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SVAZEK 28 (1983) A P L I K A C E M A T E M A T I K Y ČÍSLO 5 

ON THE DISTANCE POLYNOMIAL OF A GRAPH 

PAVEL K R I V K A , N E N A D TRINAJSTIC 

(Received December 29, 1982) 

The distance matrix, which is a structure less common than the adjacency matrix 
[ l ] , has been increasingly used in recent years in several different areas such as anthro­
pology [2], [3], graph theory [4] —[6], theory of communication [7], chemistry 
[ 8 ] - [ 1 0 ] , history [11], etc. 

The distance matrix (which is sometimes also called the metrics matrix) is, in a sense, 
a more complicated and also a richer structure than the adjacency matrix. While 
each (0, 1) symmetric matrix in which each diagonal entry is zero corresponds to 
a unique graph or digraph, this is not the case with the distance matrix (which is 
a symmetric matrix with diagonal entries zero, but not (0, 1)). We will consider 
finite connected graphs without loops. Graphs will be symbolized by G. The distance 
matrix D has the entries dn = 0 and dtj = the length of the shortest path between 
the vertices i and j . The distance polynomial of G is defined as det |x/ — D| where / 
is the unit matrix. 

Proposition 1. Every root of the distance polyncmial is real. 

Proof. The eigenvalues of a symmetric matrix are always real [12]. 

Proposition 2. The coefficient all_1 at x'1"1 is always zero. 

Proof* Follows from the development of the determinant. 

Proposition 3. The distance polynomial of a complete graph with n vertices 
equals (x + l ) " " 1 (x - n + 1). 

Proof. For complete graphs the distance matrix coincides with the adjacent 
matrix. 

Proposition 4. The sum of the roots of the distance polynomial is zero. 
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Proof. The sum of roots is equal to the tiace of D which is zero since G has 
no loops. 

Proposition 5. The sum of the squares of the roots of the distance polynomial is 
equal to Y,d2j (the sum is through all pairs i, j and each pairs is taken twice — 
(ij)and(j, i)). 

Proof. The sum of the squares of the roots is equal to the trace of D2. 

Proposition 6. If there are two vertices with the same neighbourhood in G then 
one root of the distance polynomial is either — 1 (if tlu vertices are adjacent) or —2 
(if the two vertices are not adjacent). 

Proof. If the two vertices are adjacent, the distance between them is 1. If the two 
vertices are not adjacent, the distance between them is 2, otherwise the corresponding 
rows in D are the same. After subtracting these two rows, we obtain before the deter­
minant either (x + 1) or (x + 2). 

Proposition 7. If G is a path on n + 1 vertices (n ^ 3), then a0 — (— 1) n 2n~1, 
where a0 is a constant coefficient, i.e. a0 — det | — £>|. 

Proof. By directly calculating the determinant 

(i) det |D| 

0 1 2 3 . . n 
1 0 1 2 . . . n ~ \ 
2 1 0 1 . . . n ~ 2 

n n — \ 0 

First we subtract the n-th column from the (n + l)-st and afterwards we add the last 
row to all the precedings ones, so that in the last column we obtain all zeros except 
the entry an+ltH+1 = - 1 . 

(2) 

n n n 
n + ìn — \ n ~ \ 
n + 2 n n — 2 

2n ~ í 
n 

n 0 
n ~ \ 0 
n ~ 2 0 

0 
- 1 
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= ( - 1 ) n 

1 1 1 
n + ìn — ln — 1 
n + 2 n n — 2 

2n - 1 

1 
n - 1 
n-2 

1 

The resulting determinant can be expanded with respect to the last column and n 
put in front of the determinant. Next we subtract the last column from all the pre­
ceding ones and expand with respect to the first row: 

(3) 

( - l ) n ( - l ) » + 1 

2n - 2 2n - 4 

0 . . 0 
0 . . 0 
2 

. 2 

ч-a+2^"-1 

Because det | - D | = (-1)" + 1 det |D | , we have ac = (~l)2n + 3 n 2n~1 = -n . 2 n " 1 , 

q.e.d. 

Proposition 8. For complete bipartite graphs Km)„, the roots are —2(m + n — 2 
times) and the remaining two roots are given by the following equations: 

x\ + x2

2 = 2(2m2 - 4m + 2rc2 - 4n + mn + 4) 

xi + x2 = 2(m + n — 2) 

Proof. We can write the distance polynomial of Kmn in the form 

x . . . - 2 

(4) det \xl - D 

where B denotes the (m x rc) matrix consisting entirely of — l's. By subtracting 
the second row the first, the third from the second, until m-th from the (m — l)-st, 
and the (m + 2)-nd from the (m + 1)-st, etc., we obtain the following determinant 
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(5) 

x + 2 
0 

-(x + 2) 0 
x + 2 ~(x + 2) 

- 2 -2 0 

1 

- 1 - 1 0 .. - 1 

x + 2 
0 

-(x + 2) 0 . . . 0 
x + 2 - ( x + 2) . . . 0 

í ï ~ 2 

We immediately see that m + n — 2 eigenvalues are —2. According to Proposition 59 

we have ]Tx2 = £ d2
y = 4m(m — 1) + 4r/(n — 1) + 2mn = 4m2 — 4m + 4ti2 — 

ij 
m + n 

— 4/7 + 4m/7 and as £ x2 = 4(m + r. — 2), we have x2 + x2 = 2(2m2 + 2n2 — 

— 4/7? — 4/7 + mn + 4). According to Proposition 4, we have xx + x2 — 2(m + 
+ n - 2) = 0. 

Proposition 9. If G is a .star with n vertices, then 

det |x/ - D\ - (x + 2)""2 (x2 - 1 - (n - 2) (2x + 1)). 

The distance polynomial of the star graph will be denoted by Sn. 

Proof. The distance polynomial of a star is given by 

(6) S„ = 

x - 1 - 1 . . . - 1 
-1 x - 2 . . . - 2 
-1 - 2 x . . . - 2 

1 -2 . . . 

By subtracting the (n — 1)-st row from the /7-th row, we can put the factor (x + 2) 
(from the ]ast row) in front of the determinant and expand it with respect to the last 
row: 
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(7) S„ = (x + 2) 

x - 1 - 1 . . . - 1 
1 x - 2 . . . - 2 

1 - 2 x . . . - 2 

•1 - 2 - 2 - 2 

+ 

x - 1 - 1 . . . - 1 
- 1 x - 2 . . . - 2 
- 1 - 2 x . . . - 2 

.1 

The second determinant evidently corresponds to S,, _ t . The first determinant differs 

from the second one only in the entry cf„_ j j „_ 1 = —2. If we denote this one by Sn_ t , 

we obtain the recurrent formula 

(8) S. = (x + 2)(S._ 1 + S n _ 1 ) . j 

Now, if we consider the determinant S„, we obtain by the same procedure the formula 

(9) S„ = (x + 2 ) S _ _ 1 . 

Combining (8) and (9) we obtain 

(10) S„ = (x + 2 ) - 2 ( S 2 + (_ -2)S2) 

and 

(Ц) 

(12)'; 

S, = 

S, = 

X - 1 
- 1 X 

X - 1 

- 1 - 2 

1, 

= —2x — 1 , q.e.d. 

Proposition 10. If G is an even cycle, then at least one root of the distance poly­
nomial is zero. 

Proof. It suffices to prove that det IDI = 0. 

(13) 

det \D\ = 

0 1 2 
1 0 1 
2 1 0 

3 2 1 

3 . . . и/2 . . . . 1 

2 ... (и/2) - ! . . . . 2 

1 . . . (и/2) - 2 . . . . 3 

0 

и/2 (и/2) - 1 (и/2) - 2 (и/2) - 3 (и/2) - 1 

и/2 

By adding the first row to the (n/2 + l)-st one and the second row to the (nj2 + 2)-nd 

one, we get two identical rows, namely the (nj2 + l)-st and the (n/2 + 2)-nd, q.e.d. 
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Comment. Since the distance matrix for cycles is a circulant matrix, we can obtain 
its roots by means of rules for the corresponding determinant [13]. 

Examples. 

a) C3 — cycle 

b) C4-cycle 

-) 

det \xl - 0 | = (x - 2) (x + l)2 

det |x/ - D\=(x + 2)2 (x - 4) x 

det |xf - D\ = (x + 2)3 (x2 - 6x + 2) 
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the second edition of the book [b] that came only recentJy into our hands. 

[a] H. Hosoya, M. Murakami and M. Gotoh: Distance polynomial and characterization of a 
graph, Natural Science Report, Ochanomizu University 24 (1973) 27—34. 

[b] D. Cvetkovič, M. Doob and H. Sachs: Spectra of graphs, Academie Press, Berlin 1983 
(printed in GDR). 

S o u h r n 

O DISTANČNÍM POLYNOMU GRAFU 

PAVEL KŘIVKA, N E N A D TRINAJSTIČ 

Článek se zabývá některými vlastnostmi distančního polynomu některých typů 
grafů, speciálně cest, bipartitních grafů, cyklů a hvězd. 
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