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Abstract. Representation of the drop size distribution (DSD)

of rainfall is a key element of characterizing precipitation

in models and observations, with a functional form neces-

sary to calculate the precipitation flux and the drops’ interac-

tion with radiation. With newly available oceanic disdrome-

ter measurements, this study investigates the validity of com-

monly used DSDs, potentially useful a priori constraints for

retrievals, and the impacts of DSD variability on radiative

transfer. These data are also compared with leading satellite-

based estimates over ocean, with the disdrometers observing

a larger number of small drops and significantly more vari-

ability in number concentrations. This indicates that previous

appraisals of raindrop variability over ocean may have been

underestimates. Forward model errors due to DSD variability

are shown to be significant for both active and passive sen-

sors. The modified gamma distribution is found to be gener-

ally adequate to describe rain DSDs but may cause system-

atic errors for high-latitude or stratocumulus rain retrievals.

Depending on the application, an exponential or generalized

gamma function may be preferable for representing oceanic

DSDs. An unsupervised classification algorithm finds a va-

riety of DSD shapes that differ from commonly used DSDs

but does not find a singular set that best describes the global

variability.

1 Introduction

A challenge shared by atmospheric models and remote sens-

ing retrievals alike is the representation of precipitation mi-

crophysics. Raindrops can be modeled using a variety of

functional forms, for example, as simple relations between

drop size and number density that attempt to capture the

overall behavior in a way sufficient to represent the pro-

cesses of interest. The radiative characteristics and precipita-

tion flux through an atmospheric volume containing precipi-

tation depend on the size and resulting terminal velocities of

the raindrops, defined via that volume’s drop size distribu-

tion (DSD). In this way, the DSD acts as a necessary conduit

to represent precipitation processes, one common to climate

models, radar retrievals, and data assimilation schemes.

Various functional forms have been employed to describe

rain DSDs. Exponential DSDs (Marshall and Palmer, 1948)

have been used in radar meteorology for decades, and dif-

ferent versions of the modified gamma distribution (MGD;

Eq. 1) have gained popularity for remote sensing (Ulbrich,

1983). Simplifications of the MGD to three-, two-, or one-

parameter versions yield the gamma, exponential, and power

law relations (Petty and Huang, 2011), respectively, all of

which are used to represent DSDs in various applications.

Note that the four-parameter MGD is sometimes called the

generalized gamma distribution (Petty and Huang, 2011;

Thurai and Bringi, 2018). Between those who use the MGD

to describe DSDs, disagreement exists on how many free

parameters to use (Smith, 2003; Thurai and Bringi, 2018),

whether it is best to normalize the distribution, as in Eq. 3, in

some way (Testud et al., 2001) or if the separation of param-

eters in the MGD is either physically meaningful or outper-

formed by simpler methods (Williams et al., 2014; Tapiador

et al., 2014).

The below equations will be referred to throughout the

text as the generic MGD function (Eq. 1) and normalized

gamma (NG) function (Eq. 3), with NG being a normalized

and three-parameter version of the MGD. Here N(D) is the
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number of drops per volume per size as a function of the drop

diameter, D (with D given in mm and N(D) in mm−1 m−3).

The so-called shape parameter is µ, while N0 and Nw are in-

tercept parameters, with Nw (Eq. 5) a normalized intercept

parameter scaled by the water content (Testud et al., 2001).

The mass-weighted mean diameter is Dm, the ratio of the

fourth and third moments of the distribution (Eq. 2). Denot-

ing the gamma function is Ŵ, ρw is the density of water, and

RWC is the rain water content in kg m−3.

N(D) = N0D
µe−λDγ
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Scattering of radiation is highly dependent on particle size,

and thus the DSD is a crucial component of remote sensing

retrievals, whether it is assumed or retrieved. Depending on

the application, the specific choice of DSD may or may not

make much difference (Smith, 2003; Illingworth and Black-

man, 2002). For instance, erroneous assumptions about small

drops may not impact the broadband radiative fluxes or pre-

cipitation characteristics of a volume, but a more accurate

DSD representation may be necessary when considering ad-

ditional frequencies or polarized measurements. The under-

constrained nature of precipitation retrieval means that the

DSD is either assumed completely or needs to be constrained

to allow tractable solutions.

A lack of global DSD data has hampered the retrieval of

precipitation from satellites. Satellite retrievals rely heavily

on a priori knowledge to constrain the solution space, and

regional differences in meteorology and microphysics can

manifest as regional biases in satellite retrievals (Berg et al.,

2006). Whereas ground radar networks and arrays of dis-

drometers over land have helped to characterize the variabil-

ity of raindrops from continental precipitation (Bringi et al.,

2003; Williams and Gage, 2009; Thurai and Bringi, 2018),

observations of DSDs over ocean have mostly been limited

to field campaigns, a few small tropical islands and atolls,

and coastal radar retrievals. Because of the different aerosol

loading, convective strength, and underlying humidity of air

masses over land, oceanic drop populations can be distinct

from those over land (Dolan et al., 2018), with the different

microphysics influencing satellite retrievals. It is thus desir-

able to have measurements of DSDs over ocean and crucial

that these measurements are globally representative rather

than skewed toward one region or another.

It is expedient to condense the variability of DSDs into

a few distinct classes, either to narrow the possible solu-

tion space of remote sensing retrievals or for interpretation

of results. Separation of stratiform and convective precip-

itation has long been common, as stratiform precipitation

tends to have a more peaked distribution of fewer smaller

drops versus the more exponential distribution of precipita-

tion from convective clouds (Thurai et al., 2010; Thompson

et al., 2015). However, partitioning stratiform and convective

rainfall is done in various ways and may differ depending

on location. A little further, Dolan et al. (2018) argue for six

dominant modes of DSDs globally, separated via principal

component analysis but linked to meteorology and attendant

microphysical regimes. As many studies of drop distributions

are from land-based disdrometers and radars, DSD variabil-

ity has been studied less over open ocean where a majority of

global precipitation occurs, though advances are being made

in this area (Thompson et al., 2018).

In remote sensing applications, one can attempt to solve

for all, some, or none of the parameters that define a func-

tional form such as Eq. (1), depending on the information

content available. A normalized distribution such as Eq. (3)

is used in many precipitation retrievals to separate the wa-

ter content from the spectrum’s shape. In that formulation,

with RWC separate, this leaves two free parameters to define

the distribution since RWC is directly related to Nw through

Dm. While passive-only retrievals may need to assume one

of these parameters because of the limited signal available

(Duncan et al., 2018), radar or combined radar and radiome-

ter retrievals may solve for these parameters in a constrained

way (Munchak et al., 2012; Grecu et al., 2016). Precipitation

retrievals thus handle the complexity of the DSD differently,

depending on their instruments’ sensitivities, but necessarily

use a predefined functional form to limit the inverse prob-

lem’s degrees of freedom.

To investigate the distinctiveness of raindrop size distri-

butions over the global oceans and how this may impact re-

trievals both in terms of prior constraints and radiative trans-

fer modeling, the study proceeds as follows. Data and meth-

ods are described in the following section, introducing the

disdrometer and satellite data examined, as well as the ma-

chine learning technique used to classify drop regimes. Sec-

tion 3 presents a holistic view of global disdrometer mea-

surements with respect to the normalized gamma distribu-

tion, including a comparison to the leading satellite-based,

near-global DSD data set. Results from the application of a

machine learning technique to the disdrometer data are dis-

cussed in Sect. 4. In Sect. 5 the radiative aspects of DSD

variability are addressed in the context of satellite retrievals

with radiative transfer modeling. Following this is a discus-

sion section, critically examining the disdrometer data versus

a commonly used functional form. The paper closes with a

summary and some conclusions.
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2 Data and methods

2.1 OceanRAIN

The Ocean Rainfall And Ice-phase precipitation measure-

ment Network (OceanRAIN) coordinates disdrometer mea-

surements and acquired ancillary data aboard research ships

across the global oceans (Klepp et al., 2018). The data set

begins in 2010 and collection is ongoing, with observations

spanning eight vessels and over 6 million minutes, covering

all ocean latitudes. OceanRAIN data contain raw counts inte-

grated for each minute of rain, snow, or mixed-phase precipi-

tation, with derived rainfall DSD parameters (Eq. 3) and var-

ious ancillary fields. The large and growing size of the data

set makes statistical analysis possible due to its consistent ap-

plication across various ships. The disdrometer data are inte-

grated per minute and separated into logarithmically spaced

size bins (Table 1), permitting analysis of DSDs without the

assumption of a functional form. Specifically, primarily the

OceanRAIN-M (“OceanRAIN Microphysics”) data are used

in the study (Klepp et al., 2017), in which drop counts from

the disdrometer are converted to number concentrations per

size (i.e., drops per volume per size), the form in which DSDs

are often given. DSD assumptions commonly made in the lit-

erature can thus be assessed against the observations.

Underpinning OceanRAIN is the ODM470 optical dis-

drometer, a sensor with sensitivity to hydrometeors of a di-

ameter of 0.4 to 22 mm (Klepp, 2015). The disdrometer is

deployed on the superstructure of ships in a package includ-

ing a cup anemometer and a precipitation detector to activate

the disdrometer. A wind vane turns the disdrometer to keep

the optical path normal to the wind direction, and the dis-

drometer’s cylindrical volume ensures that the incident an-

gle of hydrometeors does not affect the measurement. These

work in concert to minimize impacts of turbulence from lo-

cal updrafts and downdrafts, to limit under-catchment and

drops impacting the sensor from various directions (Klepp,

2015). Only data points marked as rain definite, with 50 or

more measured drops, and with a probability of precipitation

of 100 % were used in the following analysis. To be consis-

tent, only data points with measurements in 10 or more size

bins are used (Klepp et al., 2018), as these provide the pa-

rameters from the NG fitted to Eq. (3). A visualization of the

OceanRAIN sampling used in this study is found in Fig. 1,

with raining minutes shown on a near-global regular grid.

This study also makes use of simulated reflectivities in

Sect. 5. Simulated reflectivities from the ODM470 disdrom-

eter have demonstrated high correlation and a near-zero bias

when compared against co-located, vertically oriented radar

observations (Klepp et al., 2018, Fig. 6). In comparison

with co-located rain gauges, the optical disdrometer performs

better at high wind speeds, as under-catch is a significant

problem for traditional rain gauges that can result in un-

derestimation of rainfall accumulation by 50 % (Grossklaus

et al., 1998; Klepp et al., 2018), though accumulations match

within 2 % for low wind speeds (Klepp, 2015). The ODM470

has been used in a variety of conditions and shown no dif-

ference in accuracy between oceanic and continental cases

(Bumke and Seltmann, 2011).

The accuracy of disdrometer-derived DSD parameters

(following Eq. 3) will depend somewhat on the parameter

discussed and the type of rain. For instance, derived Dm

should be accurate for all but the weakest rain rates as it

is simply defined (Eq. 2) and requires no fitting. The ac-

curacy of derived Nw may be suspect for cases with high

rain rates and a low Dm value, as drops below the sensitiv-

ity threshold may constitute a non-negligible fraction of total

drops, though this depends on the type of rainfall and is an

issue faced by all disdrometers (Thurai et al., 2017). To be

clear, there can be significant number concentrations below

this sensitivity limit, but voltages corresponding to drop di-

ameters of less than 0.36 mm are disregarded as these can be

contaminated by vibrations from the ship (Klepp et al., 2018)

and this is a key drawback of the data set. The derived shape

parameter, µ, is the least reliable of the three as it depends on

a curve fitting which may not be optimal for light rain rates

or spectra that do not conform to the expected general shape.

In other words, the accuracy of DSD parameters reported by

OceanRAIN may exhibit bias in regimes with many drops

below the disdrometer’s sensitivity threshold, or for distribu-

tions with a shape unlike that assumed.

In this study, the default way of discussing the Ocean-

RAIN data is using the three-parameter normalized gamma

distribution (Eq. 3), but a strength of this data set is that num-

ber concentrations are provided for every observed size bin

(Table 1), allowing investigation of different DSD types, in-

cluding other varieties of the MGD. Later in the study the

three-parameter MGD (i.e., NG, as all DSDs discussed are

normalized) is contrasted with one- and two-parameter MGD

versions, as well as DSDs not conforming to the MGD but

instead derived from a machine learning technique. In the

context used here, the one-parameter MGD is equivalent to

single-moment microphysics in model parlance, with a fixed

shape (i.e., prescribed Dm and µ) and Nw simply scaling

with RWC. The two-parameter MGD is defined by a calcu-

lated Dm (via Eq. 2) but a prescribed µ, whereas the three-

parameter MGD includes calculated Dm and µ, with Nw de-

termined via Dm and RWC (Eq. 5).

2.2 GPM Combined Radar–Radiometer Algorithm

The Global Precipitation Measurement (GPM) Core Obser-

vatory (Hou et al., 2014) holds two sensors designed to mea-

sure precipitation: the GPM Microwave Imager (GMI) and

the Dual-frequency Precipitation Radar (DPR). GMI is a pas-

sive microwave radiometer measuring from 10 to 190 GHz

and the DPR is a phased array radar measuring at the KU

and KA bands (13.6 and 35.5 GHz, respectively). The dual

frequencies of DPR set it apart from other satellite-borne

sensors in terms of its capacity to solve for the DSD. The
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Table 1. Center drop diameters for OceanRAIN size bins, given in mm. Note that the bins of up to 5 mm diameter are given here for brevity

and because these bins contain the vast majority of drop counts, but larger size bins also exist. The values below 1 are rounded to three

decimal places. For full details see Klepp et al. (2017).

0.392 0.427 0.462 0.498 0.535 0.573 0.612 0.652 0.693 0.735

0.778 0.823 0.868 0.914 0.961 1.01 1.06 1.11 1.16 1.22

1.27 1.33 1.39 1.45 1.51 1.57 1.63 1.70 1.76 1.83

1.90 1.97 2.05 2.12 2.20 2.28 2.36 2.45 2.53 2.62

2.71 2.80 2.89 2.99 3.09 3.19 3.30 3.40 3.51 3.62

3.74 3.86 3.98 4.10 4.23 4.36 4.49 4.62 4.76 4.91

Figure 1. Raining minutes from OceanRAIN, selected by the sampling criteria of this study as described in Sect. 2.2, viewed on a regular 5◦

grid. Grid cells in white signify that no data points were used.

GPM core satellite’s combination of passive and active sen-

sors provides sensitivity to a large range of precipitating hy-

drometeors, with information on their emission and scatter-

ing characteristics. However, DPR has limited sensitivity to

small drops and low number concentrations, due to its mini-

mum detectable signal of 12 to 13 dBZ.

The GPM Combined Radar–Radiometer Algorithm

(Grecu et al., 2016), hereafter referred to as GPM CORRA,

is a retrieval that uses data from both radar and radiometer

to solve for profiles of hydrometeors that optimally fit the

observations. As the GPM satellite represents the best ob-

servational platform available for measuring near-global pre-

cipitation, the combined retrieval from DPR and GMI, as in-

cluded in this study, is the state-of-the-art method of calcu-

lating global DSD statistics. Via the same DSD formulation

given in Eq. 3, GPM CORRA first uses the KU band reflec-

tivities to solve for the Dm profile. It then retrieves Nw at a

reduced vertical resolution to match the KA band reflectivi-

ties, DPR path integrated attenuation, and de-convolved GMI

brightness temperatures (TBs) using optimal estimation. The

shape parameter is fixed at µ = 2 for all cases. For further

details about this retrieval, see Grecu et al. (2016).

In this study, gridded level 3 GPM CORRA data are used

(Olson, 2017), comprising monthly and daily files from GPM

version V06. This data set provides statistics of pixel-level-

derived DSD parameters from Eq. (3) at 5 and 0.25◦ hori-

zontal resolution. The values used in this study are from the

lowest-altitude bin and include oceanic pixels only so as to

best match the surface-based data from OceanRAIN-M. Be-

cause GPM CORRA receives most of its information content

from DPR, the DSD parameters derived are representative of

individual segments of the atmospheric column and not a col-

umn average, a key difference from passive-only retrievals.

This is significant, as comparison with surface-based obser-

vations (Petersen et al., 2019) should be as close in altitude

as possible, as DSDs will vary with altitude as evaporation,

coalescence, collisions, or other processes modify the spec-

tra (Williams, 2016). The 250 m vertical resolution of DPR

means that multiple observations exist below a 1 km altitude,

though some of these will be affected by surface clutter and

so the lowest bin without clutter is chosen here. Note that the

GPM CORRA retrievals were performed at the native DPR

pixel size, which has a 5 km horizontal resolution.

To assess the similarity between GPM estimates and the in

situ disdrometer measurements of OceanRAIN, in Sect. 3.2

the retrieved results for Nw and Dm are compared, as GPM

CORRA assumes a constant µ value. To perform this com-

parison, level 3 GPM CORRA data were used, spanning

12 months from 2017. Due to the uneven sampling of the

shipborne disdrometers, GPM data included in the analysis

are from months with valid OceanRAIN data points in each

box and defined as ocean pixels by DPR. No attempt was

made to match observations exactly in space and time due

Atmos. Chem. Phys., 19, 6969–6984, 2019 www.atmos-chem-phys.net/19/6969/2019/



D. I. Duncan et al.: On the distinctiveness of observed oceanic raindrop distributions 6973

to the difficulty of point-to-area comparisons with shipborne

data and GPM (Burdanowitz et al., 2018; Loew et al., 2017).

2.3 Gaussian Mixture Modeling

Gaussian Mixture Modeling (GMM) is an unsupervised,

probabilistic classification technique that attempts to repre-

sent a data set using a linear combination of multidimen-

sional Gaussians in a chosen parameter space (Pedregosa

et al., 2011). The dimensions (or “features”) of the parame-

ter space and the maximum number of classes, NGMM, are set

by the user. GMM assigns each data point to the class, rep-

resented by a multidimensional Gaussian function, with the

highest posterior probability for that data point. For further

technical details on GMM and its use in other Earth science

applications, see Maze et al. (2017) and Jones et al. (2019).

GMM generalizes a wide variety of data distributions and

can thus identify structures in the DSD data that might be

missed by more traditional classification methods. This frees

the analysis from explicit assumption of a DSD shape such

as Eq. (3). In the approach used here, the dimensions given to

the GMM module are the size bins used by the OceanRAIN

disdrometers, and thus the input data are an array of ap-

proximately 90 000 raining minutes with 60 size bins. These

data are unchanged other than being normalized so that DSD

“shape” variability in the data set is not weighted by the to-

tal number of drops observed and cut off at 60 size bins, as

very few drops over 5 mm are ever measured. Because the

shapes are independent of the total number of drops, this

is analogous to the normalized DSD approach typified by

Eq. (3). GMM thus finds common shapes of the observed

DSDs and determines the posterior probability of every data

point (DSD for each raining minute) falling into each of the

various classes. Each observed DSD is assigned to the GMM

class for which it has the highest posterior probability. The

resultant classes provide insight into dominant structures of

the input data, with this approach exemplified in Sect. 4.

The number of GMM classes is set a priori, with the de-

gree of complexity described by the GMM decomposition

dependent on the number of states set by the user. Determin-

ing an optimal value for NGMM is thus important but some-

what subjective because the desired level of complexity re-

tained after the decomposition will vary for different appli-

cations. One method for estimating a suitable range for the

number of classes is to use the Bayesian Information Cri-

terion (BIC; Schwarz, 1978). Shown in Eq. (6), this met-

ric contrasts the log likelihood (L) against a cost for the

number of classes (K) to provide an objective measure of

how many classes should optimally describe the data, where

Nf(K) = K − 1 + KD + KD(D − 1)/2, with D the dimen-

sion of the data space and n the number of data points used in

model training. The first term in Eq. (6) becomes more neg-

ative with increased likelihood, while the second term acts

to penalize overfitting. The minimum BIC thus signifies the

optimal K value, maximizing the variability explained with

the fewest possible classes. A plateau of BIC values versus K

would signify no distinctly optimal K to describe the data’s

variability but rather a range of solution spaces in which the

addition of further states provides marginal additional com-

plexity.

BIC(K) = −2L(K) + Nf(K) log(n) (6)

3 Global results

3.1 Disdrometer results

Viewing the OceanRAIN data all together can provide a

sense of the variability in DSD populations over the world’s

oceans. From the perspective of global retrievals, constraints

on the DSD that depend on the location or environmental

regime, rather than, say, partitioning stratiform and convec-

tive precipitation a priori, are useful for independent satellite-

based products that do not ingest detailed model data, such

as the operational retrievals for the GPM constellation ra-

diometers (Kummerow et al., 2015). To this end, the derived

parameters of Eq. (3) are given for all raining disdrometer

observations, separated by latitude and sea surface tempera-

ture (SST) in Fig. 2 and representing all data points shown in

Fig. 1. As this is the DSD form most used in rainfall retrievals

currently, it is presented here.

As seen in Fig. 2, the normalized gamma DSD parameters

exhibit a wide range of variability that is not strongly tied

to latitude or SST. The strongest trend visible is that higher

number concentrations occur over warmer ocean surfaces,

with the mean log10(Nw) increasing from about 3.5 to 4.0,

as may be expected due to the Clausius–Clapeyron equation.

This is roughly in line with the a priori Nw used for rain by

Mason et al. (2017) of 3.9 × 103, or 3.59 in log space. It is

noted that the distributions of Dm and µ are not Gaussian,

with the means and medians separate, and Nw is only mod-

erately Gaussian in log space.

It is stressed that OceanRAIN observations are not evenly

distributed around the global oceans, and thus the values seen

are dependent on the sampling (i.e., where the ships sailed;

see Fig. 1), so these values are not fully representative of each

ocean latitude band. As surface-based observations, they do

not provide information as to any vertical DSD variability, a

topic that requires radar observations (Williams, 2016). How-

ever, it is possible to pick out some meteorological regimes

of interest from the derived DSD parameters in OceanRAIN.

For instance, the ships’ heavy sampling of Southern Hemi-

sphere stratocumulus regions (Fig. 1) shows up in these plots

as a regime characterized by a higher number of small drops

and a more peaked distribution (seen in the 20 to 40◦ S band

in Fig. 2). From the perspective of satellite rainfall retrievals,

such location-dependent or cloud-regime-dependent a priori

constraints are much more preferable to a global a priori and

are useable within existing algorithms.

www.atmos-chem-phys.net/19/6969/2019/ Atmos. Chem. Phys., 19, 6969–6984, 2019
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Figure 2. Distribution of DSD parameters following Eq. (3). The boxes define the standard deviations (±1σ ), the whiskers define the 10 %

and 90 % bounds, orange lines denote the median, and blue diamonds denote the mean. Observations are divided according to latitude with

20◦ bins (a, c, e) and sea surface temperature with 5 ◦C bins (b, d, f).

Without applying any sorting methods or functional forms

to the OceanRAIN data, it is worth viewing the data as a

whole to see how closely the overall behavior resembles the

MGD, as this is commonly used in the literature. Figure 3

shows a two-dimensional probability density function (PDF)

of drop diameter normalized by Dm versus number concen-

tration normalized by Nw. This is a view of drops’ overall

behavior often used to justify usage of the NG for precipita-

tion (Bringi et al., 2003; Leinonen et al., 2012), as it permits

visualization of in situ data points with the NG for various

µ values including the exponential DSD. Figure 3 indicates

that much of the spectral power within OceanRAIN lies near

the exponential (µ = 0) line or near the lines with near-zero

shape parameters. This is consistent with the enduring pop-

ularity of exponential DSDs and the µ = 2 assumption of

GPM CORRA.

3.2 Comparison to GPM CORRA

Figure 4 shows two-dimensional histograms of Nw versus

Dm for both OceanRAIN and GPM CORRA. Both data sets

exhibit an inverse relationship between Nw and increasing

Dm and show maximum probabilities of occurrence in the

same area, namely near Dm = 1 mm and log10(Nw) = 3.8.

The disdrometers show greater spread in both parameters but

especially in Nw. Whereas both data sets observe most occur-

rences of Dm between about 0.6 to 1.8 mm, the range of Nw

observed by the disdrometers is easily twice as large, even in

log space. This behavior is also seen in Fig. 5.

Figure 5a shows histograms of derived Dm from the dis-

drometers compared with GPM CORRA, separated by lat-

itude, with each latitude band 20◦ wide. Given the limited

sensitivity of DPR to small drops, it is unsurprising to note

that OceanRAIN observes a wider distribution of Dm that is

clearly different from GPM results for small drops. Another

key feature of these histograms is that while the maxima in

Dm distributions are relatively similar for the two data sets,

Atmos. Chem. Phys., 19, 6969–6984, 2019 www.atmos-chem-phys.net/19/6969/2019/
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Figure 3. Probability density function of all raining OceanRAIN data points, visualized using the scaled DSD, N(D)/Nw, against the

diameter normalized by Dm. Various curves with prescribed µ values are plotted for comparison. Areas in gray indicate no data.

Figure 4. Probability histograms for OceanRAIN (a) and GPM CORRA (b) for observations of the normalized intercept parameter (Nw)

and the mass-weighted mean diameter (Dm). Areas in white indicate no data.

OceanRAIN observes a less peaked distribution in most lat-

itude bands. The disdrometers observe more small drops in

all latitude bands, but this is especially pronounced in the

Southern Ocean. For all latitudes GPM exhibits a peak near

Dm = 1 mm or just below.

Figure 5b follows the same format but for derived Nw.

The most striking aspect of these histograms is the strongly

peaked distribution retrieved by GPM in all latitude bands. In

contrast, the disdrometers observe many cases with Nw val-

ues an order of magnitude greater or smaller than those of the

GPM distributions. The peak Nw values from the disdrome-

ters are similar to those of GPM CORRA in the northernmost

latitude band but are significantly wider and flatter in every

latitude band shown.

4 GMM-derived states

As shown in Fig. 3, the NG with a low µ value lies near the

largest probability densities of the observed PDF. However,

a great deal of spread exists that is not captured by any one

curve. With this in mind, GMM was employed to investigate

if a finite number of DSD shapes without a predefined func-

tional form could better capture this variability.

To provide a visualization of how the GMM states attempt

to fit the observed DSD from the disdrometer and how these

states compare with various MGD forms, Fig. 6 contains ran-

domly sampled data points from OceanRAIN. These four

data points have quite different rain rates and RWCs. The

GMM curves shown are from iterations with NGMM of 6
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Figure 5. Normalized histograms of Dm (a) and log10(Nw) (b) for GPM CORRA and OceanRAIN, separated by latitude. All histograms

use a linear y axis of height 20 %. GPM CORRA data are from the 3B CMB monthly gridded product.

Figure 6. Each panel gives an OceanRAIN observed DSD, seen in the solid bars. Various fitted curves with identical RWCs are also given,

including GMM-derived DSDs, for NGMM of 6 and 14, and 3 MGD curves. For the one-parameter MGD and GMM curves only RWC is

provided, and for the one- and two-parameter MGD curves µ = 3. The two-parameter MGD has the calculated Dm while the three-parameter

MGD (i.e., NG) also has the fitted µ. Each data point is identified by its RWC and rain rate. The light gray shaded region indicates an area

of no OceanRAIN sensitivity.

and 14 (shown in Fig. 7c and d). These are the states with

the highest posterior probability from GMM, indicating the

best match to the observed distribution. No fitting was per-

formed (other than scaling by the observed RWC), only the

most similar GMM curve was chosen, judged by the highest

posterior probability. Also provided for reference are MGD

curves with one-, two-, and three-parameter fits. The one-

parameter MGD fits represent RWC-only fits, with µ = 3 and

Dm = 1.18 mm prescribed. For the two-parameter MGD fit,

Dm is calculated via Eq. (2) and µ = 3 is prescribed. All the

curves in Fig. 6 conserve total RWC as measured by the dis-

drometer.

Figure 6 shows a variety of observed DSDs from differ-

ent locations and SST regimes. In these plots the size bins

below 0.4 mm are grayed out to signify the disdrometers’ in-

sensitivity to these drop sizes. The discontinuities between

size bins are noticeable in some panels at larger drop diam-

eters, especially Fig. 6d. Figure 6b is the most exponential

distribution of the four shown, while Fig.6a shows a DSD

that fits well with the MGD with µ = 3 and a small Dm.

Figure 6c shows a heavy tropical rainfall case with bimodal

characteristics, as a high concentration of drops smaller than

D = 0.8 mm is observed but significant concentrations of

drops larger than D = 2 mm also exist. In this particular case

the GMM-derived curves appear to provide the best fit but

are still imperfect.

In contrast to the example plots of Fig. 6, Fig. 7 shows the

mean GMM curves that arise from running GMM with a few

different NGMM values. Again, this is from running GMM

on the full disdrometer size bin data, with only the number

of classes set a priori. For comparison, reference lines of NG

distributions with sample µ and Dm values are also given.
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Figure 7. Panels show resultant DSDs for different GMM realizations (dashed lines), ranging from NGMM of 2 to 14. Panel (d) shows only

odd numbered GMM states to reduce clutter. Each panel has an identical set of NG curves with different µ and Dm values (solid lines) for

the sake of comparison. All curves have equal RWC. The frequency of occurrence for each GMM shape is given in the legend.

Note that for each panel in Fig. 7, a majority of the GMM-

derived DSDs feature more small drops than given by even

the exponential (µ = 0) line. In the simplest case with only

two classes possible (Fig. 7a), the DSD shape that best cap-

tures the majority of the OceanRAIN data set’s variability

(at least in terms of frequency of occurrence) is a shape that

is more sloped than the exponential DSD, with many small

drops and few large drops. This particular shape is common

to all the GMM realizations, with even steeper curves found

as GMM states are added. Indeed, the distributions produced

by GMM seldom resemble a pure exponential DSD. It is

an indication that a second shape parameter may be useful

for describing oceanic DSDs, in line with the generalized

gamma approach argued for by Thurai and Bringi (2018).

It is noteworthy that most of the GMM states shown in

Fig. 7 are not similar to the given NG curves across the full

range of drop diameters. So while some of the GMM states

are quite like a particular NG curve over part of the domain,

it is rare to observe DSD shapes from individual minutes that

resemble a three-parameter MGD (i.e., NG) across the whole

size domain. In many cases the GMM method prefers states

with more steeply sloped DSDs and more small drops than

the sample NG curves given. In fact, it takes higher values of

NGMM (such as in Fig. 7 with NGMM = 14) before strongly

peaked DSD shapes reminiscent of NG with a large µ value

emerge. In other words, DSDs featuring a strong peak near

Dm, and for which an exponential is a poor approximation,

are infrequent. This can also be seen in Fig. 3, as the PDF is

relatively weak in the bottom left of that plot.

The GMM framework as applied to the DSD problem

seems to offer the promise of finding a finite number of dis-

tinct shapes with which global DSD variability can be de-

scribed, a la Dolan et al. (2018), without constraining the

type of shapes found. To investigate this, GMM was used

in many iterations for randomly sampled subsets of the data

to assess if an optimal number of states exists that describes
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Figure 8. Bayesian Information Criterion (BIC) for different

NGMM choices applied to OceanRAIN. The mean BIC is shown in

red with the standard deviation in black. Gray lines indicate GMM

tests with limited samples, each a randomly chosen subset making

up a third of the total data set.

the global shape variability. In this experiment NGMM was

varied from 2 to 14. The BIC (Eq. 6) gauges whether the

addition of further states provides a better description of the

data, shown in Fig. 8. BIC plateaus and continues a slight

decrease for GMM states beyond about NGMM = 8, indicat-

ing that there is no singular set of GMM-derived DSD shapes

that outperforms the others. Instead, oceanic DSD shape vari-

ability proves to be a true continuum that is not easily decom-

posed into a linear combination of a finite set of curves.

A corollary of the finding that a singular, optimal set of

GMM-derived curves does not exist is that the observed

DSD shapes do not display predictable regional patterns.

The shapes observed are not distinct when normalized by

RWC, whether considering the DSDs regionally or across

SST regimes. The GMM-derived shapes are not tied to one

region or another, a finding that echoes Fig. 2. This contrasts

with some studies’ success in pulling regional attributes out

of large data sets via GMM without including location infor-

mation, as was done here (Jones et al., 2019). The only area

of OceanRAIN sampling that appears as distinct in the dis-

tribution of GMM states is from observations in stratocumu-

lus regions, which are dominated by the GMM states with

steeply sloped DSD curves and a large number of small

drops. Otherwise, the GMM states are not strongly tied to

particular sampling regions. This tendency changes if DSD

is not normalized by RWC, as RWC regimes are more tied to

regional meteorology. But with respect to the retrieval prob-

lem, where it is convenient to separate the DSD shape from

RWC as in Eq. (3), the GMM approach does not provide a

magic bullet.

5 Radiative transfer impacts

An overlooked aspect of assuming a DSD a priori, or even

just assuming the general shape of the DSD a priori, is that

this will introduce forward model errors in retrievals and data

assimilation. These errors can be strongly correlated across

nearby frequencies and can thus cause systematic biases in

variational systems (e.g., 1DVAR, 3DVAR) if not taken into

account. An example of including this type of forward model

error into a variational rainfall retrieval for GPM was pre-

sented by Duncan et al. (2018). Instead, the focus in this

section is investigating the extent of forward model response

inherent to variations in natural drop populations, without fit-

ting a functional form to the observed drop counts. Because

RWC or rain rate is usually the sought parameter from re-

mote sensing retrievals, the results are separated along those

lines.

Forward model simulations of the radiative transfer were

performed using the Atmospheric Radiative Transfer Sim-

ulator (ARTS) version 2.3 (Eriksson et al., 2011; Buehler

et al., 2018). The ARTS model can handle custom parti-

cle size distributions (such as observational size bin data)

as well as prescribed DSDs such as the MGD. Thus, with

the full size bin data from OceanRAIN it is possible to simu-

late the interaction of radiation with drop populations without

making any simplifications involving the drops’ functional

form. To approximate the impact on a sensor such as GMI

on GPM, simulations were run using the GMI geometry and

three GMI frequencies: 18.7, 36.64, and 89.0 GHz. Because

the surface-based disdrometer data inherently lack vertical

information, hydrometeor and humidity profiles need to be

assumed. To avoid complications from the inclusion of any

ice scattering species, the setup for warm rain is as follows:

a 1 km rain layer defined by the RWC and DSD observed,

with a 1 km liquid cloud layer of 0.2 kg m−2 above, char-

acteristic of a raining warm cloud (Lebsock et al., 2008).

Here we differentiate between cloud water and rainwater

due to their different radiative characteristics, with the to-

tal liquid water path being the sum of the two. The sur-

face properties and humidity profile are typical of a tropical

scene, with the surface emissivity calculated using the Tool

to Estimate Sea-Surface Emissivity from Microwaves to sub-

Millimeter waves (TESSEM2), which is embedded in ARTS

(Prigent et al., 2017). DSD properties are constant within the

rain layer and the cloud layer is also homogeneous. Cloud

droplets are monodisperse with a diameter of 15 µm, whereas

the rain drops are about 2 orders of magnitude larger in di-

ameter, hence their differing scattering properties. The simu-

lation code is available in Duncan (2019).

Figure 9a shows the results of the GMI simulations using

native disdrometer data, with rain water path (RWP) simply

RWC vertically integrated over the 1 km rain layer, given in

kg m−2. The change in top of atmosphere radiance in Kelvin,

1TB, is defined relative to the non-raining case of RWP = 0

and for unpolarized radiation. With no mixed-phase or ice-
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Figure 9. Simulated brightness temperatures (TB) through a modeled atmosphere for warm rain, with a liquid cloud layer of 0.2 kg m−2

from 1 to 2 km altitude and rain in the lowest kilometer. The RWC in the rain layer and the DSD are directly from disdrometer observations

and constant in the rain layer. The mean (dots) and standard deviation (±1σ , shown as bars) of 1TB per rain water path (RWP) bin are

given, where the difference in TB is defined relative to RWP = 0. Panel (a) uses all OceanRAIN observations, panel (b) shows results when

averaging over consecutive 6 min observation windows to approximate a satellite footprint.

phase hydrometeors in the atmospheric column, the three

GMI channels chosen all exhibit a net increase in TB. The

89 GHz shows little sensitivity to either DSD variability or an

increase in RWP; its signal is mainly from cloud water emis-

sion, and the scattering signal from rain largely cancels out

its emission signal. In contrast, the lower-frequency channels

show large increases in TB with RWP, as emission dominates

and the cloud is more transparent, with the wide range of

scattering responses showing the strong dependence on drop

size. The 18 GHz TB especially shows large variability for a

given RWP, with the standard deviation of the TB response

usually about half of the mean value. This is a significant

error source for warm rain estimation, as the difference be-

tween a RWP of 0.2 and 0.3 kg m−2 would be difficult to dis-

tinguish using these frequencies alone due to the overlapping

forward model error bounds.

To address the point-to-area issue of comparing Ocean-

RAIN observations integrated every minute with those of a

spaceborne passive microwave or radar footprint, which is

5 km in the best case, Fig. 9b shows a sample result if the

disdrometer data are averaged in time. Averaging in time

is performed because it approximates a spatial average, ab-

sent other observing points. Specifically, a nominal 16 min

window was used to average consecutive raining disdrome-

ter measurements, in that a ship at 10 kn would take about

16 min to traverse 5 km. Observations with zero rain rates

were not included if the OceanRAIN points were discontinu-

ous in time. Figure 9b shows that the results are quite similar

to the native disdrometer data used in Fig. 9a, with standard

deviations slightly smaller for lower RWP values. The maxi-

mum forward model errors observed by a sensor such as GMI

may not be markedly different from those presented with the

time averaging performed; however, most GMI channel foot-

prints are larger than those of DPR.

Without needing to assume a model atmosphere, the vari-

ability of radar reflectivities can be simulated with the mea-

sured volume of drops alone and the T-matrix method (Klepp

et al., 2018). Figure 10 gives the simulated radar reflectiv-

ity response over a range of rain rates using the Ocean-

RAIN observations. As with the passive sensor simulations,

this demonstrates that DSD variability can cause significant

differences in the radiative properties of a volume of drops

even for equivalent rain rates or RWCs. As with Fig. 9, the

range of scattering response is larger for the lower-frequency

channels, with KU showing greater variability in modeled re-

flectivity, as the specifics of the DSD determine whether the

drops’ scattering is wholly in the Rayleigh regime or partly in

the Mie regime. The KA band is less affected by DSD varia-

tions in both the passive and active simulations while scaling

mostly linearly with increasing RWC or rain rate.

6 Discussion

6.1 Comparison with GPM

The discrepancies between OceanRAIN and GPM his-

tograms of retrieved Dm and Nw (Figs. 4 and 5) deserve some

discussion. The distributions of Dm and Nw from disdrome-

ter measurements are wider than those from GPM CORRA

retrievals in most latitude bands, significantly so for Nw.

GPM has limited sensitivity to small drops and lower number

concentrations due to the minimum detectable signal from

DPR, which may explain the small drops that were underes-
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Figure 10. Simulated radar reflectivities at the two DPR frequen-

cies, KU and KA bands, shown as the mean (dots) and standard

deviation (±1σ , shown as bars) binned by rain rate. The rain rate

and the DSD are directly from OceanRAIN observations.

timated relative to the disdrometer measurements, especially

in the Southern Ocean.

The highly peaked GPM distributions of Nw, in stark con-

trast to OceanRAIN’s much flatter Nw distributions at all

latitudes, would appear to have two leading, plausible ex-

planations. First, OceanRAIN is expected to observe more

variability in the number of drops because it is a point mea-

surement integrated over 1 min and precipitation characteris-

tics can vary widely over multiple kilometers, whereas DPR

has a 5 km footprint. Second, DSD retrieval from GPM is

an under-constrained problem (more unknowns than infor-

mation) despite the unique capabilities of DPR. While the

altitude mismatch between surface-based disdrometers and

the GPM data at a few hundred meters altitude may cause

some systematic differences, say due to evaporation unseen

by GPM, this does not explain the limited range of Nw val-

ues retrieved by GPM. The strongly peaked Nw distributions

seem indicative of the significant influence of the a priori

state on retrieval of Nw, in addition to the limited sensitivity

to small number concentrations dictated by the instrument

sensitivity of DPR. Future versions of the GPM algorithms

may be able to make use of data, such as in Fig. 2, to im-

prove the a priori constraints guiding the retrievals.

6.2 Applicability of the modified gamma distribution

To examine the applicability of the MGD to observed ocean

DSDs, we can compare the observed PDF (Figs. 3 and 11a)

with the PDF of the same data but constrained by the NG fit

(Fig. 11c). This is shown in Fig. 11e, with sample NG curves

given for extreme values of the shape parameter. The NG-

derived PDF overestimates the frequency of points near the

exponential line and displays less spread; blue areas indicate

overrepresentation from the NG fit, and red areas indicate

underrepresentation from the NG fit. As with the comparison

between the PDF and NG curves in Fig. 3, this shows an un-

derestimation of small drops at high number concentrations

by virtue of being constrained by the NG fit.

To see if there is some latitudinal dependence within the

overall OceanRAIN PDF, Fig. 11b and d divide the data into

observations from high-latitude (latitudes greater than 50◦)

and tropical (latitudes less than 20◦) locations. It appears

that whereas the NG with a shape parameter ranging roughly

between µ = 0 and µ = 3 suffices for many tropical cases,

high-latitude observations are not always well represented by

the three-parameter MGD. For high-latitude oceanic rainfall,

Fig. 11f demonstrates that small drops are underestimated

and medium drops overestimated if using the three-parameter

MGD.

One concern raised by the results of Fig. 11 is whether

the use of the three-parameter MGD, and its limited rep-

resentation of the full PDF of drop sizes, can cause biases

in modeled or retrieved rain rates. To examine this is quite

straightforward, in that a size-dependent terminal velocity

(Atlas and Ulbrich, 1977) can be assigned for drops of each

size bin, with the rain rate calculated as the integral product

of the velocity distribution and the third moment of N(D).

The calculated rain rate can then be compared between DSD

representations. Using all OceanRAIN observations shown

in Fig. 1 we calculated rain rates manually using the size

bin data and assuming terminal velocities for all drops, al-

lowing comparison of the rain rates that arise from the PDFs

shown in Fig. 11a and c. The distributions resultant from the

NG fit were found to result in a small mean overestimation

of rain rates by 0.06 mm h−1 or 1.9 %. Using the same defi-

nitions as above, this underestimation was slightly less pro-

nounced at high latitudes than for tropical latitudes, 1.5 %

versus 2.1 %. This is due to underestimation of small drops

by the NG fit, as small drops have lower terminal velocities

than larger drops and with RWC being equal this can have a

minor impact on resultant fluxes of precipitation.

Much of the spread that exists in the full OceanRAIN PDF

is due to the use of unsmoothed observational data that con-

tain discontinuities between size bins and some degree of in-

strument error. It is clear, however, that much of the spectral

power in Fig. 3 is not captured by any one NG curve. While

the exponential line and µ = 3 curves do a reasonable job at

matching the PDF for larger drop sizes, the µ = −2 curve

performs much better for smaller diameters. This suggests

that a four-parameter “generalized gamma” fit might be op-

timal for oceanic DSDs, a finding echoed in another recent

study of disdrometer data (Thurai and Bringi, 2018). Use of

the three-parameter MGD can lead to some systematic biases

in drop size representation, as seen in Fig. 11e. These biases

can be regionally dependent, as shown by the higher number

concentrations of small drops seen in high latitudes relative

to the tropics, as seen in Fig. 11f, and consistent with findings

from Dolan et al. (2018).
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Figure 11. Panel (a) duplicates the result in Fig. 3. Panel (c) shows the data from panel (a) but after being fitted to the NG distribution.

Panel (e) shows the NG-fitted PDF subtracted from the full PDF. Panels (b), (d), and (f) show OceanRAIN PDFs from high latitude (b) and

tropical (d) latitudes, viz. PDF>50◦ and PDF20◦ N–20◦ S, with their difference given in panel (f). Areas in gray indicate no data. The low and

high µ curves given approximately bound the PDF space for the fitted data. Panels (a)–(d) share the same color scale and panels (e) and (f)

also share the same anomaly color scale.
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7 Summary and conclusions

This study has investigated the variability of raindrop size

distributions over the global oceans in a variety of contexts

relevant to retrievals and atmospheric modeling. Methods to

attach a functional form to raindrop populations vary but

have largely been predicated on limited land-based observa-

tions in the past. The OceanRAIN observation network of

disdrometers provides an opportunity to move towards better

understanding of global raindrop populations, with ramifi-

cations in aid of satellite retrievals and model parameteriza-

tions, which are necessarily global in scope.

The disdrometer data were shown to have limited depen-

dence on latitude or SST (Fig. 2), when quantified using pa-

rameters of the normalized gamma distribution (Eq. 3). The

mean and median of Dm tend to vary within 0.1 mm across

all latitudes, with ±σ of about 0.2 mm. Most observations of

log10(Nw) fall within 3.0 to 4.3 (Fig. 4), with a weak cor-

relation exhibited between Nw and SST (Fig. 2). These pa-

rameters from OceanRAIN were also compared to the lead-

ing estimates from a satellite platform (Fig. 5); comparisons

with GPM matched relatively well for distributions of Dm

but less so for Nw. Both parameters appear to be too peaked

from the GPM retrieval, likely a result of strong influence

from that retrieval’s a priori state, as DSDs with approx-

imately Dm = 1.0 mm and log10(Nw) = 3.9 were frequent.

The data sets exhibit similar spreads in the distributions of

Dm, but the disdrometers show significantly more variabil-

ity in Nw than seen by GPM; the middle 90 % of GPM Nw

retrievals fall within an order of magnitude, whereas the mid-

dle 90 % of disdrometer observations span over 2 orders of

magnitude. It was speculated that the GPM retrievals may

be over-constrained, although it was expected that the point

measurements of the disdrometer would display greater vari-

ability than those from satellite sources due to spatial and

temporal considerations alone. Still, these results appear to

demonstrate a systematic underestimation of number con-

centration variability within the GPM data set.

Usage of the normalized gamma distribution to describe

all observed DSD behavior was questioned (Sect. 6.2), as

it appears more applicable in the tropics than for higher-

latitude populations. High-latitude cases exhibit larger con-

centrations of small drops that are outside the state space

specified by the three-parameter MGD (Fig. 11). The three-

parameter MGD can cause systematic biases in rain rate esti-

mation relative to using the observed size bin data, quantified

to be a −2 % error in the mean relative to total accumulation

calculated from the disdrometers. This is a relatively small

error for total accumulation because the drops that are most

misrepresented by the normalized gamma formalism account

for relatively little of the total mass flux; however, for about

3 % of cases this is an error of −0.5 mm h−1 or more and can

thus be significant. For many applications, an exponential

DSD may be simpler and more appropriate than a NG distri-

bution for oceanic rainfall (Fig. 3), but this of course does not

encapsulate the range of variability that exists, which may

be better represented by a generalized gamma approach with

four parameters (Thurai and Bringi, 2018).

Radiative properties of raindrop populations can vary

rapidly for low-frequency microwaves, and this is manifest in

Fig. 9, as the standard deviation magnitude is approximately

half of the net radiative signal at 18 GHz but is much lower

at higher frequencies such as 89 GHz. This is because the

presence of a few larger drops can cause non-negligible Mie

scattering that impacts the otherwise emission-dominated ra-

diative signal and Rayleigh scattering from smaller drops, an

effect that diminishes as frequency increases. Figure 10 also

showed this effect, with lower frequencies exhibiting greater

variability for a given RWC or rain rate due to observed

DSD variability. Whereas the radiative variability is simi-

lar for light rain rates, modeled variability can be 2–3 times

greater at the KU band than the KA band. This observed TB

variability caused by DSD variability is seen in both passive

and active simulations. However, these ranges of forward

model variability represent a worst case scenario for satel-

lite retrievals or data assimilation, as any skill in assuming or

retrieving the DSD would shrink these ranges. This passive

forward model variability can even be viewed favorably, as

it demonstrates sensitivity to the DSD at low microwave fre-

quencies that may aid DSD retrievals. Simulations compar-

ing forward model errors caused by using a GMM-derived

or MGD state compared to the true DSD state showed that a

high NGMM value was needed for the GMM states to outper-

form the three-parameter MGD in terms of forward model

errors (not shown). This is in line with Fig. 8 but also indica-

tive that it is hard for a single-moment scheme such as GMM

to compete without having a large number of possible states.

This exploration of DSD shape “distinctiveness” was mo-

tivated by the remote sensing and modeling communities’

need for simple but accurate parameterizations of rainwa-

ter size distribution. For instance, if a region or meteoro-

logical regime tends to exhibit one or two DSD shapes, this

simplifies a multidimensional problem considerably. The re-

sults, however, demonstrate that simple separation of DSD

shapes by latitude and SST, or by other variables such as dew

point temperature and RWC (not shown), does not signifi-

cantly simplify the DSD problem. The limited spatiotempo-

ral sampling of OceanRAIN meant that further subdivision

of regional data for seasonal shifts in DSD was not possible.

The conclusion is then that global oceanic DSD variability,

though more uniform than over land surfaces, is complex and

not easily reduced to a single-moment parameterization or a

small set of possible shapes.

Code availability. The code used for analysis is all available in the

form of Jupyter notebooks via a Zenodo archive (Duncan, 2019).
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