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Abstract

The D-eigenvalues µ1, µ2, . . . , µn of a connected graph G are the eigen-
values of its distance matrix D. In this paper we define and investigate

the distance Estrada index of the graph G as DEE = DEE(G) =
n
∑

i=1

eµi

and obtain bounds for DEE(G) and some relation between DEE(G) and
the distance energy.
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1. Introduction

Let G = (V, E) be a simple graph with n vertices and m edges. Such a graph will be
referred to as an (n, m)-graph.

Let the graph G be connected on the vertex set V = {v1, v2, . . . , vn}. The distance
matrix D = D(G) of G is defined so that its (i, j)-entry is equal to dG(vi, vj), denoted
by dij , the distance (i.e., the length of the shortest path [1]) between the vertices vi

and vj of G. The diameter of the graph G is the maximum distance between any two
vertices of G. Let ∆ be the diameter of G, and A(G) the (0, 1)-adjacency matrix of G.
The eigenvalues of D(G) are called the D-eigenvalues of G, and the eigenvalues of the
adjacency matrix of G are said to be the eigenvalues of G [2]. Since D(G) and A(G) are
real symmetric matrices, their eigenvalues are real numbers. So we can order them so
that λ1 ≥ λ2 ≥ · · · ≥ λn and µ1 ≥ µ2 ≥ · · · ≥ µn are the eigenvalues and D-eigenvalues
of G, respectively.
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The energy of the graph G is defined in [11-13] as:

(1) E = E(G) =

n
∑

i=1

|λi| .

The Estrada index of the graph G is defined in [5-10] as:

(2) EE = EE(G) =

n
∑

i=1

eλi

Denoting by Mk = Mk(G) the k-th moment of the graph G,

Mk = Mk(G) =
n
∑

i=1

(λi)
k
,

and recalling the power-series expansion of ex, we have

(3) EE =
∞
∑

k=0

Mk

k!
.

It is well known that [8] Mk(G) is equal to the number of closed walks of length k of the
graph G.

The Estrada index of graphs has an important role in Chemistry and Physics. There
exists a vast literature that studies the Estrada index of graphs. We refer the reader to
[3-10] for surveys and more information.

Recently, J. A. de la Peña et al. [3] established lower and upper bounds for EE in
terms of the number of vertices and edges. They also obtained some inequalities between
EE and the energy of G. Their results are the following.

1.1. Theorem. [3] Let G be an (n, m)-graph. Then the Estrada index of G is bounded

as follows:

(4)
√

n2 + 4m ≤ EE(G) ≤ n − 1 + e
√

2m
.

Equality on both sides of (4) is attained if and only if G ≃ Kn.

1.2. Theorem. [3] Let G be an (n, m)-graph. Then

(5) EE(G) − E(G) ≤ n − 1 −
√

2m + e
√

2m

or

(6) EE(G) ≤ n − 1 + eE(G)
.

Equality in (5) or (6) is attained if and only if G ≃ Kn.

The distance energy of the graph G is defined in [14] as:

(7) ED = ED(G) =

n
∑

i=1

|µi| .

Now we define the distance Estrada index of the graph G and obtain bounds for DEE(G)
and some relations between DEE(G) and the distance energy.
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2. The distance Estrada index of graphs

2.1. Definition. If G is an (n, m)-graph, then the distance Estrada index of G, denoted
by DEE(G), is equal to

(8) DEE = DEE(G) =
n
∑

i=1

eµi ,

where µ1 ≥ µ2 ≥ · · ·µn are the D−eigenvalues of G.

Let

Nk =
n
∑

i=1

(µi)
k
.

Then

(9) DEE(G) =
∞
∑

k=0

Nk

k!
.

2.2. Lemma. [15] Let G be a connected (n, m)-graph and µ1, µ2, · · · , µn its D-eigenvalues.

Then
n
∑

i=1

µi = 0

and
n
∑

i=1

µ
2
i = 2

∑

i<j

(dij)
2
.

2.3. Lemma. Let G be a connected (n, m)-graph and ∆ the diameter of G. Then

(10) m ≤
∑

i<j

(dij)
2 ≤ n(n − 1)

2
∆2

.

Equality holds on both sides of (10) if and only if G ≃ Kn.

Proof. Since dij ≥ 1 (i 6= j) and dij ≤ ∆, we obtain

∑

i<j

(dij)
2 ≥ n(n − 1)

2
≥ m

and
∑

i<j

(dij)
2 ≤ n(n − 1)

2
∆2

.

Also, equality holds on both sides of (10) if and if G ≃ Kn. Hence we get the result. �

2.4. Theorem. Let G be a connected (n, m)-graph and ∆ the diameter of G. Then the

distance Estrada index is bounded as follows

(11)
√

n2 + 4m ≤ DEE(G) ≤ n − 1 + e∆
√

n(n−1)
.

Equality holds on both sides of (11) if and only if G ≃ K1.

Proof. Lower bound: Directly from Eq. (8) we get

(12) DEE2(G) =
n
∑

i=1

e2µi + 2
∑

i<j

eµieµj .
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By the arithmetic geometric mean inequality, we get

(13)

2
∑

i<j

eµieµj ≥ n(n − 1)

(

∏

i<j

eµieµj

) 2
n(n−1)

= n(n − 1)

[(

n
∏

i=1

eµi

)n−1]
2

n(n−1)

= n(n − 1)(eN1)
2
n

= n(n − 1).

By means of a power-series expansion and N0 = n; N1 = 0 and N2 = 2
∑

i<j

(dij)
2, we

obtain

n
∑

i=1

e2µi =
n
∑

i=1

∑

k≥0

(2µi)
k

k!
= n + 4

∑

i<j

(dij)
2 +

n
∑

i=1

∑

k≥3

(2µi)
k

k!
.

Since we want to get as good a lower bound as possible, it looks reasonable to replace
∑

k≥3

(2µi)
k

k!
by 4

∑

k≥3

(µi)
k

k!
. However, we use a multiplier t ∈ [0, 4] instead of 4 = 22, so as

to arrive at

n
∑

i=1

e2µi ≥ n + 4
∑

i<j

(dij)
2 + t

n
∑

i=1

∑

k≥3

(µi)
k

k!

= n + 4
∑

i<j

(dij)
2 − tn − t

∑

i<j

(dij)
2 + t

n
∑

i=1

∑

k≥0

(µi)
k

k!

= n(1 − t) + (4 − t)
∑

i<j

(dij)
2 + tDEE(G).

By Lemma 2.3, we get

(14)
n
∑

i=1

e2µi ≥ n(1 − t) + (4 − t)m + tDEE(G).

By substituting (13) and (14) back into (12), and solving for DEE(G), we get

DEE(G) ≥ t

2
+

√

(

n − t

2

)2

+ (4 − t)m.

It is easy to see that for n ≥ 2 and m ≥ 1 the function

f(x) :=
x

2
+

√

(

n − x

2

)2

+ (4 − x)m

monotonically decreases in the interval [0, 4]. As a result, the best lower bound for
DEE(G) is attained for t = 0. This gives us the first part of the theorem.
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Upper bound. Starting from the following inequality, we get

DEE(G) = n +

n
∑

i=1

∑

k≥1

(µi)
k

k!

= n +

n
∑

i=1

∑

k≥1

|µi|k
k!

= n +
∑

k≥1

1

k!

n
∑

i=1

(µ2
i )

k
2

≤ n +
∑

k≥1

1

k!

[

n
∑

i=1

(µ2
i )

] k
2

= n +
∑

k≥1

1

k!

[

2
∑

i<j

(dij)
2

]
k
2

= n − 1 +
∑

k≥0

(

√

2
∑

i<j

(dij)2

)k

k!

= n − 1 + e

√

2
∑

i<j

(dij)2

.

By Lemma 2.3, we obtain

DEE(G) ≤ n − 1 + e∆
√

n(n−1)
.

Hence we get the right-hand side of inequality of (11).

From the derivation of (11) it is clear that equality holds if and only if the graph G

has all zero D-eigenvalues. Since G is a connected graph, this only happens in the case
of G ≃ K1.

Hence we get the proof of theorem. �

3. Bounds for the distance Estrada index involving the distance

energy

3.1. Theorem. Let G be a connected (n, m)-graph and ∆ the diameter of G. Then

(15) DEE(G) − ED(G) ≤ n − 1 − ∆
√

n(n − 1) + e∆
√

n(n−1)
,

or

(16) DEE(G) ≤ n − 1 + eED(G)
.

Equality holds in (16) or (17) if and only if G ≃ K1.

Proof. From the proof of Theorem 2.4., we have

DEE(G) = n +
n
∑

i=1

∑

k≥1

(µi)
k

k!
≤ n +

n
∑

i=1

∑

k≥1

|µi|k
k!

.

Taking into account the definition of the distance energy (7), we get

DEE(G) ≤ n + ED(G) +

n
∑

i=1

∑

k≥2

|µi|k
k!

,
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which leads (as in Theorem 2.4) to

(17)

DEE(G) − ED(G) ≤ n +
n
∑

i=1

∑

k≥2

|µi|k
k!

≤ n − 1 −
√

2
∑

i<j

(dij)2 + e

√

2
∑

i<j

(dij)2

.

One can easily see that the function

f(x) := ex − x

monotonically increases in the interval [0, +∞]. Therefore the best upper bound for

DEE(G) − ED(G) is obtained for
∑

i<j

(dij)
2 = n(n−1)

2
∆2 by Lemma 2.3. Then we get

DEE(G) − ED(G) ≤ n − 1 − ∆
√

n(n − 1) + e∆
√

n(n−1)
.

Another route to connect DEE(G) and ED(G) as follows:

DEE(G) ≤ n +
n
∑

i=1

∑

k≥1

|µi|k
k!

≤ n +
∑

k≥1

1

k!

( n
∑

i=1

|µi|k
)

= n +
∑

k≥1

(ED(G))k

k!

= n − 1 +
∑

k≥0

(ED(G))k

k!
,

implying

DEE(G) ≤ n − 1 + eED(G)
.

Also, equality holds in (16) or (17) if and only if G ≃ K1. �

Acknowledgement. This work is supported by the Coordinating Office of Selçuk Uni-
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[2] Cvetković, D., Doob, M. and Sachs, H. Spectra of Graphs-Theory and Application (Third

ed., Johann Ambrosius Bart Verlag, Heidelberg, Leipzig, 1995).
[3] De la Peña, J. A., Gutman, I. and Rada, J. Estimating the estrada index, Linear Algebra

Appl. 427, 70–76, 2007.
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[8] Estrada, E. and Rodŕıguez-Velázguez, J.A. Subgraph centrality in complex networks, Phys.

Rev. E 71, 056103-056103-9, 2005.



The Distance Estrada Index of Graphs 283
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