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ON THE DISTANCE BETWEEN ZEROES

WILLIAM T. PATULA

ABSTRACT.    For the equation x    +  q(t)x = 0, let x(t) be a solu-

tion with consecutive zeroes at  t = a  and  t = b.    A simple inequality

is proven that relates not only  a  and   b  to the integral of q   (t)  but

also any point  c e (a, 6)  where   \x(t)\   is maximized.   As a corollary,

it is shown that if the above equation is oscillatory and if  q (t) £

L   [0, °»), 1 < p < °°, then the distance between consecutive zeroes

must become unbounded.

Consider the following second order linear differential equation:

(1) x"{t) + q(t)x(t) = 0,

where  q(t) is continuous on some appropriate  t interval.   Let  q u) =

max[^(z), 0].   Pertaining to (1), the following theorem of Hartman [3, p. 345]

is known.

Theorem 1.   Let  q{t)  be real-valued and continuous for a .< t < b.   If

x{t)  is a solution of (1) with two zeroes in [a, b\, then

(2) Cb(t-a)(b-t)q+(t)dt>{b-a).
J a

Since (b - a)2/4 > it - a)(b - t) for t £ {a, b), equation (2) =» that

(3) {b-a)2   fh q + (t)dt>(b-a),
4 J a

or

(4) f%+(^>—.
J a b- a

Thus Theorem 1 has as a corollary the following condition of Lyapunov.

Again, see Hartman [3, p, 345].

Corollary 1.   A necessary condition for any solution x(t) of (1) to have

two zeroes in [a, b]  is that   (a (t) dt > 4/(b - a).

The lemma that we would like to present is the following.

Lemma L   Let x{t)  be a solution of (1), where  x(a) =* x{b) = 0, and
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xit) ^ 0, z £ (a, b).   Let  c  be a point in ia, b) where  \xit)\   is maximized.

Then

(i)   Jcaq*it) dt > l/ic - a),

(ii)   Jbcq+it) dt > l/ib - c),

(iii)   fbaq%) dt>ib- a)/[ib - c)ic - a)].

Proof. Integrating (1) yields

x'it) - x (c) = I q~is)xis) ds -   I     q is)xis) ds.

Note that x (c) = 0.   Another integration gives

(5) xit) - xic) = fit- s)q-is)xis)ds- JAt- s)q + is)xis)ds.

Let  t = b, so that  xib) = 0.   Equation (5) implies that

xib) - xic) =   |    ib - s)q~is)xis) ds -   j     ib - s)q+is)xis) ds,

or

xic) +   I     ib — s)q~is)xis) ds =    I     ib—s)q   is)xis)ds.

W.L.O.G., we may assume xit) > 0, t £ [a, b\.   Thus we have

xic) <   I     ib~s)q   is)xis)ds< ib  - c) I      q   (s)x(s) ds

=» 1 < ib - c) J      q  is) ds,     since  xis) < xic),   Use [a, b\,

-    ffe q + it)dt>-^-.
Jc b- c

This proves part (ii).   Part (i) follows in a similar fashion, except that in

equation (5), one now replaces  t by a.   The sum of (i) and (ii) yields part

(iii), which completes the lemma.

One way to view Lemma 1 is that it imposes some restrictions on the

location of the point c and thus the maximum of \xit)\ in [a, b\. That is,

J q it) dt is a finite number.   But

.. b - a ,. b - a
lim      ;-—-r    =     lim      ;-   = cw.

c-a+ ib- c)ic - a)       c^b~ib-c)ic - a)

Thus   c cannot be "too close" to  a or  b.   Also, it is interesting to note

that  ib - a)/[ib — c)ic - a)] > 4/ib - a).   This means that under the hypothe-License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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ses of Lemma 1, Corollary 1 follows from Lemma 1.

As a consequence of Lemma 1 (also Theorem 1 or Corollary 1), we have

Theorem 2.   Suppose  q it) £ Lp[0, °°), 1 <p < oo.   7/(1) z's oscillatory

and if x(t)  is any solution, then the distance between consecutive zeroes of

x{t) must become infinite.

Proof.   Suppose not.   Then there exists a solution xu) with its sequence

of zeroes   \t   \,   which  sequence has  a  subsequence   \t„A   such that

\t„.+i - t„k\ <M<oc V£.   Let  s„k be a point in (t„k, t„k + i) where  \x{t)\

is maximized.   Then   \sn, — t„,\ < M, for all  k.   Since   q it) £ Lp[0, oo), 1

< p < oo, choose  k  so large that

tf"   q%)pdt\,P<^-lh,    where   I + I . 1.

From Lemma 1, part (i), we have

/  "k q + (t)dt>  -1_.
'n S       - t

Thus "*       "k

s

K(s      -t    )   (   "k q+{t)dt

K. K n

<(s      -t    )((   "k q + {t)pdt)    \s      -t    )l/r
nk       nk  \Jtn } nk       nk

<(s        -   t     )1+1/Yf~    q + {t)pdt\P
"k "k \Jtnk* )

< Ml+1/r ■ M~l-Ur =» 1< 1,

a contradiction.   This completes the theorem.

Pertaining to (1), there is the following oscillation theorem of Wintner

[5].

If limt_Mf0q(s) ds = <», then (1) is oscillatory.

The above condition enables us to construct some simple examples.

Consider the equation

(6) x" + (l + /)-1x=0,       z>0.

The Wintner condition guarantees that (6) is oscillatory. Since l/(l + t)

£ L \0, oo), Theorem 2 asserts that the distance between zeroes of any solu-

tion must become unbounded.

As another example, let
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qit) = l/in + I),       n + l/n2 <t<in+l)-l/in+l)2,       n > 2;

= in)U4, t = n,       n>2;

= the line segment joining  in - l/n ,  1/rz) to  in, n      )

for  n - l/n2 < t < n,        n > 2;

= the line segment joining  in, n       ) to   in + l/n  , l/in + l))

for  n < t < n + l/n  ,       n > 2;

= 1/2    for 0 < t < 7/4.

So qit) has the following appearance.

|_aaA...
12 3 4

It is easy to verify that /~qit) dt = °°, but j^qit)2 dt < °°- The Wintner con-

dition again implies that (1) is oscillatory, while Theorem 2 implies that the

distance between zeroes is unbounded.

Theorem 2 can also be used to derive a known limit point result (Patula

and Wong [4, p. 10, Corollary])-   Note that for  t > 0, equation (1) is called

limit point, L.P., if at least one solution  xit) 4 ^  t°> oc'>-   W any two lin-

early independent (and thus all) solutions are square integrable, (1) is called

limit circle, L.C.    See Coddington and Levinson [l, p. 225].

The following lemma is known (Patula and Wong [4, p. 11]).

Lemma 2.   If equation (1) is L.C., then (1) is oscillatory, and the dis-

tance between consecutive zeroes of any solution tends to zero, as t —► °».

We can now prove the following limit point result.

Corollary 2.   // q  it) £ Lp[0y <*=), 1 < p < <*>, then (1) is in the limit point

classification.

Proof.   Suppose not.   Then (1) is L.C.    Let xit) be any solution of (1).

By Lemma 2, xit)  oscillates and the distance between consecutive zeroes

of any solution tends to zero, as t —> <*>•   However, Theorem 2 maintains that

if xit) oscillates, the distance between consecutive zeroes must become

unbounded, a contradiction.   Thus the equation must be limit point.

It should be noted that Theorem 2 does not hold for p = °°, as evidenced

by the simple example x" + x = 0.   However, it would be interesting to knowLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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if Theorem 2 is true for 0 < p < 1.   If it were, then Corollary 2 could also

be extended to the case 0 < p < 1.   This would answer a question posed by

Everitt, Giertz, and Weidmann [2, p. 346] as to whether or not (1) is limit

point for  q*{t) £ LP[Q, oo), 0 < p < 1.

Note added in proof. Lemma 1 is also contained in a paper by J. H. E.

Cohn, Consecutive zeroes of solutions of ordinary second order differential

equations, J. London Math. Soc. (2) 5 (1972), 465-468.
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