ON THE DISTANCE ESTRADA INDEX OF GRAPHS

A. Dilek Güngör* and Ş. Burcu Bozkurt* ${ }^{*}$

Received 24:02:2009 : Accepted $25: 09: 2009$

Abstract

The D-eigenvalues $\mu_{1}, \mu_{2}, \ldots, \mu_{n}$ of a connected graph G are the eigenvalues of its distance matrix D. In this paper we define and investigate the distance Estrada index of the graph G as $\operatorname{DEE}=\operatorname{DEE}(G)=\sum_{i=1}^{n} \mathrm{e}^{\mu_{i}}$ and obtain bounds for $\operatorname{DEE}(G)$ and some relation between $\operatorname{DEE}(G)$ and the distance energy.

Keywords: Distance energy, Distance Estrada index, Bound.
2000 AMS Classification: 05 C 12, 05 C 90.

1. Introduction

Let $G=(V, E)$ be a simple graph with n vertices and m edges. Such a graph will be referred to as an (n, m)-graph.

Let the graph G be connected on the vertex set $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. The distance matrix $D=D(G)$ of G is defined so that its (i, j)-entry is equal to $d_{G}\left(v_{i}, v_{j}\right)$, denoted by $d_{i j}$, the distance (i.e., the length of the shortest path [1]) between the vertices v_{i} and v_{j} of G. The diameter of the graph G is the maximum distance between any two vertices of G. Let Δ be the diameter of G, and $A(G)$ the $(0,1)$-adjacency matrix of G. The eigenvalues of $D(G)$ are called the D-eigenvalues of G, and the eigenvalues of the adjacency matrix of G are said to be the eigenvalues of $G[2]$. Since $D(G)$ and $A(G)$ are real symmetric matrices, their eigenvalues are real numbers. So we can order them so that $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$ and $\mu_{1} \geq \mu_{2} \geq \cdots \geq \mu_{n}$ are the eigenvalues and D-eigenvalues of G, respectively.

[^0]The energy of the graph G is defined in [11-13] as:

$$
\begin{equation*}
\mathrm{E}=E(G)=\sum_{i=1}^{n}\left|\lambda_{i}\right| . \tag{1}
\end{equation*}
$$

The Estrada index of the graph G is defined in [5-10] as:

$$
\begin{equation*}
\mathrm{EE}=\mathrm{EE}(G)=\sum_{i=1}^{n} \mathrm{e}^{\lambda_{i}} \tag{2}
\end{equation*}
$$

Denoting by $M_{k}=M_{k}(G)$ the k-th moment of the graph G,

$$
M_{k}=M_{k}(G)=\sum_{i=1}^{n}\left(\lambda_{i}\right)^{k}
$$

and recalling the power-series expansion of e^{x}, we have
(3) $\mathrm{EE}=\sum_{k=0}^{\infty} \frac{M_{k}}{k!}$.

It is well known that [8] $M_{k}(G)$ is equal to the number of closed walks of length k of the graph G.

The Estrada index of graphs has an important role in Chemistry and Physics. There exists a vast literature that studies the Estrada index of graphs. We refer the reader to [3-10] for surveys and more information.

Recently, J. A. de la Peña et al. [3] established lower and upper bounds for EE in terms of the number of vertices and edges. They also obtained some inequalities between EE and the energy of G. Their results are the following.
1.1. Theorem. [3] Let G be an (n, m)-graph. Then the Estrada index of G is bounded as follows:

$$
\begin{equation*}
\sqrt{n^{2}+4 m} \leq \mathrm{EE}(G) \leq n-1+\mathrm{e}^{\sqrt{2 m}} \tag{4}
\end{equation*}
$$

Equality on both sides of (4) is attained if and only if $G \simeq \bar{K}_{n}$.
1.2. Theorem. [3] Let G be an (n, m)-graph. Then

$$
\begin{equation*}
\mathrm{EE}(G)-\mathrm{E}(G) \leq n-1-\sqrt{2 m}+\mathrm{e}^{\sqrt{2 m}} \tag{5}
\end{equation*}
$$

or
(6) $\quad \mathrm{EE}(G) \leq n-1+\mathrm{e}^{\mathrm{E}(G)}$.

Equality in (5) or (6) is attained if and only if $G \simeq \bar{K}_{n}$.
The distance energy of the graph G is defined in [14] as:

$$
\begin{equation*}
\mathrm{E}_{D}=\mathrm{E}_{D}(G)=\sum_{i=1}^{n}\left|\mu_{i}\right| . \tag{7}
\end{equation*}
$$

Now we define the distance Estrada index of the graph G and obtain bounds for $\operatorname{DEE}(G)$ and some relations between $\operatorname{DEE}(G)$ and the distance energy.

2. The distance Estrada index of graphs

2.1. Definition. If G is an (n, m)-graph, then the distance Estrada index of G, denoted by $\operatorname{DEE}(G)$, is equal to

$$
\begin{equation*}
\operatorname{DEE}=\operatorname{DEE}(G)=\sum_{i=1}^{n} \mathrm{e}^{\mu_{i}}, \tag{8}
\end{equation*}
$$

where $\mu_{1} \geq \mu_{2} \geq \cdots \mu_{n}$ are the D-eigenvalues of G.
Let

$$
N_{k}=\sum_{i=1}^{n}\left(\mu_{i}\right)^{k} .
$$

Then

$$
\begin{equation*}
\operatorname{DEE}(G)=\sum_{k=0}^{\infty} \frac{N_{k}}{k!} . \tag{9}
\end{equation*}
$$

2.2. Lemma. [15] Let G be a connected (n, m)-graph and $\mu_{1}, \mu_{2}, \cdots, \mu_{n}$ its D-eigenvalues. Then

$$
\sum_{i=1}^{n} \mu_{i}=0
$$

and

$$
\sum_{i=1}^{n} \mu_{i}^{2}=2 \sum_{i<j}\left(d_{i j}\right)^{2} .
$$

2.3. Lemma. Let G be a connected (n, m)-graph and Δ the diameter of G. Then

$$
\begin{equation*}
m \leq \sum_{i<j}\left(d_{i j}\right)^{2} \leq \frac{n(n-1)}{2} \Delta^{2} \tag{10}
\end{equation*}
$$

Equality holds on both sides of (10) if and only if $G \simeq K_{n}$.
Proof. Since $d_{i j} \geq 1(i \neq j)$ and $d_{i j} \leq \Delta$, we obtain

$$
\sum_{i<j}\left(d_{i j}\right)^{2} \geq \frac{n(n-1)}{2} \geq m
$$

and

$$
\sum_{i<j}\left(d_{i j}\right)^{2} \leq \frac{n(n-1)}{2} \Delta^{2} .
$$

Also, equality holds on both sides of (10) if and if $G \simeq K_{n}$. Hence we get the result.
2.4. Theorem. Let G be a connected (n, m)-graph and Δ the diameter of G. Then the distance Estrada index is bounded as follows

$$
\begin{equation*}
\sqrt{n^{2}+4 m} \leq \operatorname{DEE}(G) \leq n-1+\mathrm{e}^{\Delta \sqrt{n(n-1)}} . \tag{11}
\end{equation*}
$$

Equality holds on both sides of (11) if and only if $G \simeq K_{1}$.
Proof. Lower bound: Directly from Eq. (8) we get

$$
\begin{equation*}
\operatorname{DEE}^{2}(G)=\sum_{i=1}^{n} \mathrm{e}^{2 \mu_{i}}+2 \sum_{i<j} \mathrm{e}^{\mu_{i}} \mathrm{e}^{\mu_{j}} \tag{12}
\end{equation*}
$$

By the arithmetic geometric mean inequality, we get

$$
\begin{align*}
2 \sum_{i<j} \mathrm{e}^{\mu_{i}} \mathrm{e}^{\mu_{j}} & \geq n(n-1)\left(\prod_{i<j} \mathrm{e}^{\mu_{i}} \mathrm{e}^{\mu_{j}}\right)^{\frac{2}{n(n-1)}} \\
& =n(n-1)\left[\left(\prod_{i=1}^{n} \mathrm{e}^{\mu_{i}}\right)^{n-1}\right]^{\frac{2}{n(n-1)}} \tag{13}\\
& =n(n-1)\left(\mathrm{e}^{N_{1}}\right)^{\frac{2}{n}} \\
& =n(n-1) .
\end{align*}
$$

By means of a power-series expansion and $N_{0}=n ; N_{1}=0$ and $N_{2}=2 \sum_{i<j}\left(d_{i j}\right)^{2}$, we obtain

$$
\sum_{i=1}^{n} \mathrm{e}^{2 \mu_{i}}=\sum_{i=1}^{n} \sum_{k \geq 0} \frac{\left(2 \mu_{i}\right)^{k}}{k!}=n+4 \sum_{i<j}\left(d_{i j}\right)^{2}+\sum_{i=1}^{n} \sum_{k \geq 3} \frac{\left(2 \mu_{i}\right)^{k}}{k!} .
$$

Since we want to get as good a lower bound as possible, it looks reasonable to replace $\sum_{k \geq 3} \frac{\left(2 \mu_{i}\right)^{k}}{k!}$ by $4 \sum_{k \geq 3} \frac{\left(\mu_{i}\right)^{k}}{k!}$. However, we use a multiplier $t \in[0,4]$ instead of $4=2^{2}$, so as to arrive at

$$
\begin{aligned}
\sum_{i=1}^{n} \mathrm{e}^{2 \mu_{i}} & \geq n+4 \sum_{i<j}\left(d_{i j}\right)^{2}+t \sum_{i=1}^{n} \sum_{k \geq 3} \frac{\left(\mu_{i}\right)^{k}}{k!} \\
& =n+4 \sum_{i<j}\left(d_{i j}\right)^{2}-t n-t \sum_{i<j}\left(d_{i j}\right)^{2}+t \sum_{i=1}^{n} \sum_{k \geq 0} \frac{\left(\mu_{i}\right)^{k}}{k!} \\
& =n(1-t)+(4-t) \sum_{i<j}\left(d_{i j}\right)^{2}+t \operatorname{DEE}(G)
\end{aligned}
$$

By Lemma 2.3, we get

$$
\begin{equation*}
\sum_{i=1}^{n} \mathrm{e}^{2 \mu_{i}} \geq n(1-t)+(4-t) m+t \mathrm{DEE}(G) \tag{14}
\end{equation*}
$$

By substituting (13) and (14) back into (12), and solving for $\operatorname{DEE}(G)$, we get

$$
\operatorname{DEE}(G) \geq \frac{t}{2}+\sqrt{\left(n-\frac{t}{2}\right)^{2}+(4-t) m}
$$

It is easy to see that for $n \geq 2$ and $m \geq 1$ the function

$$
f(x):=\frac{x}{2}+\sqrt{\left(n-\frac{x}{2}\right)^{2}+(4-x) m}
$$

monotonically decreases in the interval $[0,4]$. As a result, the best lower bound for $\operatorname{DEE}(G)$ is attained for $t=0$. This gives us the first part of the theorem.

Upper bound. Starting from the following inequality, we get

$$
\begin{aligned}
\operatorname{DEE}(G) & =n+\sum_{i=1}^{n} \sum_{k \geq 1} \frac{\left(\mu_{i}\right)^{k}}{k!} \\
& =n+\sum_{i=1}^{n} \sum_{k \geq 1} \frac{\left|\mu_{i}\right|^{k}}{k!} \\
& =n+\sum_{k \geq 1} \frac{1}{k!} \sum_{i=1}^{n}\left(\mu_{i}^{2}\right)^{\frac{k}{2}} \\
& \leq n+\sum_{k \geq 1} \frac{1}{k!}\left[\sum_{i=1}^{n}\left(\mu_{i}^{2}\right)\right]^{\frac{k}{2}} \\
& =n+\sum_{k \geq 1} \frac{1}{k!}\left[2 \sum_{i<j}\left(d_{i j}\right)^{2}\right]^{\frac{k}{2}} \\
& =n-1+\sum_{k \geq 0} \frac{\left(\sqrt{2 \sum_{i<j}\left(d_{i j}\right)^{2}}\right)^{k}}{k!} \\
& =n-1+\mathrm{e} \sqrt{2 \sum_{i<j}\left(d_{i j}\right)^{2}}
\end{aligned}
$$

By Lemma 2.3, we obtain

$$
\operatorname{DEE}(G) \leq n-1+\mathrm{e}^{\Delta \sqrt{n(n-1)}} .
$$

Hence we get the right-hand side of inequality of (11).
From the derivation of (11) it is clear that equality holds if and only if the graph G has all zero D-eigenvalues. Since G is a connected graph, this only happens in the case of $G \simeq K_{1}$.

Hence we get the proof of theorem.

3. Bounds for the distance Estrada index involving the distance energy

3.1. Theorem. Let G be a connected (n, m)-graph and Δ the diameter of G. Then

$$
\begin{equation*}
\operatorname{DEE}(G)-\mathrm{E}_{D}(G) \leq n-1-\Delta \sqrt{n(n-1)}+\mathrm{e}^{\Delta \sqrt{n(n-1)}} \tag{15}
\end{equation*}
$$

or
(16) $\quad \operatorname{DEE}(G) \leq n-1+\mathrm{e}^{\mathrm{E}_{D}(G)}$.

Equality holds in (16) or (17) if and only if $G \simeq K_{1}$.
Proof. From the proof of Theorem 2.4., we have

$$
\operatorname{DEE}(G)=n+\sum_{i=1}^{n} \sum_{k \geq 1} \frac{\left(\mu_{i}\right)^{k}}{k!} \leq n+\sum_{i=1}^{n} \sum_{k \geq 1} \frac{\left|\mu_{i}\right|^{k}}{k!} .
$$

Taking into account the definition of the distance energy (7), we get

$$
\operatorname{DEE}(G) \leq n+\mathrm{E}_{D}(G)+\sum_{i=1}^{n} \sum_{k \geq 2} \frac{\left|\mu_{i}\right|^{k}}{k!},
$$

which leads (as in Theorem 2.4) to

$$
\begin{align*}
\operatorname{DEE}(G)-\mathrm{E}_{D}(G) & \leq n+\sum_{i=1}^{n} \sum_{k \geq 2} \frac{\left|\mu_{i}\right|^{k}}{k!} \\
& \leq n-1-\sqrt{2 \sum_{i<j}\left(d_{i j}\right)^{2}}+\mathrm{e}^{\sqrt{2 \sum_{i<j}\left(d_{i j}\right)^{2}}} . \tag{17}
\end{align*}
$$

One can easily see that the function

$$
f(x):=\mathrm{e}^{x}-x
$$

monotonically increases in the interval $[0,+\infty]$. Therefore the best upper bound for $\operatorname{DEE}(G)-\mathrm{E}_{D}(G)$ is obtained for $\sum_{i<j}\left(d_{i j}\right)^{2}=\frac{n(n-1)}{2} \Delta^{2}$ by Lemma 2.3. Then we get

$$
\operatorname{DEE}(G)-\mathrm{E}_{D}(G) \leq n-1-\Delta \sqrt{n(n-1)}+\mathrm{e}^{\Delta \sqrt{n(n-1)}}
$$

Another route to connect $\operatorname{DEE}(G)$ and $\mathrm{E}_{D}(G)$ as follows:

$$
\begin{aligned}
\operatorname{DEE}(G) & \leq n+\sum_{i=1}^{n} \sum_{k \geq 1} \frac{\left|\mu_{i}\right|^{k}}{k!} \\
& \leq n+\sum_{k \geq 1} \frac{1}{k!}\left(\sum_{i=1}^{n}\left|\mu_{i}\right|^{k}\right) \\
& =n+\sum_{k \geq 1} \frac{\left(\mathrm{E}_{D}(G)\right)^{k}}{k!} \\
& =n-1+\sum_{k \geq 0} \frac{\left(\mathrm{E}_{D}(G)\right)^{k}}{k!},
\end{aligned}
$$

implying

$$
\operatorname{DEE}(G) \leq n-1+\mathrm{e}^{\mathrm{E}_{D}(G)}
$$

Also, equality holds in (16) or (17) if and only if $G \simeq K_{1}$.

Acknowledgement. This work is supported by the Coordinating Office of Selçuk University Scientific Research Projects.

References

[1] Buckley, F. and Harary, F. Distance in Graphs (Addison-Wesley, Red-wood, 1990).
[2] Cvetković, D., Doob, M. and Sachs, H. Spectra of Graphs-Theory and Application (Third ed., Johann Ambrosius Bart Verlag, Heidelberg, Leipzig, 1995).
[3] De la Peña, J. A., Gutman, I. and Rada, J. Estimating the estrada index, Linear Algebra Appl. 427, 70-76, 2007.
[4] Deng H., Radenković, S. and Gutman I. The Estrada index, in: Cvetković, D., Gutman I. (Eds.), Applications of Graph Spectra (Math. Inst., Belgrade, 2009), 123-140.
[5] Estrada, E. Characterization of 3D molecular structure, Chem. Phys. Lett. 319, 713-718, 2000.
[6] Estrada, E. Characterization of the folding degree of proteins, Bioinformatics 18, 697-704, 2002.
[7] Estrada, E. Characterization of amino acid contribution to the folding degree of proteins, Proteins 54, 727-737, 2004.
[8] Estrada, E. and Rodríguez-Velázguez, J. A. Subgraph centrality in complex networks, Phys. Rev. E 71, 056103-056103-9, 2005.
[9] Estrada, E. and Rodríguez-Velázguez, J. A. Spectral measures of bipartivity in complex networks, Phys. Rev. E72, 046105-146105-6, 2005.
[10] Estrada, E., Rodríguez-Velázguez, J. A. and Randić, M. Atomic branching in molecules, Int. J. Quantum Chem. 106, 823-832, 2006.
[11] Gutman, I. Acyclic conjugated molecules, trees and their energies, J. Math. Chem. 1, 123$143,1987$.
[12] Gutman, I. Total π-electron energy of benezoid hydrocarbons, Topics Curr. Chem. 162, 26-63, 1992.
[13] Gutman, I. The energy of a graph, old and new results, in: A. Kohnert, R. Laue, A. Wassermann (Eds.) Algebraic Combinators and application (Springer-Verlag, Berlin, 2001), 196-211.
[14] Indulal, G., Gutman, I. and Vijaykumar, A. On the distance energy of a graph, MATCH Commun. Math. Comput. Chem. 60, 461-472, 2008.
[15] Ramane, H.S., Revankar, D. S., Gutman, I., Rao, S. B., Acharya, D. and Walikar, H. B. Bounds for the distance energy of a graph, Kragujevag J. Sci. 31, 59-68, 2008.

[^0]: *Department of Mathematics, Science Faculty, Selçuk University, 42003, Selçuklu, Konya, Turkey. E-mail: (A.D. Güngör) agungor@selcuk.edu.tr (Ş. B. Bozkurt) srf_burcu_bozkurt@hotmail.com
 ${ }^{\dagger}$ Corresponding author
 ${ }^{\dagger}$ Material based on part of the master thesis of the second author.

