On the distance spectra of some graphs

Gopalapillai Indulal* and Ivan Gutman ${ }^{\dagger}$

Abstract

The D-eigenvalues of a connected graph G are the eigenvalues of its distance matrix D, and form the D-spectrum of G. The D-energy $E_{D}(G)$ of the graph G is the sum of the absolute values of its D-eigenvalues. Two (connected) graphs are said to be D-equienergetic if they have equal D-energies. The D-spectra of some graphs and their D-energies are calculated. A pair of D-equienergetic bipartite graphs on $24 t, t \geq 3$, vertices is constructed.

Key words: distance eigenvalue (of a graph), distance spectrum (of a graph), distance energy (of a graph), distance-equienergetic graphs

AMS subject classifications: $05 \mathrm{C} 12,05 \mathrm{C} 50$
Received November 26, 2007
Accepted May 5, 2008

1. Introduction

Let G be a connected graph with vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$. The distance matrix $D=D(G)$ of G is defined so that its (i, j)-entry is equal to $d_{G}\left(v_{i}, v_{j}\right)$, the distance ($=$ length of the shortest path [2]) between the vertices v_{i} and v_{j} of G. The eigenvalues of the $D(G)$ are said to be the D-eigenvalues of G and form the D-spectrum of G, denoted by $\operatorname{spec}_{D}(G)$.

The ordinary graph spectrum is formed by the eigenvalues of the adjacency matrix [4]. In what follows we denote the ordinary eigenvalues of the graph G by $\lambda_{i}, i=1,2, \ldots, p$, and the respective spectrum by $\operatorname{spec}(G)$.

Since the distance matrix is symmetric, all its eigenvalues $\mu_{i}, i=1,2, \ldots, p$, are real and can be labelled so that $\mu_{1} \geq \mu_{2} \geq \cdots \geq \mu_{p}$. If $\mu_{i_{1}}>\mu_{i_{2}}>\cdots>\mu_{i_{g}}$ are the distinct D-eigenvalues, then the D-spectrum can be written as

$$
\operatorname{spec}_{D}(G)=\left(\begin{array}{cccc}
\mu_{i_{1}} & \mu_{i_{2}} & \ldots & \mu_{i_{g}} \\
m_{1} & m_{2} & \ldots & m_{g}
\end{array}\right)
$$

where m_{j} indicates the algebraic multiplicity of the eigenvalue $\mu_{i_{j}}$. Of course, $m_{1}+m_{2}+\cdots+m_{g}=p$.

[^0]Two graphs G and H for which $\operatorname{spec}_{D}(G)=\operatorname{spec}_{D}(H)$ are said to be D cospectral. Otherwise, they are non- D-cospectral.

The D-energy, $E_{D}(G)$, of G is defined as

$$
\begin{equation*}
E_{D}(G)=\sum_{i=1}^{p}\left|\mu_{i}\right| \tag{1}
\end{equation*}
$$

Two graphs with equal D-energy are said to be D-equienergetic. D-cospectral graphs are evidently D-equienergetic. Therefore, in what follows we focus our attention to D-equienergetic non- D-cospectral graphs.

The concept of D-energy, Eq. (1), was recently introduced [11]. This definition was motivated by the much older [7] and nowadays extensively studied $[8,9,10$, $13,14,15,16$] graph energy, defined in a manner fully analogous to Eq. (1), but in terms of the ordinary graph eigenvalues (eigenvalues of the adjacency matrix, see [4]).

In this paper we first derive a Hoffman-type relation for the distance matrix of distance regular graphs. By means of it, the distance spectra of some graphs and their energies are obtained. Also pairs of D-equienergetic bipartite graphs on $24 t, t \geq 3$, vertices are constructed. All graphs considered in this paper are simple and we follow [4] for spectral graph theoretic terminology.

The considerations in the subsequent sections are based on the applications of the following lemmas:

Lemma 1 [see [4]]. Let G be a graph with adjacency matrix A and $\operatorname{spec}(G)=$ $\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}\right\}$. Then $\operatorname{det} A=\prod_{i=1}^{p} \lambda_{i}$. In addition, for any polynomial $P(x)$, $P(\lambda)$ is an eigenvalue of $P(A)$ and hence $\operatorname{det} P(A)=\prod_{i=1}^{p} P\left(\lambda_{i}\right)$.

Lemma 2 [see [5]]. Let

$$
A=\left[\begin{array}{ll}
A_{0} & A_{1} \\
A_{1} & A_{0}
\end{array}\right]
$$

be a 2×2 block symmetric matrix. Then the eigenvalues of A are those of $A_{0}+A_{1}$ together with those of $A_{0}-A_{1}$.

Lemma 3 [see [4]]. Let M, N, P, and Q be matrices, and let M be invertible. Let

$$
S=\left[\begin{array}{cc}
M & N \\
P & Q
\end{array}\right]
$$

Then $\operatorname{det} S=\operatorname{det} M \operatorname{det}\left(Q-P M^{-1} N\right)$. Besides, if M and P commute, then $\operatorname{det} S=\operatorname{det}(M Q-P N)$.

Lemma 4 [see [4]]. Let G be a connected r-regular graph, $r \geq 3$, with ordinary $\operatorname{spectrum} \operatorname{spec}(G)\left\{r, \lambda_{2}, \ldots, \lambda_{p}\right\}$. Then

$$
\operatorname{spec}(L(G))=\left(\begin{array}{ccccc}
2 r-2 & \lambda_{2}+r-2 & \cdots & \lambda_{p}+r-2 & -2 \\
1 & 1 & \cdots & 1 & p(r-2) / 2
\end{array}\right)
$$

Lemma 5 [see [4]]. For every $t \geq 3$, there exists a pair of non-cospectral cubic graphs on $2 t$ vertices.

Lemma 6 [see [6]]. The distance spectrum of the cycle C_{n} is given by

n	greatest eigenvalue	j even	j odd
even	$\frac{n^{2}}{4}$	0	$-\operatorname{cosec}^{2}\left(\frac{\pi j}{n}\right)$
odd	$\frac{n^{2}-1}{4}$	$-\frac{1}{4} \sec ^{2}\left(\frac{\pi j}{2 n}\right)$	$-\frac{1}{4} \operatorname{cosec}^{2}\left(\frac{\pi j}{2 n}\right)$

Definition 1 [see [12]]. Let G be a graph with vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$. Take another copy of G with the vertices labelled by $\left\{u_{1}, u_{2}, \ldots, u_{p}\right\}$ where u_{i} corresponds to v_{i} for each i. Make u_{i} adjacent to all the vertices in $N\left(v_{i}\right)$ in G, for each i. The resulting graph, denoted by $D_{2} G$, is called the double graph of G.

Definition 2 [see [4]]. Let G be a graph. Attach a pendant vertex to each vertex of G. The resulting graph, denoted by $G \circ K_{1}$, is called the corona of G with K_{1}.

We first prove the following auxiliary theorem.
Theorem 1. Let M be a real symmetric irreducible square matrix of order p in which each row sum is equal to a constant k. Then there exists a polynomial $Q(x)$ such that $Q(M)=J$, where J is the all one square matrix whose order is same as that of M.

Proof. Since M is a real symmetric irreducible matrix in which each row sums to k, by the Frobenius theorem [4], k is a simple and greatest eigenvalue of M. The matrix M is diagonalizable because it is real and symmetric. Therefore there exists an orthonormal basis of characteristic vectors of M, associated with the eigenvalues of M.

Let $\lambda_{1}=k, \lambda_{2}, \ldots, \lambda_{g}$ be the distinct eigenvalues of M. Let $\Im\left(\lambda_{i}\right)$ be the eigenspace spanned by the orthonormal set of characteristic vectors $\left\{x_{1}^{i}, x_{2}^{i}, \ldots, x_{p_{i}}^{i}\right\}$ associated with $\lambda_{i}, i=1,2, \ldots, g$. Then M has a spectral decomposition

$$
M=\lambda_{1} T_{1}+\lambda_{2} T_{2}+\cdots+\lambda_{g} T_{g}
$$

where T_{i} is the projection of M onto $\Im\left(\lambda_{i}\right)$, treating M as a linear operator. Then $T_{i}^{2}=T_{i}, T_{i} T_{j}=0, i \neq j$ and

$$
T_{i}=x_{1}^{i}\left(x_{1}^{i}\right)^{T}+x_{2}^{i}\left(x_{2}^{i}\right)^{T}+\cdots+x_{p_{i}}^{i}\left(x_{p_{i}}^{i}\right)^{T}
$$

Now, corresponding to the greatest eigenvalue k of M, there exists a unique
(one-dimensional) orthonormal basis

$$
x_{1}=\left[\begin{array}{c}
1 / \sqrt{p} \\
1 / \sqrt{p} \\
\vdots \\
1 / \sqrt{p}
\end{array}\right]
$$

for $\Im\left(\lambda_{1}\right)=\Im(k)$, such that $M=k T_{1}+\lambda_{2} T_{2}+\cdots+\lambda_{g} T_{g}$ where

$$
\left.\left.\begin{array}{rl}
T_{1} & =\left[\begin{array}{c}
1 / \sqrt{p} \\
1 / \sqrt{p} \\
\vdots \\
1 / \sqrt{p}
\end{array}\right][1 / \sqrt{p}, \\
1 / \sqrt{p}, & \cdots, \\
1 / \sqrt{p}]
\end{array}\right] \begin{array}{llll}
1 / p & 1 / p & \cdots & 1 / p \\
1 / p & 1 / p & \cdots & 1 / p \\
\cdots & \cdots & \cdots & \cdots \\
\cdots & \cdots & \cdots & \cdots \\
1 / p & 1 / p & \cdots & 1 / p
\end{array}\right]=\frac{1}{p} J . \quad .
$$

Because the T_{i} 's are projections, we have $f(M)=f(k) T_{1}+f\left(\lambda_{2}\right) T_{2}+\cdots+$ $f\left(\lambda_{g}\right) T_{g}$ for any polynomial $f(x)$. As M is diagonalizable, the minimal polynomial of M is $(x-k)\left(x-\lambda_{2}\right) \cdots\left(x-\lambda_{g}\right)$.

Let $S(x)=\left(x-\lambda_{2}\right) \cdots\left(x-\lambda_{g}\right)$. Then $S\left(\lambda_{i}\right)=0, \lambda_{i} \neq k$. Thus $S(M)=$ $S(k) T_{1} S(k)(1 / p) J$. Choose $Q(x)=p S(x) / S(k)$. This $Q(x)$ satisfies the requirement of the theorem.

Theorem 2. Let D be the distance matrix of a connected distance regular graph G. Then D is irreducible and there exists a polynomial $P(x)$ such that $P(D)=J$. In this case

$$
P(x)=p \times \frac{\left(x-\lambda_{2}\right)\left(x-\lambda_{3}\right) \cdots\left(x-\lambda_{g}\right)}{\left(k-\lambda_{2}\right)\left(k-\lambda_{3}\right) \cdots\left(k-\lambda_{g}\right)}
$$

where k is the unique sum of each row which is also the greatest simple eigenvalue of D, whereas $\lambda_{2}, \lambda_{3}, \ldots, \lambda_{g}$ are the other distinct eigenvalues of D.

Proof. The theorem follows from Theorem 1 due to the observation that the distance matrix of a connected distance regular graph is irreducible, symmetric and each row sums to a constant.

The rest of this paper is organized as follows. In the next section we obtain the distance spectra of $D_{2}(G), G \times K_{2}, G\left[K_{2}\right]$, the lexicographic product of G with K_{2}, and $G \circ K_{1}$. Using this, the distance energies of $D_{2}\left(C_{2 n}\right), C_{n} \times K_{2}$, $C_{2 n}\left[K_{2}\right]$, and $C_{n} \circ K_{1}$ are calculated. In the third section the D-spectrum of the extended double cover graphs of regular graphs of diameter 2 is discussed and a pair of D-equienergetic bipartite graphs on $24 t, t \geq 3$ vertices is constructed.

For operations on graphs that are not defined in this paper see [4].

2. Distance spectra of some graphs

In this section we obtain the distance spectra of the double graph of C_{n}, the Cartesian product of C_{n} with K_{2} and the corona of C_{n} with K_{1}.

2.1. The double graph of G

Theorem 3. Let G be a graph with distance spectrum $\operatorname{spec}_{D}(G)=\left\{\mu_{1}, \mu_{2}, \ldots, \mu_{p}\right\}$. Then

$$
\operatorname{spec}_{D}\left(D_{2} G\right)=\left(\begin{array}{cc}
2\left(\mu_{i}+1\right) & -2 \\
1 & p
\end{array}\right), i=1,2, \ldots, p
$$

Proof. By definition of $D_{2}(G)$ we have:

$$
\begin{aligned}
d_{D_{2} G}\left(v_{i}, v_{j}\right) & =d_{G}\left(v_{i}, v_{j}\right) \\
d_{D_{2} G}\left(v_{i}, u_{i}\right) & =2 \\
d_{D_{2} G}\left(v_{i}, u_{j}\right) & =d_{G}\left(v_{i}, v_{j}\right) \\
d_{D_{2} G}\left(v_{j}, u_{i}\right) & =d_{G}\left(v_{j}, v_{i}\right)
\end{aligned}
$$

Hence a suitable ordering of vertices yields the distance matrix of $D_{2} G$ of the form

$$
\left[\begin{array}{cc}
D & D+2 I \\
D+2 I & D
\end{array}\right]
$$

and the theorem follows from Lemma 2.
Theorem 4. $E_{D}\left(D_{2} C_{2 n}\right)=4 n(n+1)$.
Proof. By Lemma 6 and Theorem 3 we have
$\operatorname{spec}_{D}\left(D_{2} C_{2 n}\right)=\left(\begin{array}{cccc}2\left(n^{2}+1\right) & 2 & -2 \cot ^{2}(\pi j / 2 n) & -2 \\ 1 & n-1 & 1 & 2 n\end{array}\right), j=1,3,5, \ldots, 2 n-1$.
Thus $E_{D}\left(D_{2} C_{2 n}\right)=2 \times\left[2\left(n^{2}+1\right)+2(n-1)\right] 4 n(n+1)$.

2.2. The Cartesian product $G \times K_{2}$

Theorem 5. Let G be a distance regular graph with distance regularity k, distance matrix D, and D-spectrum $\left\{\mu_{1}=k, \mu_{2}, \ldots, \mu_{p}\right\}$. Then

$$
\operatorname{spec}_{D}\left(G \times K_{2}\right)=\left(\begin{array}{cccc}
2 k+p & -p & 2 \mu_{i} & 0 \\
1 & 1 & 1 & p-1
\end{array}\right), i=2,3, \ldots, p .
$$

Proof. The theorem follows from the fact that the distance matrix of $G \times K_{2}$ has the form

$$
\left[\begin{array}{cc}
D & D+J \\
D+J & D
\end{array}\right]
$$

and from Theorem 1 and Lemma 2.
Corollary 1. $E_{D}\left(G \times K_{2}\right)=2\left(E_{D}(G)+p\right)$.

2.3. The corona of G and K_{1}

Theorem 6. Let G be a connected distance regular graph with distance regularity k, distance matrix D, and $\operatorname{spec}_{D}(G)=\left\{\mu_{1}=k, \mu_{2}, \ldots, \mu_{p}\right\}$. Then spec ${ }_{D}\left(G \circ K_{1}\right)$ consists of the numbers

$$
\begin{aligned}
p+k-1+\sqrt{(p+k)^{2}+(p-1)^{2}} & , \quad p+k-1-\sqrt{(p+k)^{2}+(p-1)^{2}} \\
\mu_{i}-1+\sqrt{\mu_{i}^{2}+1}, \quad \mu_{i}-1-\sqrt{\mu_{i}^{2}+1} & , \quad i=2,3, \ldots, p
\end{aligned}
$$

Proof. From the definition of $G \circ K_{1}$, it follows that the distance matrix H of $G \circ K_{1}$ is of the form

$$
\left[\begin{array}{cc}
D & D+J \\
D+J & D+2(J-I)
\end{array}\right]
$$

Now the characteristic equation of H is

$$
\begin{aligned}
|\lambda I-H|= & 0 \Rightarrow\left|\begin{array}{cc}
\lambda I-D & -(D+J) \\
-(D+J) & \lambda I-D-2(J-I)
\end{array}\right|=0 \\
& \Rightarrow\left|(\lambda I-D)(\lambda I-D-2(J-I))-(D+J)^{2}\right|=0 \text { by Lemma } 3
\end{aligned}
$$

Now D being the distance matrix of a distance regular graph, it satisfies the requirement in Theorem 2. Then the D - spectrum of $G \circ K_{1}$ follows from Theorem 2 and Lemma 1.

Corollary 2.

$$
\begin{aligned}
E_{D}\left(C_{2 n} \circ K_{1}\right) & =2\left[(n-1)^{2}+\sqrt{(n-1)^{4}+6 n^{2}}\right] \\
E_{D}\left(C_{2 n+1} \circ K_{1}\right) & =2\left[n^{2}+3 n+\sqrt{\left(n^{2}+3 n\right)^{2}+6 n^{2}+6 n+1}\right] .
\end{aligned}
$$

2.4. The lexicographic product of G with K_{2}

Theorem 7. Let G be a connected graph with distance spectrum $\operatorname{spec}_{D}(G)\left\{\mu_{1}=\right.$ $\left.k, \mu_{2}, \ldots, \mu_{p}\right\}$. Then

$$
\operatorname{spec}_{D}\left(G\left[K_{2}\right]\right)=\left(\begin{array}{cc}
2 \mu_{i}+1 & -1 \\
1 & p
\end{array}\right), i=1,2, \ldots, p
$$

Proof. From the definition of the lexicographic product of G with K_{2}, its distance matrix can be written as

$$
\left[\begin{array}{cc}
D & D+I \\
D+I & D
\end{array}\right]
$$

and the theorem follows from Lemma 2.

Corollary 3. $E_{D}\left(C_{2 n}\left[K_{2}\right]\right)=2 n(2 n+1)$.
Proof. From Lemma 6 and Theorem 7 we have
$\operatorname{spec}_{D}\left(C_{2 n}\left[K_{2}\right]\right)=\left(\begin{array}{cccc}2 n^{2}+1 & 1 & -1 & 1-2 \operatorname{cosec}^{2}(\pi j / 2 n) \\ 1 & n-1 & 2 n & 1\end{array}\right), j=1,3,5, \ldots$.
Since $1-2 \operatorname{cosec}^{2} \theta=-\left(\cot ^{2} \theta+\operatorname{coesc}^{2} \theta\right)$, the only positive eigenvalues are $2 n^{2}+1$ and 1 with multiplicities 1 and $n-1$, respectively. Thus $E_{D}\left(C_{2 n}\left[K_{2}\right]\right)=2 n(2 n+1)$.

3. The extended double cover graph of regular graphs of diameter 2

In [1] N. Alon introduced the concept of extended double cover graph of a graph as follows.

Let G be a graph on the vertex set $\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$. Define a bipartite graph H with $V(H)=\left\{v_{1}, v_{2}, \ldots, v_{p}, u_{1}, u_{2}, \ldots, u_{p}\right\}$ in which v_{i} is adjacent to u_{i} for each $i=1,2, \ldots, p$ and v_{i} is adjacent to u_{j} if v_{i} is adjacent to v_{j} in G. The graph H is known as the extended double cover graph ($E D C$-graph) of G. The ordinary spectrum of H has been determined in [3].

In this section we obtain the distance spectrum of the $E D C$-graph of a regular graph of diameter 2 and use it to construct regular D-equienergetic bipartite graphs on $24 t$ vertices, for $t \geq 3$.

Theorem 8. Let G be an r-regular graph of diameter 2 on p vertices with (ordinary) spectrum $\left\{r, \lambda_{2}, \ldots, \lambda_{p}\right\}$. Then the D-spectrum of the EDC-graph of G consists of the numbers $5 p-2 r-4,2 r-p,-2\left(\lambda_{i}+2\right), i=2,3, \ldots, p$, and $2 \lambda_{i}, i=2,3, \ldots, p$.

Proof. Let A and \bar{A} be, respectively, the adjacency matrices of G and \bar{G}. Then by the definition of the $E D C$-graph, its distance matrix can be written as

$$
\left[\begin{array}{cc}
2(J-I) & A+3 \bar{A}+I \\
A+3 \bar{A}+I & 2(J-I)
\end{array}\right]
$$

and the theorem follows from Lemmas 1 and 3 and also from the observation that $\bar{A}=J-I-A$.

Corollary 4.

$$
E_{D}\left(E D C\left(C_{p} \nabla C_{p}\right)\right)=\left\{\begin{array}{l}
40, p=3 \\
4\left[E\left(C_{p}\right)+5 p-10\right], p \geqslant 4
\end{array}\right.
$$

where $C_{p} \nabla C_{p}$ is the join [4] of C_{p} with itself.
Proof. The join of C_{p} with itself is a regular graph diameter 2 with the ordinary spectrum

$$
\left(\begin{array}{ccc}
p+2 & 2-p & \lambda_{i} \\
1 & 1 & 2
\end{array}\right), i=2,3, \ldots, p
$$

where $\left\{2, \lambda_{2}, \ldots, \lambda_{p}\right\}$ is the ordinary spectrum of C_{p}. Then by the above theorem, the distance spectrum of $E D C\left(C_{p} \nabla C_{p}\right)$ is

$$
\left(\begin{array}{cccccc}
8 p-8 & 4 & -2\left(\lambda_{i}+2\right) & 2 p-8 & 4-2 p & 2 \lambda_{i} \\
1 & 1 & 2 & 1 & 1 & 2
\end{array}\right), i=2,3, \ldots, p
$$

and hence the corollary follows as $E\left(C_{3}\right)=4$.

3.1. On a pair of D-equienergetic bipartite graphs

Theorem 9. There exists a pair of regular non-D-cospectral D-equienergetic bipartite graphs on $24 t$ vertices, for each $t \geq 3$.

Proof. Let G be a cubic graph on $2 t$ vertices, $t \geq 3$. Consider $L^{2}(G)$, its second iterated line graph. Then by Lemma 4 and Theorem 8, we calculate that for $F=L^{2}(G) \nabla L^{2}(G)$, the D-spectrum of $E D C(F)$ is

$$
\left(\begin{array}{cccccccc}
16(3 t-1) & 12 & 0 & 2\left(\lambda_{i}+3\right) & 12 t-16 & -4 & -12(t-1) & -2\left(\lambda_{i}+5\right) \\
1 & 1 & 8 t & 2 & 1 & 8 t & 1 & 2
\end{array}\right)
$$

$i=2,3, \ldots, 2 t$. Thus

$$
\begin{aligned}
E_{D}(E D C(F)) & =2 \times\left[12(t-1)+32 t+4 \sum_{i=2}^{2 t}\left(\lambda_{i}+5\right)\right] \\
& =2 \times[12 t-12+32 t+4(-3+5(2 t-1))] \\
& =8(21 t-11)
\end{aligned}
$$

Now let G_{1} and G_{2} be the two non-cospectral cubic graphs on $2 t$ vertices as given by Lemma 5. Further, let H_{1} and H_{2} be the $E D C$-graphs of $L^{2}\left(G_{1}\right) \nabla L^{2}\left(G_{1}\right)$ and $L^{2}\left(G_{2}\right) \nabla L^{2}\left(G_{2}\right)$, respectively. Then H_{1} and H_{2} are bipartite and $E_{D}\left(H_{1}\right)=$ $E_{D}\left(H_{2}\right)=8(21 t-11)$, proving the theorem.

Acknowledgements

The authors would like to thank the referees for helpful comments. G.Indulal thanks the University Grants Commission of Government of India for supporting this work by providing a grant under the minor research project.

References

[1] N. Alon, Eigenvalues and expanders, Combinatorica 6(1986), 83-96.
[2] F. Buckley, F. Harary, Distance in Graphs, Addison-Wesley, Redwood, 1990.
[3] Z. Chen, Spectra of extended double cover graphs, Czechoslovak Math. J. 54(2004), 1077-1082.
[4] D. M. Cvetković, M. Doob, H. Sachs, Spectra of Graphs - Theory and Applications, Academic Press, New York, 1980.
[5] P. J. Davis, Circulant Matrices, Wiley, New York, 1979.
[6] P. W. Fowler, G. Caporossi, P. Hansen, Distance matrices, Wiener indices, and related invariants of fullerenes, J. Phys. Chem. A 105(2001), 6232-6242.
[7] I. Gutman, The energy of a graph: Old and new results, in: A. Betten, A. Kohnert, R. Laue, A. Wassermann(Eds.), Algebraic Combinatorics and Applications, Springer-Verlag, Berlin, 2001, pp. 196-211.
[8] I. Gutman, On graphs whose energy exceeds the number of vertices, Lin. Algebra Appl., in press.
[9] I. Gutman, S. Zare Firoozabadi, J. A. de la Peña, J. Rada, On the energy of regular graphs, MATCH Commun. Math. Comput. Chem. 57(2007), 435-442.
[10] W. H. HaEmers, Strongly regular graphs with maximal energy, Lin. Algebra Appl., in press.
[11] G. Indulal, I. Gutman, A. Vijayakumar, On distance energy of graphs, MATCH Commun. Math. Comput. Chem. 60(2008), in press.
[12] G. Indulal, A. Vijayakumar, On a pair of equienergetic graphs, MATCH Commun. Math. Comput. Chem. 55(2006), 83-90.
[13] G. Indulal, A. Vijayakumar, A note on energy of some graphs, MATCH Commun. Math. Comput. Chem. 59(2008), 269-274.
[14] X. Li, J. Zhang, On bicyclic graphs with maximal energy, Lin. Algebra Appl. 427(2007), 87-98.
[15] V. Nikiforov, The energy of graphs and matrices, J. Math. Anal. Appl. 326(2007), 1472-1475.
[16] I. Shparlinski, On the energy of some circulant graphs, Lin. Algebra Appl. 414(2006), 378-382.

[^0]: *Department of Mathematics, St. Aloysius College, Edathua, Alappuzha-689573, India, e-mail: indulalgopal@yahoo.com
 ${ }^{\dagger}$ Faculty of Science, University of Kragujevac, P. O. Box 60, 34000 Kragujevac, Serbia, e-mail: gutman@kg.ac.yu

