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On the distance spectra of some graphs

Gopalapillai Indulal∗ and Ivan Gutman†

Abstract. The D-eigenvalues of a connected graph G are the eigen-
values of its distance matrix D, and form the D-spectrum of G. The
D-energy ED(G) of the graph G is the sum of the absolute values of its
D-eigenvalues. Two (connected) graphs are said to be D-equienergetic
if they have equal D-energies. The D-spectra of some graphs and their
D-energies are calculated. A pair of D-equienergetic bipartite graphs on
24 t, t ≥ 3, vertices is constructed.
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1. Introduction

Let G be a connected graph with vertex set V (G) = {v1, v2, . . . , vp} . The distance
matrix D = D(G) of G is defined so that its (i, j)-entry is equal to dG(vi, vj) , the
distance (= length of the shortest path [2]) between the vertices vi and vj of G .
The eigenvalues of the D(G) are said to be the D-eigenvalues of G and form the
D-spectrum of G , denoted by specD(G) .

The ordinary graph spectrum is formed by the eigenvalues of the adjacency
matrix [4]. In what follows we denote the ordinary eigenvalues of the graph G by
λi , i = 1, 2, . . . , p , and the respective spectrum by spec(G) .

Since the distance matrix is symmetric, all its eigenvalues µi , i = 1, 2, . . . , p ,
are real and can be labelled so that µ1 ≥ µ2 ≥ · · · ≥ µp . If µi1 > µi2 > · · · > µig

are the distinct D-eigenvalues, then the D-spectrum can be written as

specD(G) =
(

µi1 µi2 . . . µig

m1 m2 . . . mg

)

where mj indicates the algebraic multiplicity of the eigenvalue µij . Of course,
m1 + m2 + · · · + mg = p .

∗Department of Mathematics, St. Aloysius College, Edathua, Alappuzha–689573, India, e-mail:
indulalgopal@yahoo.com

†Faculty of Science, University of Kragujevac, P. O. Box 60, 34000 Kragujevac, Serbia, e-mail:
gutman@kg.ac.yu



124 G. Indulal and I.Gutman

Two graphs G and H for which specD(G) = specD(H) are said to be D-
cospectral. Otherwise, they are non-D-cospectral.

The D-energy, ED(G) , of G is defined as

ED(G) =
p∑

i=1

|µi| . (1)

Two graphs with equal D-energy are said to be D-equienergetic. D-cospectral
graphs are evidently D-equienergetic. Therefore, in what follows we focus our
attention to D-equienergetic non-D-cospectral graphs.

The concept of D-energy, Eq. (1), was recently introduced [11]. This definition
was motivated by the much older [7] and nowadays extensively studied [8, 9, 10,
13, 14, 15, 16] graph energy, defined in a manner fully analogous to Eq. (1), but in
terms of the ordinary graph eigenvalues (eigenvalues of the adjacency matrix, see
[4]).

In this paper we first derive a Hoffman–type relation for the distance matrix
of distance regular graphs. By means of it, the distance spectra of some graphs
and their energies are obtained. Also pairs of D-equienergetic bipartite graphs on
24 t , t ≥ 3 , vertices are constructed. All graphs considered in this paper are simple
and we follow [4] for spectral graph theoretic terminology.

The considerations in the subsequent sections are based on the applications of
the following lemmas:

Lemma 1 [see [4]]. Let G be a graph with adjacency matrix A and spec(G) =

{λ1, λ2, . . . , λp} . Then detA =
p∏

i=1

λi . In addition, for any polynomial P (x) ,

P (λ) is an eigenvalue of P (A) and hence detP (A) =
p∏

i=1

P (λi) .

Lemma 2 [see [5]]. Let

A =
[

A0 A1

A1 A0

]

be a 2× 2 block symmetric matrix. Then the eigenvalues of A are those of A0 + A1

together with those of A0 − A1 .
Lemma 3 [see [4]]. Let M , N , P , and Q be matrices, and let M be invertible.

Let

S =
[

M N
P Q

]
.

Then detS = detM det(Q − PM−1N) . Besides, if M and P commute, then
detS = det(MQ − PN) .

Lemma 4 [see [4]]. Let G be a connected r-regular graph, r ≥ 3 , with ordinary
spectrum spec(G){r, λ2, . . . , λp} . Then

spec(L(G)) =
(

2r − 2 λ2 + r − 2 · · · λp + r − 2 −2
1 1 · · · 1 p(r − 2)/2

)
.
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Lemma 5 [see [4]]. For every t ≥ 3 , there exists a pair of non-cospectral cubic
graphs on 2t vertices.

Lemma 6 [see [6]]. The distance spectrum of the cycle Cn is given by

n greatest eigenvalue j even j odd

even
n2

4
0 −cosec2

(
πj

n

)

odd
n2 − 1

4
−1

4
sec2

(
πj

2n

)
−1

4
cosec2

(
πj

2n

)

Definition 1 [see [12]]. Let G be a graph with vertex set V (G) = {v1, v2, . . . , vp} .
Take another copy of G with the vertices labelled by {u1, u2, . . . , up} where ui cor-
responds to vi for each i . Make ui adjacent to all the vertices in N(vi) in G , for
each i . The resulting graph, denoted by D2G , is called the double graph of G .

Definition 2 [see [4]]. Let G be a graph. Attach a pendant vertex to each
vertex of G . The resulting graph, denoted by G ◦K1 , is called the corona of G with
K1 .

We first prove the following auxiliary theorem.
Theorem 1. Let M be a real symmetric irreducible square matrix of order p in

which each row sum is equal to a constant k .Then there exists a polynomial Q(x)
such that Q(M) = J , where J is the all one square matrix whose order is same as
that of M .

Proof. Since M is a real symmetric irreducible matrix in which each row sums
to k , by the Frobenius theorem [4], k is a simple and greatest eigenvalue of M . The
matrix M is diagonalizable because it is real and symmetric. Therefore there exists
an orthonormal basis of characteristic vectors of M , associated with the eigenvalues
of M .

Let λ1 = k, λ2, . . . , λg be the distinct eigenvalues of M . Let �(λi) be the
eigenspace spanned by the orthonormal set of characteristic vectors {xi

1, x
i
2, . . . , xi

pi
}

associated with λi , i = 1, 2, . . . , g . Then M has a spectral decomposition

M = λ1 T1 + λ2 T2 + · · · + λg Tg

where Ti is the projection of M onto �(λi) , treating M as a linear operator. Then
T 2

i = Ti , Ti Tj = 0 , i �= j and

Ti = xi
1

(
xi

1

)T
+ xi

2

(
xi

2

)T
+ · · · + xi

pi

(
xi

pi

)T
.

Now, corresponding to the greatest eigenvalue k of M , there exists a unique
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(one-dimensional) orthonormal basis

x1 =

⎡
⎢⎢⎢⎣

1/
√

p
1/

√
p

...
1/

√
p

⎤
⎥⎥⎥⎦

for �(λ1) = �(k) , such that M = k T1 + λ2 T2 + · · · + λg Tg where

T1 =

⎡
⎢⎢⎢⎣

1/
√

p
1/

√
p

...
1/

√
p

⎤
⎥⎥⎥⎦ [

1/
√

p, 1/
√

p, · · · , 1/
√

p
]

=

⎡
⎢⎢⎢⎢⎣

1/p 1/p · · · 1/p
1/p 1/p · · · 1/p
· · · · · · · · · · · ·
· · · · · · · · · · · ·
1/p 1/p · · · 1/p

⎤
⎥⎥⎥⎥⎦ =

1
p

J .

Because the Ti’s are projections, we have f(M) = f(k)T1 + f(λ2)T2 + · · · +
f(λg)Tg for any polynomial f(x) . As M is diagonalizable, the minimal polynomial
of M is (x − k)(x − λ2) · · · (x − λg) .

Let S(x) = (x − λ2) · · · (x − λg). Then S(λi) = 0 , λi �= k . Thus S(M) =
S(k)T1S(k) (1/p)J . Choose Q(x) = p S(x)/S(k) . This Q(x) satisfies the require-
ment of the theorem. �

Theorem 2. Let D be the distance matrix of a connected distance regular graph
G . Then D is irreducible and there exists a polynomial P (x) such that P (D) = J .
In this case

P (x) = p × (x − λ2)(x − λ3) · · · (x − λg)
(k − λ2)(k − λ3) . . . (k − λg)

where k is the unique sum of each row which is also the greatest simple eigenvalue
of D , whereas λ2, λ3, . . . , λg are the other distinct eigenvalues of D .

Proof. The theorem follows from Theorem 1 due to the observation that the
distance matrix of a connected distance regular graph is irreducible, symmetric and
each row sums to a constant. �

The rest of this paper is organized as follows. In the next section we obtain
the distance spectra of D2(G) , G × K2 , G[K2] , the lexicographic product of G
with K2 , and G ◦ K1 . Using this, the distance energies of D2(C2n) , Cn × K2 ,
C2n[K2] , and Cn ◦ K1 are calculated. In the third section the D-spectrum of the
extended double cover graphs of regular graphs of diameter 2 is discussed and a
pair of D-equienergetic bipartite graphs on 24t , t ≥ 3 vertices is constructed.

For operations on graphs that are not defined in this paper see [4].

2. Distance spectra of some graphs

In this section we obtain the distance spectra of the double graph of Cn , the Carte-
sian product of Cn with K2 and the corona of Cn with K1 .
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2.1. The double graph of G

Theorem 3. Let G be a graph with distance spectrum specD(G) = {µ1, µ2, . . . , µp} .
Then

specD(D2G) =
(

2 (µi + 1) −2
1 p

)
, i = 1, 2, . . . , p .

Proof. By definition of D2(G) we have:

dD2G(vi, vj) = dG(vi, vj)

dD2G(vi, ui) = 2

dD2G(vi, uj) = dG(vi, vj)

dD2G(vj , ui) = dG(vj , vi) .

Hence a suitable ordering of vertices yields the distance matrix of D2G of the form

[
D D + 2I

D + 2I D

]

and the theorem follows from Lemma 2. �

Theorem 4. ED(D2C2n) = 4n(n + 1) .
Proof. By Lemma 6 and Theorem 3 we have

specD(D2C2n) =
(

2
(
n2 + 1

)
2 −2 cot2(πj/2n) −2

1 n − 1 1 2n

)
, j = 1, 3, 5, . . . , 2n−1 .

Thus ED(D2C2n) = 2 × [2(n2 + 1) + 2(n − 1)]4n(n + 1) . �

2.2. The Cartesian product G × K2

Theorem 5. Let G be a distance regular graph with distance regularity k , distance
matrix D , and D-spectrum {µ1 = k, µ2, . . . , µp} . Then

specD(G × K2) =
(

2k + p −p 2 µi 0
1 1 1 p − 1

)
, i = 2, 3, . . . , p .

Proof. The theorem follows from the fact that the distance matrix of G× K2

has the form [
D D + J

D + J D

]

and from Theorem 1 and Lemma 2. �

Corollary 1. ED(G × K2) = 2(ED(G) + p) .
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2.3. The corona of G and K1

Theorem 6. Let G be a connected distance regular graph with distance regularity
k , distance matrix D , and specD(G) = {µ1 = k, µ2, . . . , µp} . Then specD(G ◦K1)
consists of the numbers

p + k − 1 +
√

(p + k)2 + (p − 1)2 , p + k − 1 −
√

(p + k)2 + (p − 1)2

µi − 1 +
√

µ2
i + 1 , µi − 1 −

√
µ2

i + 1 , i = 2, 3, . . . , p .

Proof. From the definition of G ◦K1 , it follows that the distance matrix H of
G ◦ K1 is of the form [

D D + J
D + J D + 2(J − I)

]
.

Now the characteristic equation of H is

|λI − H | = 0 ⇒
∣∣∣∣∣

λI − D − (D + J)

− (D + J) λI − D − 2 (J − I)

∣∣∣∣∣ = 0

⇒
∣∣∣(λI − D) (λI − D − 2 (J − I)) − (D + J)2

∣∣∣ = 0 by Lemma 3

Now D being the distance matrix of a distance regular graph, it satisfies the re-
quirement in Theorem 2. Then the D− spectrum of G ◦ K1 follows from Theorem
2 and Lemma 1. �

Corollary 2.

ED(C2n ◦ K1) = 2
[
(n − 1)2 +

√
(n − 1)4 + 6 n2

]
ED(C2n+1 ◦ K1) = 2

[
n2 + 3n +

√
(n2 + 3n)2 + 6 n2 + 6n + 1

]
.

2.4. The lexicographic product of G with K2

Theorem 7. Let G be a connected graph with distance spectrum specD(G){µ1 =
k, µ2, . . . , µp} . Then

specD(G[K2]) =
(

2µi + 1 −1
1 p

)
, i = 1, 2, . . . , p .

Proof. From the definition of the lexicographic product of G with K2 , its
distance matrix can be written as[

D D + I
D + I D

]

and the theorem follows from Lemma 2. �
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Corollary 3. ED(C2n[K2]) = 2n(2n + 1) .
Proof. From Lemma 6 and Theorem 7 we have

specD(C2n[K2]) =
(

2 n2 + 1 1 −1 1 − 2 cosec2(πj/2n)
1 n − 1 2n 1

)
, j = 1, 3, 5, . . . .

Since 1− 2 cosec2θ = −(cot2θ + coesc2θ) , the only positive eigenvalues are 2 n2 + 1
and 1 with multiplicities 1 and n−1 , respectively. Thus ED(C2n[K2]) = 2n(2n+1).

�

3. The extended double cover graph of regular graphs of di-
ameter 2

In [1] N. Alon introduced the concept of extended double cover graph of a graph as
follows.

Let G be a graph on the vertex set {v1, v2, . . . , vp} . Define a bipartite graph H
with V (H) = {v1, v2, . . . , vp, u1, u2, . . . , up} in which vi is adjacent to ui for each
i = 1, 2, . . . , p and vi is adjacent to uj if vi is adjacent to vj in G . The graph H
is known as the extended double cover graph (EDC-graph) of G . The ordinary
spectrum of H has been determined in [3].

In this section we obtain the distance spectrum of the EDC−graph of a regular
graph of diameter 2 and use it to construct regular D-equienergetic bipartite graphs
on 24 t vertices, for t ≥ 3 .

Theorem 8. Let G be an r-regular graph of diameter 2 on p vertices with
(ordinary) spectrum {r, λ2, . . . , λp} . Then the D-spectrum of the EDC-graph of
G consists of the numbers 5p − 2r − 4 , 2r − p , −2 (λi + 2) , i = 2, 3, . . . , p , and
2 λi , i = 2, 3, . . . , p .

Proof. Let A and A be, respectively, the adjacency matrices of G and G .
Then by the definition of the EDC-graph, its distance matrix can be written as

[
2 (J − I) A + 3A + I

A + 3A + I 2 (J − I)

]

and the theorem follows from Lemmas 1 and 3 and also from the observation that
A = J − I − A. �

Corollary 4.

ED (EDC (Cp∇Cp)) =

{
40 , p = 3
4 [E (Cp) + 5p − 10] , p � 4

where Cp∇Cp is the join [4] of Cp with itself.
Proof. The join of Cp with itself is a regular graph diameter 2 with the ordinary

spectrum (
p + 2 2 − p λi

1 1 2

)
, i = 2, 3, . . . , p
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where {2, λ2, . . . , λp} is the ordinary spectrum of Cp . Then by the above theorem,
the distance spectrum of EDC(Cp∇Cp) is

(
8p− 8 4 −2 (λi + 2) 2p − 8 4 − 2p 2 λi

1 1 2 1 1 2

)
, i = 2, 3, . . . , p

and hence the corollary follows as E(C3) = 4. �

3.1. On a pair of D-equienergetic bipartite graphs

Theorem 9. There exists a pair of regular non-D-cospectral D-equienergetic bi-
partite graphs on 24 t vertices, for each t ≥ 3 .

Proof. Let G be a cubic graph on 2t vertices, t ≥ 3 . Consider L2(G) , its
second iterated line graph. Then by Lemma 4 and Theorem 8, we calculate that
for F = L2(G)∇L2(G) , the D-spectrum of EDC(F ) is(

16 (3t− 1) 12 0 2 (λi + 3) 12 t − 16 −4 −12 (t− 1) −2 (λi + 5)
1 1 8t 2 1 8t 1 2

)
,

i = 2, 3, . . . , 2t. Thus

ED(EDC(F )) = 2 ×
[
12(t − 1) + 32 t + 4

2t∑
i=2

(λi + 5)

]

= 2 × [12 t − 12 + 32 t + 4(−3 + 5(2t − 1))]

= 8 (21 t− 11) .

Now let G1 and G2 be the two non-cospectral cubic graphs on 2t vertices as given
by Lemma 5. Further, let H1 and H2 be the EDC-graphs of L2(G1)∇L2(G1)
and L2(G2)∇L2(G2) , respectively. Then H1 and H2 are bipartite and ED(H1) =
ED(H2) = 8 (21 t− 11) , proving the theorem. �
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