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On the distance spectra of some graphs

PALAPILLAI INDULAL* AND IVAN GUTMAN
GOPALA ALl AL* AND IvAN G ANt

Abstract. The D-eigenvalues of a connected graph G are the eigen-
values of its distance matrix D, and form the D-spectrum of G. The
D-energy Ep(G) of the graph G is the sum of the absolute values of its
D-eigenvalues. Two (connected) graphs are said to be D-equienergetic
if they have equal D-energies. The D-spectra of some graphs and their
D-energies are calculated. A pair of D-equienergetic bipartite graphs on
24 t, t > 3, vertices is constructed.
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1. Introduction

Let G be a connected graph with vertex set V(G) = {v1,vs,...,v,}. The distance
matrix D = D(G) of G is defined so that its (4, j)-entry is equal to dg(v;,v;), the
distance (= length of the shortest path [2]) between the vertices v; and v; of G.
The eigenvalues of the D(G) are said to be the D-eigenvalues of G and form the
D-spectrum of G, denoted by specp(G) .

The ordinary graph spectrum is formed by the eigenvalues of the adjacency
matrix [4]. In what follows we denote the ordinary eigenvalues of the graph G by
Xi, i=1,2,...,p, and the respective spectrum by spec(G).

Since the distance matrix is symmetric, all its eigenvalues p; , i = 1,2,...,p,
are real and can be labelled so that i > pz > -+ > pp . I gy > pg, > -0 > py,
are the distinct D-eigenvalues, then the D-spectrum can be written as

specD(G) — ( iy iy oo iy )

my Mo e mygy

where m; indicates the algebraic multiplicity of the eigenvalue p;, . Of course,
mi+ma+---+mg=p.

*Department of Mathematics, St. Aloysius College, Edathua, Alappuzha—689573, India, e-mail:
indulalgopal@yahoo.com

TFaculty of Science, University of Kragujevac, P. O. Box 60, 34000 Kragujevac, Serbia, e-mail:
gutman@kg.ac.yu



124 G.INpDULAL AND I. GUTMAN

Two graphs G and H for which specp(G) = specp(H) are said to be D-
cospectral. Otherwise, they are non-D-cospectral.
The D-energy, Ep(G), of G is defined as

Ep(@) =Yl 1)

Two graphs with equal D-energy are said to be D-equienergetic. D-cospectral
graphs are evidently D-equienergetic. Therefore, in what follows we focus our
attention to D-equienergetic non-D-cospectral graphs.

The concept of D-energy, Eq. (1), was recently introduced [11]. This definition
was motivated by the much older [7] and nowadays extensively studied [8, 9, 10,
13, 14, 15, 16] graph energy, defined in a manner fully analogous to Eq. (1), but in
terms of the ordinary graph eigenvalues (eigenvalues of the adjacency matrix, see
(4))-

In this paper we first derive a Hoffman—type relation for the distance matrix
of distance regular graphs. By means of it, the distance spectra of some graphs
and their energies are obtained. Also pairs of D-equienergetic bipartite graphs on
24t t > 3, vertices are constructed. All graphs considered in this paper are simple
and we follow [4] for spectral graph theoretic terminology.

The considerations in the subsequent sections are based on the applications of
the following lemmas:

Lemma 1 [see [4]]. Let G be a graph with adjacency matriz A and spec(G) =
{M,A2,..., Ay}, Then det A = 12[ Ai . In addition, for any polynomial P(x),

i=1

p
P(X) is an eigenvalue of P(A) and hence det P(A) = [] P(\) .
Lemma 2 [see [5]]. Let

(A A
-l

be a 2 X 2 block symmetric matriz. Then the eigenvalues of A are those of Ay + Aq
together with those of Ag — Ay .
Lemma 3 [see [4]]. Let M, N, P, and @ be matrices, and let M be invertible.

Let
M N
s=| % 5l
Then det S = det M det(Q — PM~'N). Besides, if M and P commute, then
det S = det(MQ — PN).
Lemma 4 [see [4]]. Let G be a connected r-reqular graph, r > 3, with ordinary
spectrum spec(G){r, A2, ... ,Ap} . Then

2r—2 Xo+r—2 - Aj+r—2 -2
Spec(L(G)):< 1 ? 1 ? 1 p(rg)/2>
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Lemma 5 [see [4]]. For everyt > 3, there exists a pair of non-cospectral cubic
graphs on 2t vertices.
Lemma 6 [see [6]]. The distance spectrum of the cycle C,, is given by

n greatest eigenvalue J even j odd
2 .
even n 0 —cosec? <ﬂ)
4 n
21 1 j 1 j
odd L 1 —18602 (%) —1008602 (%)

Definition 1 [see [12]]. Let G be a graph with vertex set V(G) = {vi,va,... ,vp} .
Take another copy of G with the vertices labelled by {u1,uz,... ,up} where u; cor-
responds to v; for each i. Make u; adjacent to all the vertices in N(v;) in G, for
each i . The resulting graph, denoted by D2G , is called the double graph of G .

Definition 2 [see [4]]. Let G be a graph. Attach a pendant vertex to each
vertex of G . The resulting graph, denoted by G o K1, is called the corona of G with
K.

We first prove the following auxiliary theorem.

Theorem 1. Let M be a real symmetric irreducible square matriz of order p in
which each row sum is equal to a constant k.Then there exists a polynomial Q(x)
such that Q(M) = J, where J is the all one square matriz whose order is same as
that of M .

Proof. Since M is a real symmetric irreducible matrix in which each row sums
to k, by the Frobenius theorem [4], k is a simple and greatest eigenvalue of M . The
matrix M is diagonalizable because it is real and symmetric. Therefore there exists
an orthonormal basis of characteristic vectors of M , associated with the eigenvalues
of M.

Let A1 = k,A2,...,Ag be the distinct eigenvalues of M. Let J()\;) be the
eigenspace spanned by the orthonormal set of characteristic vectors {x%, 2%, ... , x;
associated with \; , i =1,2,...,¢9. Then M has a spectral decomposition

M=MTi+ T+ 4T,

where T; is the projection of M onto §()\;), treating M as a linear operator. Then
T?:Ti s TiTjZO, i;«éjand

To=ab (o)) +ab (o) o, ()"

Now, corresponding to the greatest eigenvalue k of M , there exists a unique
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(one-dimensional) orthonormal basis

1/\/p
1/\/p

Ty = .

1/\/p

for (A1) = S(k), such that M =k Ty + Ao To + - - - + Ay Ty where

[ 1/vp
1/vp

I = IRYAV/R VAV/ SR VAV

L 1/yP

[ 1/p 1/p - 1/p
I/p 1/p -+ 1/p
= B e
p
| 1/p 1/p -+ 1/p

Because the T;’s are projections, we have f(M) = f(k)T1 + f(A2) Ta + -+ +
f(Ag) Ty for any polynomial f(x). As M is diagonalizable, the minimal polynomial
of M is (x — k)(x — Xa) -+ (x— Ag).

Let S(z) = (x — A2)---(x — Ag). Then S(A;) =0, A\ # k. Thus S(M) =
S(k)T1S(k) (1/p) J. Choose Q(x) = pS(xz)/S(k). This Q(x) satisfies the require-
ment of the theorem. O

Theorem 2. Let D be the distance matrixz of a connected distance regular graph
G . Then D is irreducible and there exists a polynomial P(x) such that P(D) = J .

In this case

(z —A)(z—A3) - (= Ay)
(k—=Xa)(k—X3)...(k—=Ay)
where k is the unique sum of each row which is also the greatest simple eigenvalue
of D, whereas Az, A3, ..., \g are the other distinct eigenvalues of D .

Proof. The theorem follows from Theorem 1 due to the observation that the
distance matrix of a connected distance regular graph is irreducible, symmetric and
each row sums to a constant. O

The rest of this paper is organized as follows. In the next section we obtain
the distance spectra of Dy(G), G x Ko, G[K3], the lexicographic product of G
with Ko, and G o K;. Using this, the distance energies of Dy(Csy,), Cp x Ko,
Con[Ks], and C,, o K7 are calculated. In the third section the D-spectrum of the
extended double cover graphs of regular graphs of diameter 2 is discussed and a
pair of D-equienergetic bipartite graphs on 24t , ¢t > 3 vertices is constructed.

For operations on graphs that are not defined in this paper see [4].

P(z)=px

2. Distance spectra of some graphs

In this section we obtain the distance spectra of the double graph of C,, , the Carte-
sian product of C,, with K5 and the corona of C,, with K .
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2.1. The double graph of G

Theorem 3. Let G be a graph with distance spectrum specp(G) = {p1, o, ... , fip} -
Then

specp(D2G) = ( 2(Mi1+1) _]92 ) ,1=1,2,...,p.

Proof. By definition of D3(G) we have:

dp,a(vi,vj) = da(vi,vj)
dp,c(visu;) = 2
dp,a(visuj) = da(vi,v;)
dp,a(vj,u;)) = da(vj,v) .

Hence a suitable ordering of vertices yields the distance matrix of DG of the form

D D +21
D +2I D

and the theorem follows from Lemma 2. O

Theorem 4. Ep(D2Cs,) =4n(n+1).
Proof. By Lemma 6 and Theorem 3 we have

2(n?+1 2 —2cot?(mj/2n) -2 ,
specp(D2Cay) = ( (n 1 ) "1 €0 1(7T]/ n) on, ) ,j=1,3,5...,2n—1.
Thus Ep(D2Cs,) =2 % [2(n? + 1) +2(n — 1)[4n(n + 1). O

2.2. The Cartesian product G x K,

Theorem 5. Let G be a distance reqular graph with distance regularity k , distance
matriz D, and D-spectrum {p1 =k, pa, ... ,pp} . Then

2k+p —p 2w 0

specD(GxK2)< 1 N 1 p—1> ,1=2,3,...,p.

Proof. The theorem follows from the fact that the distance matrix of G x Ko
has the form
D D+J
ey

and from Theorem 1 and Lemma 2. O
Corollary 1. Ep(G x K2) = 2(Ep(G) +p) .



128 G.INpDULAL AND I. GUTMAN

2.3. The corona of G and K;

Theorem 6. Let G be a connected distance reqular graph with distance regularity
k, distance matriz D, and specp(G) = {1 =k, p2, ... ,pp} . Then specp(Go Ky)
consists of the numbers

prk—1+Vp+k?+@-12 . prk-1-V+k?+(p-1)?

/1‘1_1+\//'L12+1 ) Ml_l_\/ug—’—l ) Z:2a3v7p

Proof. From the definition of G o K7 , it follows that the distance matrix H of
G o K, is of the form
D D+J
[ D+J D+2(J-1) ]

Now the characteristic equation of H is

A —D —(D+J)
N -H| = 0=

—(D+J) MM—-D-2(J-1)
:)QI—D)@I—D—QQ}—I»—(D+JF’=0bymem3

Now D being the distance matrix of a distance regular graph, it satisfies the re-

quirement in Theorem 2. Then the D— spectrum of G o K; follows from Theorem

2 and Lemma 1. O
Corollary 2.

Ep(ConoK,) = 2Rn—nﬁ+ m—1¥+6ﬁ}

Ep(Copy10Kq) = 2{n2+3n+\/(n2+3n)2+6n2+6n+1}.

2.4. The lexicographic product of G with K,

Theorem 7. Let G be a connected graph with distance spectrum specp(G){p1 =
k,pa, ... pupt. Then

2, +1 -1 .
SpGCD(G[KQ])< Ml P ) 72:1727"'71)'

Proof. From the definition of the lexicographic product of G with Ky, its
distance matrix can be written as

D D+1
D+1 D

and the theorem follows from Lemma 2. O
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Corollary 3. Ep(C2,[Kz]) =2n(2n+1).
Proof. From Lemma 6 and Theorem 7 we have

2n? +1 1 —1 1—2cosec®(nj/2n )
specD(an[KQ])< 1 n_1 on 1 (mj/2n) ) ,j=1,3,5,....

Since 1 — 2 cosec?d = —(cot*6 + coesc?d) , the only positive eigenvalues are 2n? + 1
and 1 with multiplicities 1 and n—1, respectively. Thus Ep(Csy[K2]) = 2n(2n+1).
O

3. The extended double cover graph of regular graphs of di-
ameter 2

In [1] N. Alon introduced the concept of extended double cover graph of a graph as
follows.

Let G be a graph on the vertex set {vi,v2,...,v,}. Define a bipartite graph H
with V(H) = {v1,v2,... ,0p,u1,ug,...,up} in which v; is adjacent to u; for each
i=1,2,...,p and v; is adjacent to u; if v; is adjacent to v; in G. The graph H
is known as the extended double cover graph (EDC-graph) of G. The ordinary
spectrum of H has been determined in [3].

In this section we obtain the distance spectrum of the EDC—graph of a regular
graph of diameter 2 and use it to construct regular D-equienergetic bipartite graphs
on 24t vertices, for t > 3.

Theorem 8. Let G be an r-reqular graph of diameter 2 on p vertices with
(ordinary) spectrum {r,Aa,... ,A\p}. Then the D-spectrum of the EDC-graph of
G consists of the numbers bp — 2r — 4, 2r —p, =2(\;+2) , 1 =2,3,...,p, and
20 ,1=2,3,...,p.

Proof. Let A and A be, respectively, the adjacency matrices of G and G .
Then by the definition of the EDC-graph, its distance matrix can be written as

2(J—-1) A+3A+1
A+3A+1 2(J-1)

a_nd the theorem follows from Lemmas 1 and 3 and also from the observation that
A=J—-1-A. O
Corollary 4.

40 ,p=3
Ep (EDC (Opvcp)) = g
4[E(Cp) +5p —10] ,p >4
where C,VC,, is the join [{] of Cp with itself.
Proof. The join of C, with itself is a regular graph diameter 2 with the ordinary
spectrum

+2 2- Ai .
(pl 1}7 2),7,—2,3,...,])
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where {2, A2, ..., A\p} is the ordinary spectrum of Cj, . Then by the above theorem,
the distance spectrum of EDC(C,VC)) is

8p—8 4 —2(\+2) 2p—8 4—-2p 2\ .
( 11 2 1 1 g ) 1= 23p
and hence the corollary follows as E(Cs) = 4. O

3.1. On a pair of D-equienergetic bipartite graphs

Theorem 9. There exists a pair of reqular non-D-cospectral D-equienergetic bi-
partite graphs on 24t vertices, for eacht > 3.

Proof. Let G be a cubic graph on 2t vertices, t > 3. Consider L?(G), its
second iterated line graph. Then by Lemma 4 and Theorem 8, we calculate that
for F = L*(G)VL?(G), the D-spectrum of EDC(F) is

16(3t—1) 12 0 2(\+3) 126—16 —4 —12(t—1) —2(\+5)
1 1 8t 2 1 8t 1 2 ’

i=2,3,...,2t. Thus

Ep(EDC(F)) = 2x [12(t—1)+32t+4 Y (A +5)

=2

= 2x[12t— 12432t +4(—3+5(2t — 1))]
= 8(21t—11).

Now let G; and G2 be the two non-cospectral cubic graphs on 2¢ vertices as given
by Lemma 5. Further, let H; and Hy be the EDC-graphs of L*(G1)VL?(G;)
and L?(G2)VL?(Gs), respectively. Then H; and Hy are bipartite and Ep(H;) =
Ep(H2) =8(21¢—11), proving the theorem. O
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