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ON THE DISTANCE BETWEEN ZEROES

WILLIAM T. PATULA

ABSTRACT. For the equation P q(t)x = 0, let x(t) be a solu-
tion with consecutive zeroes at t =a and ¢t =b. A simple ipequality
is proven that relates not only a and b to the integral of g (t) but
also any point ¢ € (a, b) where |x(z)| is maximized. As a corollary,
it is shown that if the above equation is oscillatory and if ¢ (¢) €
LP[O, oe), 1 < p < oo, then the distance between consecutive zeroes
must become unbounded.

Consider the following second order linear differential equation:
(1 x"(2) + q()x(2) = 0,

where ¢(t) is continuous on some appropriate ¢ interval. Let q+(t) =
max [4(¢), 0]. Pertaining to (1), the following theorem of Hartman [3, p. 345]

is known.

Theorem 1. Let g(t) be real-valued and continuous for a <t <b. If

x(t) is a solution of (1) with two zeroes in [a, bl, then

) fa”(: —b-0g"(Ddt>(b-a.

Since (b—a)2/4> (t - a)b-1) for t € (a, b), equation (2) = that

2
(3 (—b-%ﬁz- fab q+(t)dt>(b— a),
or
) [Pt a> 2.
a b—a

Thus Theorem 1 has as a corollary the following condition of Lyapunov.
Again, see Hartman [3, p. 345].

Corollary 1. A necessary condition for any solution x(t) of (1) to have
two zeroes in la, b] is that fzq+(t) dt > 4/(b - a).

The lemma that we would like to present is the following.

Lemma 1. Let x(t) be a solution of (1), where x(a) = x(b) = 0, and
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x(1)£0, ¢t € (a, b). Let c be apoint in (a, b) where |x(1)| is maximized.
Then

(i) f2q+(t) dt> 1/(c - a),
Gi) fq" () dt>1/(b - o),
(i) 2470 dr> (b = &)/I(b - e - ).

Proof. Integrating (1) yields

x'(2) = x'(c) = J: g (s)x(s)ds - ft 77 (s)x (s) ds.

! . . .
Note that x'(c) = 0. Another integration gives

(5) x(2) = x(c) = Ict(t - 5)g7(s)x(s)ds - fct(t — 8)g"(s)x(s) ds.

Let t = b, so that x(b) = 0. Equation (5) implies that

x(b) — x(c) = fcb(b - s)g(s)x(s)ds — fb(b - gt (s)x(s)ds,
or
x(c) + fcb(b - 8)g7()x(s) ds = fcb(b ~ 5)g*(s)x(s) ds.

W.L.0.G., we may assume x(¢) >0, ¢t € [, b]. Thus we have
x(c) < fb(b - s)q+(s)x(s) ds < (b - c)fb q+(s)x(s) ds
— c C

=1<( - c)fcb g (s)ds, since x(s) < x(c), if s €la, 8],

b+ 1

- fc g () dt> -

This proves part (ii). Part (i) follows in a similar fashion, except that in

equation (5), one now replaces ¢ by a. The sum of (i) and (ii) yields part
(iii), which completes the lemma.

One way to view Lemma 1 is that it imposes some restrictions on the

location of the point ¢ and thus the maximum of |x(¢)| in [4, b]. That is,
f2q+(t) dt is a finite number. But

lim, —222 i boa
c—at (b—C)(C—tZ) C_.b‘(b—C)(C—a) -

oo,

Thus ¢ cannot be *‘too close’ to a or b. Also, it is interesting to note

Lig}ggr c{vgz/riaﬁt gg/cLSném'a'y Jﬁgs{f) r%is@z)n]io&sé;{r(;é//v?wv&)ﬂs.org]‘m§—tm‘|§ﬁ&§ that under the hYPOth e-
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ses of Lemma 1, Corollary 1 follows from Lemma 1.

As a consequence of Lemma 1 (also Theorem 1 or Corollary 1), we have

Theorem 2. Suppose q+(t) € L?0, ), 1 <p <. If(1) is oscillatory
and if x(t) is any solution, then the distance between consecutive zeroes of

x(t) must become infinite.

Proof. Suppose not. Then there exists a solution x(2) with its sequence
of zeroes {tni, which sequence has a subsequence {t,,k} such that
|t"k” - znkl <M< e Vk. Let s,, be apoint in (t,,k, t,ik+1) where |x(t)|
is maximized. Then Isnk - lnkl <M, for all k. Since ¢ (¢) € L?[0, o), 1

<p < oo, choose k so large that

00 1/ 1 1
[= t0ra) " emt wbee & Lo,
tn, P

From Lemma 1, part (i), we have

S
n
f k q+(t) dt > _ .
t"}a Snk n
Thus k

S
7r 4
1 <(S"1e_ znk) f‘n g (1) dt
k

S"Ie 1/p ,
(N 1/r
<(s - t"k) (f‘n g7 (1) dz) (snk—znk)

k

k

1/p
<(s t )“1/'(f°° NOLET
n, 'n 9
k k o

< M1+1/r . M—-I—I/r — 1< 1’

a contradiction. This completes the theorem.

Pertaining to (1), there is the following oscillation theorem of Wintner
[5].

If limt__mféq(s) ds = oo, then (1) is oscillatory.

The above condition enables us to construct some simple examples.

Consider the equation
6) x"+(l+l)"1x=0, t>0,

The Wintner condition guarantees that (6) is oscillatory. Since 1/(1 + 1)
€ L?[0, =), Theorem 2 asserts that the distance between zeroes of any solu-
tion must become unbounded.
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q(t):l/(n+1), n+1/n2§t§(n+l)—1/(n+l\,2, n>2;

=(n)1/4, t=n, n>2;

= the line segment joining (n — 1/2%, 1/7) to (n, n'/%)

for n—1/n?<t<mn, n>2;

= the line segment joining (n, 2V o (n+ 1/n%, 1/(n+ 1)

for n§t§n+1/n2, n>2;

b

=1/2 for 0<t<7/4.
So ¢(t) has the following appearance.

It is easy to verify that [ g(t) dt = =, but f;oq(t)z dt <oo. The Wintner con-
dition again implies that (1) is oscillatory, while Theorem 2 implies that the
distance between zeroes is unbounded.

Theorem 2 can also be used to derive a known limit point result (Patula
and Wong [4, p. 10, Corollary]). Note that for ¢ >0, equation (1) is called
limit point, L.P., if at least one solution x(1) ¢ L0, ). If any two lin-
early independent (and thus all) solutions are square integrable, (1) is called
limit circle, L.C. See Coddington and Levinson [1, p. 225].

The following lemma is known (Patula and Wong [4, p. 11]).

Lemma 2. If equation (1) is L.C., then (1) is oscillatory, and the dis-

tance between consecutive zeroes of any solution tends to zero, as t — oe.

We can now prove the following limit point result.

Corollary 2. If g7 (1) € L?[0, ), 1 <p <o, then (1) is in the limit point
classification.

Proof. Suppose not. Then (1) is L.C. Let x(#) be any solution of (1).
By Lemma 2, x(¢) oscillates and the distance between consecutive zeroes
of any solution tends to zero, as ¢t — . However, Theorem 2 maintains that
if x(t) oscillates, the distance between consecutive zeroes must become
unbounded, a contradiction. Thus the equation must be limit point.

It should be noted that Theorem 2 does not hold for p = =, as evidenced

Loy othgrigimpliesexampd edsbui; sesywomemer;citswould be interesting to know
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if Theorem 2 is true for 0 <p < 1. If it were, then Corollary 2 could also
be extended to the case 0 <p <1. This would answer a question posed by
Everitt, Giertz, and Weidmann [2, p. 346] as to whether or not (1) is limit
point for ¢*(¢) € L?[0, ), 0 <p < 1.

Note added in proof. Lemma 1 is also contained in a paper by J. H. E.
Cohn, Consecutive zeroes of solutions of ordinary second order differential

equations, ]J. London Math. Soc. (2) 5 (1972), 465—468.
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