
=J..l+a 1: (v/a

2
)dt 

(B3) 

(B4) 

(B5) 

from Eq. (B4), and, by taking a constant a as 10 so as to fit the decay law in 

the static case (cf. Eq. (4·4)), we obtain 

(B6) 

Since the viscosity Vre due to electron scattering is proportional to a 2 at the 

matter dominant stage, Eq. (B6) reduces to Eq. (4 · 7) with n = 1. 
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On the Dissipation of Primordial Turbulence in the Expanding Universe 1523 

Moreover we get g (t) oc (vI a2
) I (aJ.} from Eq. (B4) and Eq. (B3) leads to 

Eq. ( 4 ·10) for the spectrum of the turbulent energy, 

Remark. Once three decay laws were derived in [N] by dividing the cases 

according as /3<1, =1 or >L In the case /3=1, e(=-td(vt?ldt) and. ta(= 
t (vtYie) have been taken as two independent parameters and ta identified with 
t. As a result the decay law is different from the above one and is applicable 

in the narrow time interval. However if we distinguish between t and ta and 
take into account that dimensionless quantities can depend on t also in the forms 

k (e 'liY12 = f(t) ~, 

E(es ta5)-1f2=g(t)F(~)' 

we can get the same result as above. 

(b) Decay rate due to Loitsyanskii's law 

For big eddies the spectrum tensor f]jiJ can be expanded In power series of 

k as 

and CiJ£moca-2 (t) in an expanding medium, as was shown in [N]. Since (a@i11 
ak£8k,)k=0 = - (87t3

)-
1 
~ XtXmRij (x, t) dx, we find 

(BS) 

from Eq. (B7). Here l==ar represents the physical size of an energy-:-containing 
eddy, and its behavior changes in the course of decay. At the early stage when 
the decay due to the inertial term is dominant, we have 

locamv (t + const) (B9) 

and at the later stage when the dissipation due to viscosity IS dominant, 

(B10) 

Here am, am' reflect the effect of expansion and are determined in such a way 
that v 2oc (ea4

)-
2 if we omit the turbulent dissipation. Then we obtain Eq. (4·6) 

with n = 1017, 512 at the early and later stages, respectively. 

Appendix C 

Distortion of the background radiation spectrum 

In the presence of the interaction by Compton scattering between radiation 
and ionized matter, the behavior of the photons occupation number nJ) = (c3l8nhv3

) 

X dErldv corresponding to radiation energy density Er (v) is described in non­
relativistic approximation by 
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an,_ -2 a [ 4 (an,+ + .2)] --x - x - n n 
ay ax ax I) I) ' 

(C1) 

where x===hv jkT m and the effective scattering thickness 

-Q ~ r:r -1 izikTm 1 +z' d , 
Y= ncupCI.-:Lo -- z • 

z m 6c
2 J1 + Qz' 

(C2) 

Following Zel'dovich and Sunyaev's procedure/4
> let us derive the small difference 

.dn" of n" from Planck's one n, = 1/ (exp (x) -1), where x = hv jkTr is assumed 

to be independent of t. For a small distortion such as y<1 

(.dn") = (1- Tr) x_yex {x/th (x/2) - 2}, 
n, RJ T m ex -1 

( .dTr) =dIn Tr(.dn,) = (1 - Tr) y{x/th(x/2)-2} 
Tr RJ d In n, n, RJ T m 

(C3) 

by adjusting .dn"jn, so as to vanish in the Rayleigh-Jea,ns region. These expres­

sions are different a little from Zel'dovich and Sunyaev's one with respect to 

the factor (1- Tr/Tm). 

If we assume that only a small distortion such as (.c1Tr/Tr)RJ<0.05 in the 

short wavelength region (it"-'0.3 em) of the cosmic black-body radiation is con­

sistent with the present observations/4
) we have, from Eq. (C3), a condition 

such as 

(C4) 

Assuming that T m/Tr remains constant around Zi, we can obtain from Eq. 

(C2) 

y=1.1Q 3 (Tm/Tr) for Zi=Z* 

and (C5) 

y = 0.13Q 3
/
2 (T m/Tr) for Zi = 10\ 

In order for the distortion of the spectrum to be small, Eq. (C4) must be 

satisfied if y<l. Therefore, we have the restrictions on the heating such as 

Tm/Tr<2 for Q=1 and Tm/Tr<136 for !2=10-1
• 

Appendix D 

The integration of the equation for T m 

Let us rewrite Eq. (5 · 2) by use of y (t) =a/ a0 for t. At the matter dominant 

stage, y (t) may be described approximately by 

dy =Hoy-112{!2+ (1-Q)yp12 
dt 

in Friedman's pressure-free model. Hence we have 
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On the Dissipation of Primordial Turbulence in the Expanding Universe 1525 

y- 112{!2+ (1- .Q) y}112d (T mY2
) jdy + By- 4 (Tmy 2

) = By-2 (Tr + sy4
&a), 

where we put s = mp/ (3kH0B) for brevity. Integrating this we get 

Tml exp ( -BF)- (Tml exp ( -BF) )i=- s~dF exp( -BF)By (Tro+sy
5
sd). 

(D1) 

Here we used for Tr the present radiation temperature Tro = yTr and put as 
follows: 

F(y)=- sy dyy-7f2{.Q+ (1-.Q)y}-112, 

= ~ (3 -10q + 15q2
) q- 5

;
2 (1- SJYf2 j.Q 3 

15 ' 

q(y)=(l-.Q)yj{.Q+ (1-.Q)y}. 

The integral in Eq. (D1) is performed partially as 

[
exp (- BF) y (Tro + sy5Sa) + d ln y exp (- BF) y {Tro + s d (y 6

ed) / dy}J Y 

~ B w 

- SF dF exp ( -BF) [s (dyjdFY d 2 (y 6&a) /dl 
F'i B 

+ {Tro+ sd (y 6
Sa) jdy}d 2

yjdF 2 J. 
Repeating partial integrations furthermore, we obtain ·a power series of 1/ (BF) 
and Jd In (y 6

ec~,) jd ln y// (BF). Therefore we can arrive at the approximate in­
tegral (5 · 4), if these terms are small. 
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