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The distance matrix, which is a structure less common than the adjacency matrix
[ 1], has been increasingly uscd in recent years in several d:fferent areas such as anthro-
pology [2], [3], graph theory [4]—[6], theory of communication [7], chemistry
[8]—[10], history [11], etc.

The distance matrix (which is sometimes also called the metrics matrix) is, in a sense,
a more complicated and also a richer structure than the adjacency matrix. While
each (0, 1) symmetric matrix in which each diagonal entry is zero corresponds to
a unique graph or digraph, this is not the case with the distance matrix (which is
a symmetric matrix with diagonal entries zero, but not (0, 1)). We will consider
finite connected graphs without loops. Graphs will be symbolized by G. The distance
matrix D has the entries d;; = 0 and d;; = the length of the shortest path between
the vertices i and j. The distance polynomial of G is defined as det [xI — D| where I
is the unit matrix.

Propositien 1. Every root of the distance polyncmial is real.

Proof. The eigenvalues of a symmetric matrix are always real [12].

1

Proposition 2. The coefficient a,_ at x"~ " is always zero.

Proof. Follows from the development of the determinant.

Proposition 3. The distance polynomial of a complete graph with n vertices
equals (x + 1" ' (x — n + 1).

Proof. For complete graphs the distance matrix coincides with the adjacent
matrix.

Proposition 4. The sum of the roots of the distance polynomial is zero.

357



Proof. The sum of roots is equal to the trace of D which is zero since G has
no loops.

Proposition 5. The sum of the squares of the roots of the distance polynomial is
equal to Zd?j (the sum is through all pairs i, j and each pairs is taken twice —

(i, j) and (j, i)).

Proof. The sum of the squares of the roots is equal to the trace of D%

Proposition 6. If there are two vertices with the same neighbourhood in G. then
one root of the distance polynomial is either —1 (if the vertices are adjacent) or —2
(if the two vertices are not adjacent).

Proof. If the two vertices are adjacent, the distance between them is 1. If the two
vertices are not adjacent, the distance between them is 2, otherwise the corresponding
rows in D are the same. After subtracting these two rows, we obtain before the deter-
minant either (x + 1) or (x + 2).

Proposition 7. If G is a path on n + 1 vertices (n = 3), then a, = (—1)n2""1,
where ay is a constant coefficient, i.e. a, = det |-—D|.

Proof. By directly calculating the determinant

0 1 23 ... n
1 0 12 ...n-1
2 1 01...n-2
(1) det |D| =

nn—1.. ... 0

First we subtract the n-th column from the (n + 1)-st and afterwards we add the last
row to all the precedings ones, so that in the last column we obtain all zeros except

the entry @,4q1,,41 = — L.

n n n n 0
n+1n—-1n-1...n—-1 0
n+2 n n-—2...n—-2 0

2n — 1
n . . -1
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1 1 1 1
n+1ln—-1n-1...n-1
n+2 n n—2...n-2

=(=1)n

2n—-1 . . 1

The resulting determinant can be expanded with respect to the last column and n
put in front of the determinant. Next we subtract the last column from all the pre-
ceding ones and expand with respect to the first row:

(3) | 2 0 0..0
‘ 4 2 0..0
(=1)n(—1)y*! 6 4 2. . .‘z(—l)"nn?_""l
[2n —22n—4 . . . 2!
Because det |—D| = (—1)"*" det |D|, we have a; = (—1)*"**n2""!' = —pn. 2",
q.e.d.

Proposition 8. For complete bipartite graphs K,, ,, the roots are —2(m + n — 2
times) and the remaining two roots are given by the following equations:

X7+ x3 =202m* — 4m + 2n® — 4n + mn + 4)
xp +x,=2(m+n—2)

Proof. We can write the distance polynomial of K, , in the form

(4) det |xl - D| = | o

where B denotes the (m x n) matrix consisting entirely of —1’s. By subtracting
the second row the first, the third from the second, until m-th from the (m — 1)-st,
and the (m + 2)-nd from the (m + 1)-st, etc., we obtain the following determinant
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x4+ 2 —(x+2 0 0
0 x+2 —(x+2) 0
. 0
| -2 -20 -1 -1 0 .—1
o  x+2 —(x+2) 0 ... 0
0 x+2 —(x+2)... 0
0
-1 -1 =2 -2 x

We immediately see that m + n — 2 eigenvalues are —2. According to Proposition 5,
we have Yx7 =Y dj =4m(m — 1) + 4n(n — 1) + 2mn = 4m* — 4m + 4n* —
ij

m+n

—4n + 4mn and as Y x} = 4(m + n — 2), we have x7 + x7 = 2(2m* + 2n® —
i=3

— 4m — 4n + mn + 4). According to Proposition 4, we have x; + x, — 2(m +
+n—2)=0.

Proposition 9. If G is a star with n vertices, then
det [xI — D| = (x +2)" 2(x> = 1 — (n — 2) (2x + 1)).
The distance polynomial of the star graph will be denoted by S,,.

Proof. The distance polynomial of a star is given by

| x =1 —-1... -1
-1 x-=2.. =2
(©) g _|"1-2 x.. =2
-1 -2 -2 ... x

By subtracting the (n — 1)-st row from the n-th row, we can put the factor (x + 2)
(from the last row) in front of the determinant and expand it with respect to the last
row:
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(| x—-1-=1..-1| x =1 =1 ... =1\

=1 x =2 ... =2 -1 x=2... =2
(0 Si=@x+2)|l-1-2 x...-2/+ —-1-2 x..=2

| ' i i .

-1 -2 -2 ... -2 |—-1-2-=-2.. x}
The second determinant evidently corresponds to S, _;. The first determinant differs
from the second one only in the entry d,_; ,_; = —2. If we denote this one by S, _,
we obtain the recurrent formula
(8) Sy =(x+2)(S,—1 + Su-y).
Now, if we consider the determinant S,, we obtain by the same procedure the formula
) S,=(x+2)S,_,.
Combining (8) and (9) we obtain
(10) Sp=(x+2)"2(S; +(n—2)S,)
and

_ x —1 ‘ _ I
(11) SZ_I—I Xi_ X 1,
il —= x —1 '

(12) Sp=|_| 5 =-2-1, ged

Proposition 10. If G is an even cycle, then at least one root of the distance poly-
nomial is zero.

Proof. It suffices to prove that det |D| = 0.

(13) 0 1 2 30 ... onf2 . 1
, 1 0 1 b (1) S S 2
N 2 1 0 1 oo (mf2)=2 ... 3
3 2 1 0 ... .
dﬂﬂ:;ﬁ@m—1QM—z@m—3“. 0 ....(n2)—1
. . 1
1 2 3 o2 ] 0

By adding the first row to the (n/2 + 1)-st one and the second row to the (n/2 + 2)-nd
one, we get two identical rows, namely the (n/2 + 1)-st and the (n/2 + 2)-nd, q.e.d.
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Comment. Since the distance matrix for cycles is a circulant matrix, we can obtain
its roots by means of rules for the corresponding determinant [13].

Examples.
a) C3 — cycle
det lxl - D' =(x—=2)(x+ 1)
b) C,-cycle
det [xI — D| = (x + 2)* (x — 4) x
-
c) det |xl —D|=(x+2°(x*-6x+2)
O- G '
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Note added in proof. Proposition 7 holds generally for any tree as was first proved
in [7]. By an accident we overlooked a paper [a] which contains without proofs
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some theorems related to our work. Some other related references can be found in

the second edition of the book [b] that came only recently into our hands.

[a] H. Hosoya, M. Murakami and M. Gotoh: Distance polynomial and characterization of a
graph, Natural Science Report, Ochanomizu University 24 (1973) 27—34.

[b] D. Cuvetkovié, M. Doob and H. Sachs: Spectra of graphs, Academic Press, Berlin 1983
(printed in GDR).

Souhrn

O DISTANCNIM POLYNOMU GRAFU
PAveL KRivkA, NENAD TRINAJSTIC

Cldnek se zabyvd nékterymi vlastnostmi distanéniho polynomu nékterych typu
grafll, specidlné cest, bipartitnich grafii, cykli a hvézd.
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